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Let L= 

{ w= u v : u  {a, b}*, v  {c, d}* and |u|= |v|}

1. Design a context-free grammar that 
generates L.

2. Use your grammar and the construction 
from last class to design a PDA that 
accepts L.
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http://images.google.com/imgres?imgurl=http://www.dogonews.com/photos/uncategorized/2008/04/07/mathfun_4.gif&imgrefurl=http://www.dogonews.com/dogo_news/current/index.html&h=836&w=800&sz=77&hl=en&start=79&um=1&tbnid=KeqbAQ9UiyQ3mM:&tbnh=144&tbnw=138&prev=/images%3Fq%3Dclosure%2Bmathematics%2Baddition%2Bsubtraction%2Bdivision%2Bmultiplication%26start%3D72%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enCA238CA238%26sa%3DN


3

Languages which are not context-free

{ an bn cn : n ≥ 0} 
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Languages which are not context-free

The pumping theorem, a statement about 
context-free languages, is used to create proofs 
(by contradiction) that languages are not 
context-free.

Closure properties can be used: We will prove 
next class that intersecting a context-free 
language and a regular language gives a context-
free language.

Once we have some languages proven to not be 
context-free, we can give counterexamples to 
show that context-free languages are not closed 
under intersection or complement. 
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The Pumping Theorem for Context-Free 
Languages:

Let G be a context-free grammar.

Then there exists some constant k which 
depends on G such that for any string w 
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and 

3. u vn x yn z is in L for all n ≥ 0.
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Path:

S - A - T - A

Non-terminal A 
is repeated.

To pump:

Look for a 
path from 
root with a 
repeated 
non-terminal.
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To pump n 
times:

New yield is:

= u vn x yn z
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Theorem: L = { an bn cn : n ≥ 0} is not 
context-free.  Choose w= ak bk ck.

Consider all possibilities for u, v, x, y, z:

Case 1: v is in the a’s

Case 2: v is in the  b’s

Case 3: v is in the  c’s

Case 4: v has both a’s and b’s

Case 5: v has both b’s and c’s

Case 6: v has a’s, b’s and c’s
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w= ak bk ck.

Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the  c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s
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w= ak bk ck.

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the  c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the  c’s
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w= ak bk ck.

Case 4: v has both a’s and b’s

Case 4.1: y is in the  b’s

Case 4.2: y is in the  c’s

Case 4.3: y has both b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the  c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the  c’s
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Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the  c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the  c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the  c’s

Case 4: v has both a’s and b’s

Case 4.1: y is in the  b’s

Case 4.2: y is in the  c’s

Case 4.3: y has b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the  c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the  c’s

w= ak bk ck. MUST CONSIDER ALL CASES:
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Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the  c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the  c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the  c’s

Case 4: v has both a’s and b’s

Case 4.1: y is in the  b’s

Case 4.2: y is in the  c’s

Case 4.3: y has b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the  c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the  c’s

CASE A: v and y contain at 
most one type of symbol.

CASE B: v or y has more 
than one type of symbol.
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Theorem: L = { an bn cn : n ≥ 0} is not
context-free. Choose w= ak bk ck.
CASE A: v and y contain at most one type of 
symbol. 
Pump zero times. The number of occurrences of 
one or two types of symbols decreases but the 
number of occurrences of at least one type of 
symbol remains the same. Hence the resulting 
string no longer has equal numbers of a’s, b’s and 
c’s.
CASE B: v or y has more than one type of symbol.

Pump twice. The resulting string is not in L since it
is not of the form a*b*c*.
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Final formal proof (by contradiction):

Theorem: L = { an bn cn : n ≥ 0} is not
context-free.

Assume that L is context-free. Then there 
exists some constant k such that for all 
strings w in L with length at least k, the 
pumping theorem holds.

Choose w= ak bk ck. This string w is in L and 
the length of w is at least k and therefore, 
the pumping theorem holds.  
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The Pumping Theorem for Context-Free 
Languages:

Let G be a context-free grammar.

Then there exists some constant k which 
depends on G such that for any string w 
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and 

3. u vn x yn z is in L for all n ≥ 0.
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Consider all ways to factor w as uvxyz such that 
|v| + |y| ≥ 1:
CASE A: v and y contain at most one type of 
symbol. 
Pump zero times. The number of occurrences of 
one or two types of symbols decreases but the 
number of occurrences of at least one type of 
symbol remains the same. Hence the resulting 
string no longer has equal numbers of a’s, b’s and 
c’s.
CASE B: v or y has more than one type of symbol.

Pump twice. The resulting string is not in L since it
is not of the form a*b*c*.
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Note that I am very careful with the wording of 
the proof. For example:
Case 1.2: v is in the a’s, y is in the b’s
Factorizations are of the form:
ai    aj ak-i-j br  bs bk-r-s ck    where j + s ≥ 1.

v  y
Pumping zero times gives:
ai (aj )0 ak-i-j br (bs )0 bk-r-s ck 

= ai ak-i-j br bk-r-s ck 

= ak-j bk-s ck                         NOTE: j + s ≥ 1.
If j=0: ak bk-s ck  less b’s. 

If s=0: ak-j bk ck  less a’s. 

If j ≠ 0 and s ≠ 0: ak-j bk-s ck 
more c’s than a’s or b’s.
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Theorem: L= {w in {a, b, c}* : w has the same 
number of a’s, b’s and c’s} is not context-free.

Proof (by contradiction):

Assume L is context-free. Since a context-free 
language intersected with a regular language 
must be context-free, this means that:

L’ = L ⋂ a* b* c*  is context-free.

But L’ = { an bn cn : n ≥ 0} and hence L’  is not 
context-free.
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The Pumping Theorem for Context-Free 
Languages:

Let G be a context-free grammar.

Then there exists some constant k which 
depends on G such that for any string w 
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and 

3. u vn x yn z is in L for all n ≥ 0.
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Proof: If the string w is long enough, then there 
is a path from the root with a non-terminal 
repeated which does not have both v and y equal 
to the empty string.
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Take parse tree 
apart to get building 
blocks.
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To pump 0 times:

New yield is u x z

= u v0 x y0 z
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To pump 2 times:

New yield is u v v x y y z = u v2 x y2 z
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To pump 3 times:

New yield is u v v v x y y y z = u v3 x y3 z
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New yield is 

u vn x yn z

To pump n times: 


