
1. What does Mx do on input 01011?
2. What does Mx do on input 111?
3. What does Mx do on an arbitrary input w?
4. When will Mx halt on a given input?
5. What language does Mx accept?

Mx:

Mx:

On any input string w, Mx erases the tape and then runs Mb on a
blank tape.

If Mb halts when started on a blank tape, Mx halts on every input.

If Mb does not halt when started on a blank tape, Mx does not halt
on any inputs.

So the language
Mx accepts is
either Σ* or Φ.

Suppose we have an algorithm for this question:

(c) Given Mc: Is there any string on which Mc halts?

Use Mx as input.

If the answer is “yes”
then Mb halts when
started on a
blank tape.

If the answer is
“no” then Mb does not

halt when started on a blank tape.

Mx:

Suppose we have an algorithm for this question:

(d) Given Md: Does Md halt on every string?

Use Mx as input.

If the answer is “yes”
then Mb halts when
started on a
blank tape.

If the answer is
“no” then Mb does not

halt when started on a blank tape.

Mx:

5

But last class we showed problem (b) was not
decidable. Therefore (c) and (d) are also not
decidable. Try to prove (e) is not decidable.

Theorem 5.4.2 (p. 255): The following problems
are not Turing-decidable:

(a) Given Ma, w: Does Ma halt on input w?

(b) Given Mb: Does Mb halt on input ε?

(c) Given Mc: Is there any string on which Mc halts?

(d) Given Md: Does Md halt on every string?

(e) Given two TM’s M1 and M2: Do they halt on the
same input strings?

6

1. Which of these sequences correspond to
Hamilton cycles in the graph?

(a) 0 1 3 5 4 2

(b) 0 1 2 4 3 5

(c) 0 1 4 3 1 2

(d) 0 2 3 5 4 1

(e) 0 1 3 5 6 2

2. Give pseudocode for an algorithm to check if
a seqence S[0..(n-1)] for a graph G stored in an
adjacency matrix A[0..(n-1)][0..(n-1)] gives a
Hamilton cycle.

Announcements:
There is a tutorial today.
Assignment #5 is due on Friday at the beginning of class.

Please do course evaluations.

Office hours for final exam:

Tuesday August 1: 12:30pm
Thursday August 3: 12:30pm
Friday August 4: 12:30pm

Sunday August 13: 3pm-6pm, Room TBA

8

Introduction to NP-completeness.

The class of NP-complete problems is defined.

Satisfiability, the most famous NP-complete
problem is introduced.

To prove new problems are undecidable, we use
halting problem reductions.

To prove new problems are NP-complete,
reductions are also used but the transformation
must preserve polynomial running time complexity.

9

Table 1: Comparing polynomial and exponential time complexity.

Assume a problem of size one takes 0.000001 seconds (1 microsecond).

Size n

10 20 30 40 50 60

n 0.00001 second 0.00002 second 0.00003 second 0.00004 second 0.00005 second 0.00006 second

n2 0.0001 second 0.0004 second 0.0009 second 0.0016 second 0.0025 second 0.0036 second

n3 0.001 second 0.008 second 0.027 second 0.064 second 0.125 second 0.216 second

n5 0.1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.2 minutes

2n 0.001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 centuries

3n 0.059 second 58 minutes 6.5 years 3855 centuries 2*108 centuries
1.3*1013

centuries

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)

10

Time

Complexity

function

With present

computer

With computer

100 times faster

With computer 1000

times faster

n N1 100 N1 1000 N1

n2 N2 10 N2 31.6 N2

n3 N3 4.46 N3 10 N3

n5 N4 2.5 N4 3.98 N4

2n N5 N5+6.64 N5+9.97

3n N6 N6+4.19 N6+6.29

Table 2: Effect of improved technology on several polynomial and

exponential time algorithms. The following table represents the size of the

largest problem instance solvable in 1 hour.

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-completeness, W. H. Freeman, New York, 1979.)

11

Class P

A decision problem (yes/no question) is in the class
P if there is a polynomial time algorithm for solving
it.

Polynomial time: O(nc) for some constant c.

If a problem is solvable in polynomial time for

•some sensible encoding of the input

•some reasonable machine (TM/RAM/PC)

it can be solved in polynomial time for all other
sensible encodings/reasonable machines.

12

A program that runs on a Random Access
Machine (such as our modern day computers)
in time T(n) can be simulated on a single tape
Turing machine in time O(T 3(n)).

This distinction is made between polynomial
time and anything else (sometimes referred
to as exponential time) because of the
blowup in computation times which appear
for exponential algorithms.

13

Class NP

A decision problem (yes/no question) is in the
class NP if it has a nondeterministic polynomial
time algorithm. Informally, such an algorithm:

1.Guesses a solution (nondeterministically).

2. Checks deterministically in polynomial time
that the answer is correct.

Or equivalently, when the answer is "yes", there
is a certificate (a solution meeting the criteria)
that can be verified in polynomial time
(deterministically).

14

Example problem which is in P and NP:

Minimum Weight Spanning Tree (CSC 225).

Input: Graph G, integer k.

Question: Does G have a spanning tree of weight at
most k?

If you are provided
with a tree with
weight at most k as
part of the solution,
the answer can be
verified in O(n)
time.

15

Matching is in NP: Given a graph G and
integer k, does G have a k-edge matching?

Certificate, k=5:

(a,f) (b,g) (c,h)

(d,i)(e,j)

Matching:
disjoint
edges.

16

Picture from: http://mathoverflow.net/faq

Hamilton Cycle is in NP: Input graph G.

Does G have a
Ham. cycle?

Certificate:

1, 2, 3, 5,

6, 7, 11, 12,

10, 8, 9, 4

http://www.flickr.com/photos/edwynn/5359590467/

17

Does P= NP? the Clay Mathematics
Institute has offered a $1 million US prize
for the first correct proof.

Some problems in NP not known to be in P:

Hamilton Path/Cycle

Independent Set

Satisfiability

Note: Matching is in P. Learn more in a
graph algorithms class.

18

NP-completeness

I can't find an efficient algorithm,

I guess I'm just too dumb.

19

I can't find an efficient
algorithm, because no such
algorithm is possible.

20

I can't find an efficient algorithm, but neither can all
these famous people.

21

NP-complete Problems

The class of problems in NP which are the
"hardest" are called the NP-complete
problems.

A problem Q in NP is NP-complete if the
existence of a polynomial time algorithm
for Q implies the existence of a polynomial
time algorithm for all problems in NP.

Steve Cook in 1971 proved that SAT is NP-
complete. Proof: will be given in our last
class. Other problems: use reductions.

22

Bible for NP-
completeness:

M. R. Garey and D.
S. Johnson,
Computers and
Intractability: A
Guide to the
Theory of NP-
Completness, W.
H. Freeman, 1st
ed. (1979).

23

SAT (Satisfiability)

Variables: u1, u2, u3, ... uk.

A literal is a variable ui or the negation of
a variable ¬ ui.

If u is set to true then ¬ u is false and if u
is set to false then ¬ u is true.

A clause is a set of literals. A clause is
true if at least one of the literals in the
clause is true.

The input to SAT is a collection of clauses.

24

This SAT problem has solution
u1=T, u2=F, u3= T, u4=F

(u1 OR u2 OR u4) AND (¬ u2 OR u4) AND
(¬ u1 OR u3) AND (¬ u4 OR ¬ u1)

Does this SAT problem have a solution?

(u1 OR u2) AND (¬ u2 OR u3) AND

(¬ u3 OR ¬ u1) AND (¬ u2 OR ¬ u3) AND

(u3 OR ¬ u1)

25

SAT (Satisfiability)

The output is the answer to: Is there an
assignment of true/false to the variables
so that every clause is satisfied (satisfied
means the clause is true)?

If the answer is yes, such an assignment
of the variables is called a truth
assignment.

SAT is in NP: Certificate is true/false
value for each variable in satisfying
assignment.

26

27

3-SAT- each clause must contain exactly 3
variables (assignment- at most 3).
Given: SAT is NP-complete (proof later)
Theorem: 3-SAT is NP-Complete.
The first step in any NP-completeness proof
is to argue that the problem is in NP.
The problem 3-SAT is a yes/no question.
Certificate: truth assignment, can be
checked in polynomial time.
Next, we show that a polynomial time
algorithm for 3-SAT implies the existence
of one for SAT.

28

To convert a SAT problem to 3-SAT:

1.Clauses of size 1.

SAT: {z}

3-SAT:
{z, y1, y2},
{z, ¬ y1, y2},
{z, y1, ¬ y2},
{z, ¬ y1, ¬ y2}

y1 and y2 are new variables.

29

2. Clauses of size 2.

SAT: {z1, z2}

3-SAT: {z1, z2, y},
{z1, z2, ¬ y}

y is a new variable.

3. Clauses of size 3.
Leave these as they are since they are
already acceptable for 3-SAT.

30

4.Clauses of size 4 or more.

SAT: {z1, z2, z3, ... zk}, k>3

3-SAT:
{ z1, z2, y1},
{¬ y1, z3, y2},
{¬ y2, z4, y3},
...
{¬ yk-4, zk-2, yk-3},
{¬ yk-3, zk-1, zk}

y1, y2, ... yk-3, are new variables.

31

This does not constitute a proof of NP-
completeness unless we can argue that the size
of the new 3-SAT problem problem is
polynomially bounded by the size of the old SAT
problem. Consider each case:

In all cases, the size after is at most 12
times the original problem size.

Size of
clause

new
literals

size
before

size after

1 2 1 12

2 1 2 6

3 0 3 3

k ≥ 4 k-3 k k + 2(k-3)

32

2-SAT: All clauses have at most 2 literals.

There is a linear time algorithm for 2-SAT

so 2-SAT is in P.

The 3-SAT problem is as hard as SAT but
unless P=NP, 2-SAT is easier than 3-SAT
or SAT.

