
1. What does Mx do on input 01011?
2. What does Mx do on input 111?
3. What does Mx do on an arbitrary input w?
4. When will Mx halt on a given input?
5. What language does Mx accept?

Mx:



Mx:

On any input string w, Mx erases the tape and then runs Mb on a 
blank tape.

If Mb halts when started on a blank tape, Mx halts on every input.

If Mb does not halt when started on a blank tape, Mx does not halt 
on any inputs.

So the language 
Mx accepts is 
either Σ* or Φ.



Suppose we have an algorithm for this question:

(c)  Given Mc: Is there any string on which Mc halts?

Use Mx as input.

If the answer is “yes”
then Mb halts when 
started on a
blank tape.

If the answer is
“no” then Mb does not

halt when started on a blank tape.

Mx:



Suppose we have an algorithm for this question:

(d)  Given Md: Does Md halt on every string?

Use Mx as input.

If the answer is “yes”
then Mb halts when 
started on a 
blank tape.

If the answer is
“no” then Mb does not

halt when started on a blank tape.

Mx:
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But last class we showed problem (b) was not 
decidable. Therefore (c) and (d) are also not 
decidable. Try to prove (e) is not decidable.

Theorem 5.4.2 (p. 255): The following problems 
are not Turing-decidable:

(a)  Given Ma, w: Does Ma halt on input w?

(b)  Given Mb: Does Mb halt on input ε?

(c)  Given Mc: Is there any string on which Mc halts?

(d)  Given Md: Does Md halt on every string?

(e)  Given two TM’s M1 and M2: Do they halt on the 
same input strings?
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1. Which of these sequences correspond to 
Hamilton cycles in the graph?

(a) 0 1 3 5 4 2

(b) 0 1 2 4 3 5

(c) 0 1 4 3 1 2

(d) 0 2 3 5 4 1

(e) 0 1 3 5 6 2

2. Give pseudocode for an algorithm to check if 
a seqence S[0..(n-1)] for a graph G stored in an 
adjacency matrix A[0..(n-1)][0..(n-1)] gives a 
Hamilton cycle.



Announcements:
There is a tutorial today.
Assignment #5 is due on Friday at the beginning of class.

Please do course evaluations.

Office hours for final exam:

Tuesday August 1: 12:30pm
Thursday August 3: 12:30pm
Friday August 4: 12:30pm

Sunday August 13: 3pm-6pm, Room TBA
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Introduction to NP-completeness.

The class of NP-complete problems is defined.

Satisfiability, the most famous NP-complete 
problem is introduced.

To prove new problems are undecidable, we use 
halting problem reductions.

To prove new problems are NP-complete, 
reductions are also used but the transformation 
must preserve polynomial running time complexity.
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Table 1: Comparing polynomial and exponential time complexity.

Assume a problem of size one takes 0.000001 seconds (1 microsecond). 

Size n

10 20 30 40 50 60

n 0.00001 second 0.00002 second 0.00003 second 0.00004 second 0.00005 second 0.00006 second

n2 0.0001 second 0.0004 second 0.0009 second 0.0016 second 0.0025 second 0.0036 second

n3 0.001 second 0.008 second 0.027 second 0.064 second 0.125 second 0.216 second

n5 0.1 second 3.2 second 24.3 second 1.7 minutes 5.2 minutes 13.2 minutes

2n 0.001 second 1.0 second 17.9 minutes 12.7 days 35.7 years 366 centuries

3n 0.059 second 58 minutes 6.5 years 3855 centuries 2*108 centuries
1.3*1013

centuries

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-completeness, W. H. Freeman, New York, 1979.) 



10

Time 

Complexity 

function

With present 

computer

With computer 

100 times faster

With computer 1000 

times faster

n N1 100 N1 1000 N1

n2 N2 10 N2 31.6 N2

n3 N3 4.46 N3 10 N3

n5 N4 2.5 N4 3.98 N4

2n N5 N5+6.64 N5+9.97

3n N6 N6+4.19 N6+6.29

Table 2: Effect of improved technology on several polynomial and 

exponential time algorithms. The following table represents the size of the 

largest problem instance solvable in 1 hour. 

(from M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to 

the Theory of NP-completeness, W. H. Freeman, New York, 1979.) 
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Class P

A decision problem (yes/no question) is in the class 
P if there is a polynomial time algorithm for solving 
it. 

Polynomial time:  O(nc) for some constant c. 

If a problem is solvable in polynomial time for 

•some sensible encoding of the input 

•some reasonable machine (TM/RAM/PC) 

it can be solved in polynomial time for all other 
sensible encodings/reasonable machines. 
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A program that runs on a Random Access 
Machine (such as our modern day computers) 
in time T(n) can be simulated on a single tape 
Turing machine in time O(T 3(n)). 

This distinction is made between polynomial 
time and anything else (sometimes referred 
to as exponential time) because of the 
blowup in computation times which appear 
for exponential algorithms.
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Class NP

A decision problem (yes/no question) is in the
class NP if it has a nondeterministic polynomial 
time algorithm. Informally, such an algorithm: 

1.Guesses a solution (nondeterministically). 

2. Checks deterministically in polynomial time 
that the answer is correct. 

Or equivalently, when the answer is "yes", there 
is a certificate (a solution meeting the criteria) 
that can be verified in polynomial time 
(deterministically).
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Example problem which is in P and NP:

Minimum Weight Spanning Tree (CSC 225).

Input: Graph G, integer k.

Question:  Does G have a spanning tree of weight at 
most k? 

If you are provided 
with a tree with 
weight at most k as 
part of the solution, 
the answer can be 
verified in O(n) 
time. 
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Matching is in NP: Given a graph G and 
integer k, does G have a k-edge matching?

Certificate, k=5:

(a,f) (b,g) (c,h) 

(d,i)(e,j)

Matching: 
disjoint 
edges.
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Picture from: http://mathoverflow.net/faq

Hamilton Cycle is in NP: Input graph G.

Does G have a 
Ham. cycle?

Certificate:

1,   2,  3,   5, 

6,   7, 11, 12, 

10,  8,   9,   4

http://www.flickr.com/photos/edwynn/5359590467/
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Does P= NP? the Clay Mathematics 
Institute has offered a $1 million US prize 
for the first correct proof.

Some problems in NP not known to be in P:

Hamilton Path/Cycle

Independent Set

Satisfiability

Note: Matching is in P. Learn more in a 
graph algorithms class.
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NP-completeness

I can't find an efficient algorithm, 

I guess I'm just too dumb.  



19

I can't find an efficient 
algorithm, because no such 
algorithm is possible. 



20

I can't find an efficient algorithm, but neither can all 
these famous people. 
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NP-complete Problems

The class of problems in NP which are the 
"hardest" are called the NP-complete
problems. 

A problem Q in NP is NP-complete if the 
existence of a polynomial time algorithm 
for Q implies the existence of a polynomial 
time algorithm for all problems in NP. 

Steve Cook in 1971 proved that SAT is NP-
complete. Proof: will be given in our last 
class. Other problems: use reductions.
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Bible for NP-
completeness:

M. R. Garey and D. 
S. Johnson, 
Computers and 
Intractability: A 
Guide to the 
Theory of NP-
Completness,  W. 
H. Freeman, 1st 
ed. (1979).
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SAT (Satisfiability) 

Variables: u1, u2, u3, ... uk. 

A literal is a variable ui or the negation of 
a variable ¬ ui. 

If u is set to true then ¬ u is false and if u 
is set to false then ¬ u is true. 

A clause is a set of literals. A clause is 
true if at least one of the literals in the 
clause is true. 

The input to SAT is a collection of clauses. 
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This SAT problem has solution 
u1=T, u2=F, u3= T, u4=F

(u1 OR u2 OR u4) AND (¬ u2 OR u4) AND
(¬ u1 OR u3) AND (¬ u4 OR ¬ u1)

Does this SAT problem have a solution?

(  u1 OR    u2)   AND (¬ u2 OR  u3) AND

(¬ u3 OR ¬ u1)   AND (¬ u2 OR ¬ u3) AND

(   u3 OR ¬ u1)   



25

SAT (Satisfiability)

The output is the answer to: Is there an 
assignment of true/false to the variables 
so that every clause is satisfied (satisfied
means the clause is true)? 

If the answer is yes, such an assignment 
of the variables is called a truth 
assignment.

SAT is in NP: Certificate is true/false 
value for each variable in satisfying 
assignment.
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3-SAT- each clause must contain exactly 3 
variables (assignment- at most 3). 
Given: SAT is NP-complete (proof later)
Theorem: 3-SAT is NP-Complete. 
The first step in any NP-completeness proof 
is to argue that the problem is in NP. 
The problem 3-SAT is a yes/no question. 
Certificate: truth assignment, can be
checked in polynomial time.
Next, we show that a polynomial time 
algorithm for 3-SAT implies the existence 
of one for SAT. 
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To convert a SAT problem to 3-SAT:

1.Clauses of size 1. 

SAT:     {z} 

3-SAT:   
{z,    y1,    y2}, 
{z, ¬ y1,    y2}, 
{z,    y1, ¬ y2}, 
{z, ¬ y1,  ¬ y2} 

y1 and y2 are new variables. 
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2. Clauses of size 2. 

SAT: {z1, z2} 

3-SAT:   {z1, z2,    y},  
{z1, z2, ¬ y} 

y is a new variable. 

3. Clauses of size 3. 
Leave these as they are since they are 
already acceptable for 3-SAT. 
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4.Clauses of size 4 or more. 

SAT: {z1, z2, z3, ... zk}, k>3 

3-SAT:
{  z1,  z2, y1}, 
{¬ y1,  z3, y2}, 
{¬ y2,  z4, y3}, 
... 
{¬ yk-4,  zk-2, yk-3}, 
{¬ yk-3,  zk-1, zk} 

y1, y2, ... yk-3, are new variables. 
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This does not constitute a proof of NP-
completeness unless we can argue that the size 
of the new 3-SAT problem problem is 
polynomially bounded by the size of the old SAT 
problem. Consider each case: 

In all cases, the size after is at most 12 
times the original problem size. 

Size of 
clause

# new 
literals

size 
before

size after

1 2 1 12

2 1 2 6

3 0 3 3

k ≥ 4 k-3 k k + 2(k-3)
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2-SAT: All clauses have at most 2 literals.

There is a linear time algorithm for 2-SAT

so 2-SAT is in P. 

The 3-SAT problem is as hard as SAT but 
unless P=NP, 2-SAT is easier than 3-SAT 
or SAT.


