
1.Draw a parse tree for the following 
derivation:

S  C A C  C A b b  b b A b b

b b B b b  b b a A a a b b 

 b b a b a a b b

2. Show on your parse tree u, v, x, y, z as 
per the pumping theorem.

3. Prove that the language for this 
question is an infinite language. 



Wednesday June 21:
Midterm exam in class.

Recall that you need to have at least 50%
For your assignment average.

Your lowest assignment mark will be 
dropped in computing your average.



L= { an bp :    n ≤  p  ≤ 3n,   n,p ≥0}

Start symbol S.

S → a S b                  S → ε

S → a S bb

S → a S bbb

This works because any integer p can be 
expressed as: 

p= r + 2 (n  – r) when n ≤ p ≤ 2n, and

p= 2r + 3 (n - r) when 2n ≤ p ≤ 3n.
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Prove the following languages are context-
free by designing context-free grammars 
which generate them:

L1= {an bn cp :  n, p ≥ 0}

L2= {an bp cn :  n, p ≥ 0}

L3 = {an bm : n ≠ m,  n, m ≥ 0}

Hint: L3 = {an bm : n < m} ⋃ {an bm : n > m}

L4 = { c u c v c : |u|=|v|,   u, v  {a, b}* }

What is L1  L2 ?



Pushdown Automata

Picture from: Torsten Schaßan



Pushdown Automata:

A pushdown automaton is like a NDFA 
which has a stack.

Every context-free language has a 
pushdown automaton that accepts it.

This lecture starts with some examples, 
gives the formal definition, then 
investigates PDA’s further.



Stacks
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Stack Data Structure: permits push 
and pop at the top of the stack.



L= { w c wR  : w  {a, b}* }

State Input Pop Next 

state

Push

s a ε s A

s b ε s B

s c ε t ε

t a A t ε

t b B t ε

Start state: s,    Final State: {t}



To accept, there must exist a computation 
which:

1.Starts in the start state with an empty    
stack. 

2. Applies transitions of the PDA which are 
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an 
empty stack.



B

B

A

w = a b b c b b a

B B A

(s, abbcbba, ε) ├*

(s, cbba, BBA)├

(t, bba, BBA) ├*

(t, ε, ε)

Stack is 
knocked 
over like 
this:



A pushdown automaton is a sextuple 

M= (K, Σ, Γ, Δ, s, F) where

K is a finite set of states,

Σ is an alphabet (the input symbols)

Γ is an alphabet (the stack symbols)

Δ,  the transition relation, 

is a finite subset of 

( K x   (Σ⋃ {ε}) x Γ*) x  (K    x    Γ*) 
state    input pop next state push



A configuration of a PDA is a member of

K   x            Σ* x    Γ*

current state input remaining stack

A configuration (q, σ w, α x) ├ (r, w, βx) if 
((q, σ, α ), (r, β))  Δ.

For M= (K, Σ, Γ, Δ, s, F),  

L(M) (the language accepted by M) = 

{ w  Σ* : (s, w, ε) ├* (f, ε, ε) for some 
final state f in F}. 



To accept, there must exist a computation which:

1. Starts in the start state with an empty stack. 

2. Applies transitions of the PDA which are 
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an empty 
stack.

L(M)= { w  Σ* : (s, w, ε) ├* (f, ε, ε) for 
some final state f in F}. 



L= { w wR  : w  {a, b}* }

State Input Pop Next 

state

Push

s a ε s A

s b ε s B

s ε ε t ε

t a A t ε

t b B t ε

Start state: s,    Final State: {t}

PDA’s are non-deterministic:

Guessing 
wrong time to 
switch from s 
to t gives  
non-accepting 
computations.



Some non-accepting computations on  aaaa:

1. Transfer to state t too early:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢ (t,  aaa, A)

⊢ (t, aa, ε) 

Cannot finish reading input because stack is 
empty.

2. Transfer to state t too late:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢(s,  aa, AA)

⊢(s,  a, AAA) ⊢(t,  a, AAA) ⊢ (t, ε , AA)    

Cannot empty stack.



Accepting computation on  aaaa:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢ (s,  aa, AA)

⊢ (t, aa, AA) ⊢ (t, a, A) ⊢ (t, ε, ε)

The computation started in the start state 
with the input string and an empty stack.

It terminated in a final state with all the 
input consumed and an empty stack.



State Input Pop
Next

state
Push

s a ε s B

s a A s ε

s b ε s A

s b B s ε

L= {w in {a, b}* : w has the same number of 
a’s and b’s}

Start state: s

Final states: {s}



State Input Pop Next 

state

Push

s ε ε t X

t a X t BX

t a A t ε

t a B t BB

t b X t AX

t b A t AA

t b B t ε

t ε X f ε

L= {w in {a, b}* : w has the same number of a’s and b’s}

State state: s, Final states: {f}

A more 
deterministic 
solution: 

Stack will 
never contain 
both A’s and 
B’s.

X- bottom of 
stack marker.



Design contex-free grammars 
that generate:

L1= { u v : u ∈ {a,b}* , v ∈ {a, c}*, 

and |u| ≤   |v|  ≤ 3 |u| }.

L2= { ap bq cp ar b2r : p, q, r ≥ 0}


