
1

Let L=

{ w= u v : u  {a, b}*, v  {c, d}* and |u|= |v|}

1. Design a context-free grammar that
generates L.

2. Use your grammar and the construction
from last class to design a PDA that
accepts L.

2

http://images.google.com/imgres?imgurl=http://www.dogonews.com/photos/uncategorized/2008/04/07/mathfun_4.gif&imgrefurl=http://www.dogonews.com/dogo_news/current/index.html&h=836&w=800&sz=77&hl=en&start=79&um=1&tbnid=KeqbAQ9UiyQ3mM:&tbnh=144&tbnw=138&prev=/images%3Fq%3Dclosure%2Bmathematics%2Baddition%2Bsubtraction%2Bdivision%2Bmultiplication%26start%3D72%26ndsp%3D18%26um%3D1%26hl%3Den%26rlz%3D1T4ADBR_enCA238CA238%26sa%3DN

3

Languages which are not context-free

{ an bn cn : n ≥ 0}

4

Languages which are not context-free

The pumping theorem, a statement about
context-free languages, is used to create proofs
(by contradiction) that languages are not
context-free.

Closure properties can be used: We will prove
next class that intersecting a context-free
language and a regular language gives a context-
free language.

Once we have some languages proven to not be
context-free, we can give counterexamples to
show that context-free languages are not closed
under intersection or complement.

5

The Pumping Theorem for Context-Free
Languages:

Let G be a context-free grammar.

Then there exists some constant k which
depends on G such that for any string w
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and

3. u vn x yn z is in L for all n ≥ 0.

6

Path:

S - A - T - A

Non-terminal A
is repeated.

To pump:

Look for a
path from
root with a
repeated
non-terminal.

7

8

To pump n
times:

New yield is:

= u vn x yn z

9

Theorem: L = { an bn cn : n ≥ 0} is not
context-free. Choose w= ak bk ck.

Consider all possibilities for u, v, x, y, z:

Case 1: v is in the a’s

Case 2: v is in the b’s

Case 3: v is in the c’s

Case 4: v has both a’s and b’s

Case 5: v has both b’s and c’s

Case 6: v has a’s, b’s and c’s

10

w= ak bk ck.

Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s

11

w= ak bk ck.

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the c’s

12

w= ak bk ck.

Case 4: v has both a’s and b’s

Case 4.1: y is in the b’s

Case 4.2: y is in the c’s

Case 4.3: y has both b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the c’s

13

Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the c’s

Case 4: v has both a’s and b’s

Case 4.1: y is in the b’s

Case 4.2: y is in the c’s

Case 4.3: y has b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the c’s

w= ak bk ck. MUST CONSIDER ALL CASES:

14

Case 1: v is in the a’s

Case 1.1: y is in the a’s

Case 1.2: y is in the b’s

Case 1.3: y is in the c’s

Case 1.4: y has both a’s and b’s

Case 1.5: y has both b’s and c’s

Case 1.6: y has a’s, b’s and c’s

Case 2: v is in the b’s

Case 2.1: y is in the b’s

Case 2.2: y is in the c’s

Case 2.3: y has both b’s and c’s

Case 3: v is in the c’s

Case 3.1: y is in the c’s

Case 4: v has both a’s and b’s

Case 4.1: y is in the b’s

Case 4.2: y is in the c’s

Case 4.3: y has b’s and c’s

Case 5: v has both b’s and c’s

Case 5.1: y is in the c’s

Case 6: v has a’s, b’s and c’s

Case 6.1: y is in the c’s

CASE A: v and y contain at
most one type of symbol.

CASE B: v or y has more
than one type of symbol.

15

Theorem: L = { an bn cn : n ≥ 0} is not
context-free. Choose w= ak bk ck.
CASE A: v and y contain at most one type of
symbol.
Pump zero times. The number of occurrences of
one or two types of symbols decreases but the
number of occurrences of at least one type of
symbol remains the same. Hence the resulting
string no longer has equal numbers of a’s, b’s and
c’s.
CASE B: v or y has more than one type of symbol.

Pump twice. The resulting string is not in L since it
is not of the form a*b*c*.

16

Final formal proof (by contradiction):

Theorem: L = { an bn cn : n ≥ 0} is not
context-free.

Assume that L is context-free. Then there
exists some constant k such that for all
strings w in L with length at least k, the
pumping theorem holds.

Choose w= ak bk ck. This string w is in L and
the length of w is at least k and therefore,
the pumping theorem holds.

17

The Pumping Theorem for Context-Free
Languages:

Let G be a context-free grammar.

Then there exists some constant k which
depends on G such that for any string w
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and

3. u vn x yn z is in L for all n ≥ 0.

18

Consider all ways to factor w as uvxyz such that
|v| + |y| ≥ 1:
CASE A: v and y contain at most one type of
symbol.
Pump zero times. The number of occurrences of
one or two types of symbols decreases but the
number of occurrences of at least one type of
symbol remains the same. Hence the resulting
string no longer has equal numbers of a’s, b’s and
c’s.
CASE B: v or y has more than one type of symbol.

Pump twice. The resulting string is not in L since it
is not of the form a*b*c*.

19

Note that I am very careful with the wording of
the proof. For example:
Case 1.2: v is in the a’s, y is in the b’s
Factorizations are of the form:
ai aj ak-i-j br bs bk-r-s ck where j + s ≥ 1.

v y
Pumping zero times gives:
ai (aj)0 ak-i-j br (bs)0 bk-r-s ck

= ai ak-i-j br bk-r-s ck

= ak-j bk-s ck NOTE: j + s ≥ 1.
If j=0: ak bk-s ck  less b’s.

If s=0: ak-j bk ck  less a’s.

If j ≠ 0 and s ≠ 0: ak-j bk-s ck 
more c’s than a’s or b’s.

20

Theorem: L= {w in {a, b, c}* : w has the same
number of a’s, b’s and c’s} is not context-free.

Proof (by contradiction):

Assume L is context-free. Since a context-free
language intersected with a regular language
must be context-free, this means that:

L’ = L ⋂ a* b* c* is context-free.

But L’ = { an bn cn : n ≥ 0} and hence L’ is not
context-free.

21

The Pumping Theorem for Context-Free
Languages:

Let G be a context-free grammar.

Then there exists some constant k which
depends on G such that for any string w
which is generated by G with |w| ≥ k,

there exists u, v, x, y, z, such that

1. w= u v x y z,

2. |v| + |y| ≥ 1, and

3. u vn x yn z is in L for all n ≥ 0.

22

Proof: If the string w is long enough, then there
is a path from the root with a non-terminal
repeated which does not have both v and y equal
to the empty string.

23

Take parse tree
apart to get building
blocks.

24

To pump 0 times:

New yield is u x z

= u v0 x y0 z

25

To pump 2 times:

New yield is u v v x y y z = u v2 x y2 z

26

To pump 3 times:

New yield is u v v v x y y y z = u v3 x y3 z

27

New yield is

u vn x yn z

To pump n times:

