1.Draw a parse tree for the following
derivation:

S=CAC=CAbb=bbAbb=
bbBbb=bbaAaabb
—bbabaabb

2. Show on your parse tree u, v, X,y, z as
per the pumping theorem.

3. Prove that the language for this
question is an infinite language.

Wednesday June 21:
Midterm exam in class.

Recall that you need to have at least 50%
For your assignment average.

Your lowest assignment mark will be
dropped in computing your average.

L={a"bP: n< p <3n, np >0}
Start symbol S.

S—>aShb S—¢
S—>aShbb

S —>a$Sbbb

This works because any integer p can be
expressed as:

p=r+2(n -r) whenn¢pz<2n,and

p=2r+3(n-r) when2n<p<3n.

Prove the following languages are context-
free by designing context-free grammars
which generate them:

L= {a"b"cP : n,p20}
_,={a"bPc" : n, p2>0}

_;={a"b™:nzm, n,m2>0}

Hint: Ly={a"b™:n<m} U {a"b™: n>m}
L,={cucvc:|ul=lv], u,vela b}}
What isL;nL,?

Pushdown Automata

A~
AT EE ORI AR RORRS NSNS NN

™.

@ ACCEPT &

Figure 7.4 A push-down automaton

Picture from: Torsten Schafan

Pushdown Automata:

A pushdown automaton is like a NDFA
which has a stack.

Every context-free language has a
pushdown automaton that accepts it.

This lecture starts with some examples,
gives the formal definition, then
investigates PDA's further.

TEXTPATTERN SOLUTIONS

e

Bulletproof Web Design

http://www.newhospitalityseating.com/wp-content/uploads/2007/12/shay-alkalay-_coloured-stack.jpg
http://images.google.com/imgres?imgurl=http://www.becreativekids.com/images_md/0576-RainbowStacker.jpg&imgrefurl=http://www.becreativekids.com/melissa_doug/classic_toys.php&h=900&w=535&sz=222&hl=en&start=116&um=1&tbnid=PCPKalKYgisn-M:&tbnh=146&tbnw=87&prev=/images%3Fq%3Dstack%2Btoy%26start%3D108%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enCA238CA238%26sa%3DN

Stack Data Structure: permits push
and pop at the top of the stack.

Pus?y Pop

Stack

S

L={wcwR:we{a, b}

Start state: s, Final State: {1}

State |Input |Pop |Next |[Push
state

S

—~ |~ 0 0O
oo O T2

A
S B
t £
t £
t £

To accept, there must exist a computation
which:

1.Starts in the start state with an empty
stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an
empty stack.

w=abbcbba

Stack is
(s, abbcbba, €) * knocked

(s, cbba, BBA)} like

(t, bba, BBA) |*
(1‘, . 8) \f

A pushdown automaton is a sextuple
M= (K, Z, T, A, s, F)where
K is a finite set of states,

2 is an alphabet (the input symbols)

I is an alphabet (the stack symbols)
A the transition relation,
is a finite subset of

(K x (ZU{e}) xT*)x (K x)
state input pop next state push

A configuration of a PDA is a member of
K X 2. * x [*
current state input remaining stack

A configuration (g, ow, a x) | (r, w, px) if

((q' g,d)l (r., ﬁ)) S A
For M= (K, 2, T, A, s, F),
L(M) (the language accepted by M) =

{weZ*:(s,w,) *(f, ¢, €) for some
final state f in F}.

LIM)={w e Z*:(s,w, &) *(f, ¢, ¢) for
some final state f in F}.

To accept, there must exist a computation which:
1. Starts in the start state with an empty stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an empty
stack.

PDA's are non-deterministic:
L={wwR :w e {a, b}*}

Start state: s, Final State: {t}

State |Input |Pop |Next |[Push
state

c o Guessing

wrong time to
switch from s

to t gives

hon-accepting

A
B
€
€
€

~ |~ | | | W\
O Y9 o | T D

S
t
t
t

W > m|m

computations.

Some non-accepting computations on aaaa:
1. Transfer to state t too early:
(s,aaaq, €) - (s,aaa, A)- (f, aaa, A)

- (t, aa, ¢€)
Cannot finish reading input because stack is
empty.
2. Transfer to state t too late:
(s, aaaa, €) + (s, aaa, A)+(s, aa, AA)

(s, a, AAA) (T, a, AAA) (T, ¢, AA)
Cannot empty stack.

Accepting computation on aaaa:
(s, aaaq, €) + (s, aaa, A+ (s, aa, AA)
- (t,aa, AA)+ (t,a, A) (T, ¢, ¢€)

The computation started in the start state
with the input string and an empty stack.

It terminated in a final state with all the
input consumed and an empty stack.

L= {w in {a, b}* : w has the same number of
a's and b's}

Start state: s

Final states: {s}

Next
State | Input| Pop Push
state
S B

wMmw n um
| |9 Q@

S €
S A
S €

L= {w in{a, b}* : w has the same number of a's and b's}

State state: s, Final states: {f}

State |Input |Pop |Next |Push
state

S £ £ t X
t a X t BX
t a A t £
t a B t BB
t 0 X t AX
t 0 A t AA
t 0 B t £
t € X f €

A more
deterministic
solution:

Stack will
hever contain
both A's and
B's.

X- bottom of
stack marker.

Design contex-free grammars
that generate:

L={uv:ue{ab},h veaq,c},
and |ul < |v] <3 |u| }.

L,={aP bdcPa b?:p,q,r2>0}

