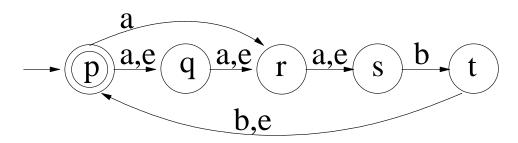
Name: _____

ID Number: _____

CSC 320 Midterm Exam


June 13, 2003

Instructions:

- 1. Put your name on every page of the exam.
- 2. No calculators or other aids. Closed book.
- 3. Read through the entire exam before beginning. You should have 7 pages including this header page.

Question	Value	Mark
1	30	
2	20	
3	20	
4	30	
Total	100	

1.(a) [20] Use the construction described in class (which is the same as the one in the text) to convert this NDFA to an equivalent DFA:

State	Symbol	Next state

Start state: _____

Final states:

(b) [5] A picture of your final DFA:

(c) [5] Give a regular expression for the language that M accepts.

- 2. Circle **True** or **False** and justify your answer. **No marks will be given unless** there is a correct justification.
 - (a) [5] $\phi = \{e\}$. True False

 (b) [5] The class of languages accepted by DFA's is closed under complement but the class of languages accepted by NDFA's is not. True False

(c) [5] Every subset of a regular language is regular.True False

(d) [5] It is possible to have a language which contains only the empty set. True False

- 3. Prove that the languages in parts (a) and (b) are regular by providing either a regular expression that generates the language or a DFA which accepts the language.
- (a) [10] $L_1 = \{w \in \{a, b\}^* : w \text{ does not contain } abaabb\}$

(b) [10] $L_2 = \{w \in \{0, 1\}^*$: the number of 0's in w is 2r + 1 and the number of 1's is 3s + 2 for some integers r and s}.

(b) [10] Let $w = a^s b a^{s^4}$. Describe all possible ways of choosing x, y, z such that w = xyz, and $y \neq \varepsilon$.

(c) [10] Apply the pumping lemma to $w = a^s b a^{s^4}$ to prove that $L = \{a^n b a^r : n^2 \le r \le n^4\}$ is not regular. All you may assume is that s is chosen so that $s^4 + s + 1 \ge k$ (and possibly we have equality).

(d) [5] A more judicious choice for *w* would have made the argument for (c) much simpler. Suggest a better choice for *w*. How does this simplify the argument you gave for (c)?

Use this page if you need more space.

Clearly indicate the question you are answering.