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For each language, give a DFA that accepts it.

L1 = { w  {a, b}* : w at most 2 a’s} 

L2 = { w  {0, 1}* : has both 001 and 11 as 
substrings}

L3 = { w  {a, b}* : w ends with abab} 

L4= { w  {a,b}* : w = a 2r bs for some integers r 
and s where r, s ≥ 0} 

L5 = { w  {0, 1}* : has both 010 and 101 as 
substrings}
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Assignment #2 has been posted.
Due Friday June 2 at the beginning of 
class.

Tutorial #3 has been posted.
No tutorial this week.
The next tutorial is Tuesday May 30.
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L5 = { w  {0, 1}* : the number of 0’s in w is 
even and the number of 1’s is congruent to 
1 modulo 3}

L6 = { w  {a, b}* : w contains abaab}
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Nondeterministic Finite 
Automata

if                        IF
[a-z][a-z0-9]*     ID
[0-9]+                 NUM

Picture from: Raymond 
Wisman, Notes from 
compiler design class
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Outline: NDFA’s are like DFA’s but their operation is 
not deterministic. NDFA’s are defined and several 
examples are given. We prove that for every NDFA 
there is an equivalent DFA by giving an algorithm 
which constructs one.

Context: By definition a language is regular if and only if 
there is a regular expression for it. We will soon 
prove that a language is regular if and only if there is 
a DFA which accepts it. 

Ultimate Consequences:

You can prove that a language is regular by either

1. finding a regular expression which generates it,

2. finding a DFA which accepts it, or

3. finding a NDFA which accepts it.
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A Nondeterministic Finite Automaton
(NDFA) M is defined to be a quintuple

(K, Σ, Δ, s, F) where

K is a finite set of states,

Σ is an alphabet,

Δ, the transition relation, is a subset of 
K x (Σ ⋃ {ε} ) x K,

s  K is the start state, and

F  K is the set of final states.
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M
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M= (K, Σ, Δ, s, F):

A configuration of a M is an element of K x Σ*.

For σ  (Σ U {ε} ), configuration 

(q, σ w ) ├ (r, w) if (q, σ, r) is in Δ.

The notation ├* means yields in zero or more 
steps.
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M= (K, Σ, Δ, s, F):

NDFA M accepts input w if and only if

there exists some computation such that

(s, w) ├*    (f, ε)   for some f  F.

L(M), the language accepted by M is

{ w  Σ* : (s, w) ├* (f, ε) for some f  F}.
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Some non-accepting computations:

(s, abb) ├ (p, bb)├ (q, b)  

STUCK- no way to finish consuming the input.

(s, abb) ├ (r, bb)├ (t, b)├ (p,e)   

Ends in a non-final state p.

M
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Some accepting computations:

(s, abb) ├ (r, bb)├ (t, b)├ (u,e)  

(s, abb) ├ (p, bb)├ (r, bb) ├ (t, b)├ (u,e)

abb is in L(M) since it has at least one 
accepting computation.

M
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Prove the following languages over Σ= 
{0, 1} are regular by constructing 
NDFA’s which accept them.

1. L1 ={ w : w starts and ends with 0}.

2. L2 =  (000 ⋃ 11 ⋃ 01)*

3. L1 ⋃ L2 

4. L1 ۰ L2 
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A set S is closed with respect to a 
binary operation · if for all s and t in 
S, s · t is in S.

Examples:

N= {0, 1, 2, 3, …}

Closed for addition and 
multiplication.

Not closed under subtraction or 
division.
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The set S =  { L : L is L(M) for some 
DFA M} is closed under union.

Let M1= (K1, Σ, δ1, s1, F1) accept L1 

and M2= (K2, Σ, δ2, s2, F2) accept L2 .

Proof 1: A construction for a new DFA 
M= (K, Σ, δ, s, F) which accepts L1 ⋃ L2.

Proof 2: A construction for a new NDFA 
M= (K, Σ, Δ, s, F) which accepts L1 ⋃ L2.
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The set S={ L : L is L(M) for some DFA M} 
is closed under concatenation.

Let M1= (K1, Σ, δ1, s1, F1) accept L1

and M2= (K2, Σ, δ2, s2, F2) accept L2.

Proof: A construction for a new NDFA M= 
(K, Σ, Δ, s, F) which accepts L1 ۰ L2.
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The set S=  { L : L is L(M) for some DFA 
M} is closed under Kleene star.

Let M1= (K1, Σ, δ1, s1, F1) accept L1. 

Proof: A construction for a new NDFA 
M= (K, Σ, Δ, s, F) which accepts L1 *.


