
1.Draw a parse tree for the following
derivation:

S  C A C  C A b b  b b A b b

b b B b b  b b a A a a b b

 b b a b a a b b

2. Show on your parse tree u, v, x, y, z as
per the pumping theorem.

3. Prove that the language for this
question is an infinite language.

Wednesday June 21:
Midterm exam in class.

Recall that you need to have at least 50%
For your assignment average.

Your lowest assignment mark will be
dropped in computing your average.

L= { an bp : n ≤ p ≤ 3n, n,p ≥0}

Start symbol S.

S → a S b S → ε

S → a S bb

S → a S bbb

This works because any integer p can be
expressed as:

p= r + 2 (n – r) when n ≤ p ≤ 2n, and

p= 2r + 3 (n - r) when 2n ≤ p ≤ 3n.
3

Prove the following languages are context-
free by designing context-free grammars
which generate them:

L1= {an bn cp : n, p ≥ 0}

L2= {an bp cn : n, p ≥ 0}

L3 = {an bm : n ≠ m, n, m ≥ 0}

Hint: L3 = {an bm : n < m} ⋃ {an bm : n > m}

L4 = { c u c v c : |u|=|v|, u, v  {a, b}* }

What is L1  L2 ?

Pushdown Automata

Picture from: Torsten Schaßan

Pushdown Automata:

A pushdown automaton is like a NDFA
which has a stack.

Every context-free language has a
pushdown automaton that accepts it.

This lecture starts with some examples,
gives the formal definition, then
investigates PDA’s further.

Stacks

http://www.newhospitalityseating.com/wp-content/uploads/2007/12/shay-alkalay-_coloured-stack.jpg
http://images.google.com/imgres?imgurl=http://www.becreativekids.com/images_md/0576-RainbowStacker.jpg&imgrefurl=http://www.becreativekids.com/melissa_doug/classic_toys.php&h=900&w=535&sz=222&hl=en&start=116&um=1&tbnid=PCPKalKYgisn-M:&tbnh=146&tbnw=87&prev=/images%3Fq%3Dstack%2Btoy%26start%3D108%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enCA238CA238%26sa%3DN

Stack Data Structure: permits push
and pop at the top of the stack.

L= { w c wR : w  {a, b}* }

State Input Pop Next

state

Push

s a ε s A

s b ε s B

s c ε t ε

t a A t ε

t b B t ε

Start state: s, Final State: {t}

To accept, there must exist a computation
which:

1.Starts in the start state with an empty
stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an
empty stack.

B

B

A

w = a b b c b b a

B B A

(s, abbcbba, ε) ├*

(s, cbba, BBA)├

(t, bba, BBA) ├*

(t, ε, ε)

Stack is
knocked
over like
this:

A pushdown automaton is a sextuple

M= (K, Σ, Γ, Δ, s, F) where

K is a finite set of states,

Σ is an alphabet (the input symbols)

Γ is an alphabet (the stack symbols)

Δ, the transition relation,

is a finite subset of

(K x (Σ⋃ {ε}) x Γ*) x (K x Γ*)
state input pop next state push

A configuration of a PDA is a member of

K x Σ* x Γ*

current state input remaining stack

A configuration (q, σ w, α x) ├ (r, w, βx) if
((q, σ, α), (r, β))  Δ.

For M= (K, Σ, Γ, Δ, s, F),

L(M) (the language accepted by M) =

{ w  Σ* : (s, w, ε) ├* (f, ε, ε) for some
final state f in F}.

To accept, there must exist a computation which:

1. Starts in the start state with an empty stack.

2. Applies transitions of the PDA which are
applicable at each step.

3. Consumes all the input.

4. Terminates in a final state with an empty
stack.

L(M)= { w  Σ* : (s, w, ε) ├* (f, ε, ε) for
some final state f in F}.

L= { w wR : w  {a, b}* }

State Input Pop Next

state

Push

s a ε s A

s b ε s B

s ε ε t ε

t a A t ε

t b B t ε

Start state: s, Final State: {t}

PDA’s are non-deterministic:

Guessing
wrong time to
switch from s
to t gives
non-accepting
computations.

Some non-accepting computations on aaaa:

1. Transfer to state t too early:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢ (t, aaa, A)

⊢ (t, aa, ε)

Cannot finish reading input because stack is
empty.

2. Transfer to state t too late:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢(s, aa, AA)

⊢(s, a, AAA) ⊢(t, a, AAA) ⊢ (t, ε , AA)

Cannot empty stack.

Accepting computation on aaaa:

(s, aaaa, ε) ⊢ (s, aaa, A)⊢ (s, aa, AA)

⊢ (t, aa, AA) ⊢ (t, a, A) ⊢ (t, ε, ε)

The computation started in the start state
with the input string and an empty stack.

It terminated in a final state with all the
input consumed and an empty stack.

State Input Pop
Next

state
Push

s a ε s B

s a A s ε

s b ε s A

s b B s ε

L= {w in {a, b}* : w has the same number of
a’s and b’s}

Start state: s

Final states: {s}

State Input Pop Next

state

Push

s ε ε t X

t a X t BX

t a A t ε

t a B t BB

t b X t AX

t b A t AA

t b B t ε

t ε X f ε

L= {w in {a, b}* : w has the same number of a’s and b’s}

State state: s, Final states: {f}

A more
deterministic
solution:

Stack will
never contain
both A’s and
B’s.

X- bottom of
stack marker.

Design contex-free grammars
that generate:

L1= { u v : u ∈ {a,b}* , v ∈ {a, c}*,

and |u| ≤ |v| ≤ 3 |u| }.

L2= { ap bq cp ar b2r : p, q, r ≥ 0}

