1.Draw a parse tree for the following
derivation:

S=CAC=CAbb=bbAbb=
bbBbb=bbaAaabb
—bbabaabb

2. Show on your parse tree u, v, X,y, z as
per the pumping theorem.

3. Prove that the language for this
question is an infinite language.



Wednesday June 21:
Midterm exam in class.

Recall that you need to have at least 50%
For your assignment average.

Your lowest assignment mark will be
dropped in computing your average.



L={a"bP: n< p <3n, np >0}
Start symbol S.

S—>aShb S—¢
S—>aShbb

S —>a$Sbbb

This works because any integer p can be
expressed as:

p=r+2(n -r) whenn¢pz<2n,and

p=2r+3(n-r) when2n<p<3n.



Prove the following languages are context-
free by designing context-free grammars
which generate them:

L= {a"b"cP : n,p20}
_,={a"bPc" : n, p2>0}

_;={a"b™:nzm, n,m2>0}

Hint: Ly={a"b™:n<m} U {a"b™: n>m}
L,={cucvc:|ul=lv], u,vela b}}
What isL;nL,?




Pushdown Automata
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Figure 7.4 A push-down automaton

Picture from: Torsten Schafan



Pushdown Automata:

A pushdown automaton is like a NDFA
which has a stack.

Every context-free language has a
pushdown automaton that accepts it.

This lecture starts with some examples,
gives the formal definition, then
investigates PDA's further.



TEXTPATTERN SOLUTIONS

e

Bulletproof Web Design
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Stack Data Structure: permits push
and pop at the top of the stack.

Pus?y Pop

Stack

S




L={wcwR:we{a, b}

Start state: s, Final State: {1}

State |Input |Pop |Next |[Push
state
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To accept, there must exist a computation
which:

1.Starts in the start state with an empty
stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an
empty stack.



w=abbcbba

Stack is
(s, abbcbba, €) *  knocked

(s, cbba, BBA)} like

(t, bba, BBA) |*
(1‘, . 8) \f




A pushdown automaton is a sextuple
M= (K, Z, T, A, s, F)where
K is a finite set of states,

2 is an alphabet (the input symbols)

I is an alphabet (the stack symbols)
A the transition relation,
is a finite subset of

(K x (ZU{e}) xT*)x (K x )
state  input  pop  next state push



A configuration of a PDA is a member of
K X 2. * x [*
current state  input remaining stack

A configuration (g, ow, a x) | (r, w, px) if

((q' g,d )l (r., ﬁ)) S A
For M= (K, 2, T, A, s, F),
L(M) (the language accepted by M) =

{weZ*:(s,w, ) *(f, ¢, €) for some
final state f in F}.



LIM)={w e Z*:(s,w, &) *(f, ¢, ¢) for
some final state f in F}.

To accept, there must exist a computation which:
1. Starts in the start state with an empty stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an empty
stack.



PDA's are non-deterministic:
L={wwR :w e {a, b}*}

Start state: s, Final State: {t}

State |Input |Pop |Next |[Push
state

c o Guessing

wrong time to
switch from s

to t gives

hon-accepting
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computations.




Some non-accepting computations on aaaa:
1. Transfer to state t too early:
(s,aaaq, €) - (s,aaa, A)- (f, aaa, A)

- (t, aa, ¢€)
Cannot finish reading input because stack is
empty.
2. Transfer to state t too late:
(s, aaaa, €) + (s, aaa, A)+(s, aa, AA)

(s, a, AAA) (T, a, AAA) (T, ¢, AA)
Cannot empty stack.



Accepting computation on aaaa:
(s, aaaq, €) + (s, aaa, A+ (s, aa, AA)
- (t,aa, AA)+ (t,a, A) (T, ¢, ¢€)

The computation started in the start state
with the input string and an empty stack.

It terminated in a final state with all the
input consumed and an empty stack.



L= {w in {a, b}* : w has the same number of
a's and b's}

Start state: s

Final states: {s}

Next
State | Input| Pop Push
state
S B

wMmw n um
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S €
S A
S €




L= {w in{a, b}* : w has the same number of a's and b's}

State state: s, Final states: {f}

State |Input |Pop |Next |Push
state

S £ £ t X
t a X t BX
t a A t £
t a B t BB
t 0 X t AX
t 0 A t AA
t 0 B t £
t € X f €

A more
deterministic
solution:

Stack will
hever contain
both A's and
B's.

X- bottom of
stack marker.



Design contex-free grammars
that generate:

L={uv:ue{ab},h veaq,c},
and |ul < |v] <3 |u| }.

L,={aP bdcPa b?:p,q,r2>0}



