
1

Design a PDA which accepts:

L= { u uR an bp cn : u ∈ {a,b }+, n ≥ 1, p≥2}

2

Design a PDA which accepts:

L= { u uR an bp cn : u ∈ {a,b,c }+, n ≥ 1, p≥2}

Is

cabbaabbcc

in L?

Does your machine accept this string?

3

Announcements:

My TM definitions are slightly different
from the book- use my definitions on
assignments and with the TM simulator.

Assignment #4: Due at the beginning of
class, Fri. July 14. Recall that you need a
passing average on your top 4 assignments
to pass the class.

There is a tutorial on Tuesday July 11.
Bring any questions you have about the
assignment.

4
This cartoon appears in the book Computation Engineering: Applied Automata

Theory and Logic by Dr. Ganesh Gopalakrishnan.

Turing Machines

5

Classes of Languages

6

http://www.lambdassociates.org/webbook/chap1.htm

Turing machines are very simple (so it is easy to
prove things about them) but are as capable as
any current computer.

7

Turing machines:

Operation: add read/write tape to DFA.

Move:

Based on current state and symbol scanned:

1. change states, and

2. either replace tape square contents with
a symbol or move head one square left or
one square right.

8

Input conventions:

Tape has a left hand end but extends infinitely
to the right (one-way infinite tape).

All squares are initially blank- represented by the
symbol #.

On an input w, the tape starts out as:

w [#] (the [] contain the symbol scanned).

For example, on input w= abaa:
Special
halt state
called h.

9

L= { u uR : u  {a, b}*}.

Design a TM which accepts L:

It halts on input w if w in L and either

hangs or computes forever when w is not in L.

A TM halts immediately when entering the
special halt state h.

A TM hangs if the head falls off the left hand
end of the tape or if it encounters an undefined
transition.

10

Pseudo code for my algorithm:

1. Find leftmost input symbol and erase it.

If there is no input left at this stage, halt.

2. Move head to right hand end of input
using the state to remember the symbol
at the left hand end of the tape.

3. If the symbol does not match, make the
TM hang. Otherwise erase the symbol and
go back to step 1.

11

TM rules: State Symbol Next state Head instruction
// Move left to leftmost symbol.
Rule 1: start # left L
Rule 2: left a left L
Rule 3: left b left L
// When we find # at LH end, move R to check LH symbol.
Rule 4: left # check R
// If blank we are done- halt.
Rule 5: check # h #
// Blank out LH symbol and remember it using state.
Rule 6: check a rema #
Rule 7: check b remb #
// Move off blank remembering LH symbol using state.
Rule 8: rema # righta R
Rule 9: remb # rightb R

12

// Move to RH symbol remembering symbol using state.
Rule 10: righta a righta R
Rule 11: righta b righta R
Rule 12: rightb a rightb R
Rule 13: rightb b rightb R
// Check symbol at RH end.
Rule 14: righta # checka L
Rule 15: rightb # checkb L
// If it matches, blank it out and start over.
Rule 16: checka a start #
Rule 17: checkb b start #
// If not, hang because no transitions defined from undef.
Rule 18: checka b undef b
Rule 19: checka # undef #
Rule 20: checkb a undef b
Rule 21: checkb # undef #

13

(start, #abba[#])
├ (left, #abb[a])
├ (left, #ab[b]a)
├ (left, #a[b]ba)
├ (left, #[a]bba)
├ (left, [#]abba)
├ (check, #[a]bba)
├ (rema, #[#]bba)
├ (righta,##[b]ba)
├ (righta,##b[b]a)
├ (righta,##bb[a])
├ (righta,##bba[#])
├ (checka,##bb[a])

├ (start, ##bb[#])
├ (left, ##b[b])
├ (left, ##[b]b)
├ (left, #[#]bb)
├ (check,##[b]b)
├ (remb, ##[#]b)
├ (rightb,###[b])
├ (rightb,###b[#])
├ (checkb,###[b])
├ (start,###[#])
├ (left, ##[#])
├ (check,###[#])
├ (h, ###[#])

An accepting computation:

14

A non-accepting computation:

1. (start, #aaba[#])
2. (left, #aab[a])
3. (left, #aa[b]a)
4. (left, #a[a]ba)
5. (left, #[a]aba)
6. (left, [#]aaba)
7. (check, #[a]aba)
8. (rema, #[#]aba)
9. (righta, ##[a]ba)
10. (righta, ##a[b]a)
11. (righta, ##ab[a])
12. (righta, ##aba[#])
13. (checka, ##ab[a])

14. (start, ##ab[#])
15. (left, ##a[b])
16. (left, ##[a]b)
17. (left, #[#]ab)
18. (check, ##[a]b)
19. (rema, ##[#]b)
20. (righta, ###[b])
21. (righta, ###b[#])
22. (checka, ###[b])
23. (undef, ###[b])

No valid transition,
TM hangs.

15

Input to TM simulator:
// This TM halts if the input is of the form u u^R where u

// is in {a,b}* and hangs otherwise.

start

// Move left to leftmost symbol.

start # left L // start algorithm to check if u u^R

left a left L // Go left to LH end of input

left b left L // Go left to LH end of input

// When we find # at LH end, move R to check LH symbol.

left # check R // Found # at LH end

// If blank we are done- halt.

check # h # // Done and answer is yes if input is all blank

// Blank out LH symbol and remember it using state.

check a rema # // Blank out LH symbol remember "a" using state

check b remb # // Blank out LH symbol remember "b" using state

// Move off blank remembering LH symbol using state.

rema # righta R // Start going right (remember "a")

remb # rightb R // Start going right (remember "b")

16

// Move right to RH symbol remembering LH one using state.

righta a righta R // Move right (remember "a")

righta b righta R // Move right (remember "a")

rightb a rightb R // Move right (remember "b")

rightb b rightb R // Move right (remember "b")

// Check symbol at LH end.

righta # checka L // Found RH end- check now if "a"

rightb # checkb L // Found RH end- check now if "b"

// If it matches, blank it out and start over.

checka a start # // First symbol matches last one- start again

checkb b start # // First symbol matches last one- start again

// If not, hang because no transitions defined from undef

checka b undef b // No match- move to state with no transitions defined

checka # undef # // No match- move to state with no transitions defined

checkb a undef b // No match- move to state with no transitions defined

checkb # undef # // No match- move to state with no transitions defined

$
abba // A string which is in L

aaba // A string which is not in L

17

The format of the input to the TM
simulator is as follows:

<Name of start state>
<current state> <current symbol> <next state> <head instruction>
...
<current state> <current symbol> <next state> <head instruction>

$
<input string w1>
<input string w2>

...

18

Rules for TM Descriptions

1. The state name h is used to denote the halting state.

2. Use the symbol # to represent a blank.

3. If a line starts with // it is a comment. Comments can
also be added on the same line as an instruction at
the end of the line (start with //).

4. Each of the state names is an arbitrary string. The
current symbol and new symbol each must be a single
symbol.

6. The head instruction is either L (move the head one
square left) or R (move the head one square right) or
a symbol to replace the current tape square contents.

7. The $ indicates the end of the TM description.

