
Given this 3-SAT problem:

(x1 or x2 or x3) AND 

(¬x1 or ¬x2 or ¬x2) AND

(¬x3 or ¬x1 or x2)

1. Draw the graph that you would use if 
you want to solve this problem using an 
algorithm for vertex cover. 

2. What size of vertex cover would you 
look for in order to decide if this 3-SAT 
system is satisfiable?





A problem Q in NP is NP-complete if the 
existence of a polynomial time algorithm for 
Q implies the existence of a polynomial time 
algorithm for all problems in NP. 

How do we prove SAT is NP-complete?



Theorem: SAT (Satisfiability) is in NP.

Proof.

Variables: u1, u2, u3, ... un. 

Certificate: sequence b1, b2, b3, ... bn of 
true/false values.

Check for each clause if at least one literal 
is true.

Time: O(n+k) where k is the number of 
occurrences of a literal in a clause.



Every problem Q which is in NP has a 
non-deterministic TM M which:

1. Guesses a certificate of length n.

2. Checks the certificate in p(n) time.

Start state- q0

Final state- the computation will 
terminate in a special state qN when the 
certificate is not correct and in a state 
qY if the certificate is correct.



Cook’s Theorem: SAT is NP-complete.

Idea of proof: 

Construct a collection of clauses whose 
length is polynomial in p(n) and hence is 
also polynomial in n.

A satisfying truth assignment corresponds 
to a computation of M which non-
deterministically guesses a correct 
certificate and checks it.



The number of tape squares used is bounded:

p(n)= maximum number of steps that M takes on 
an input of size n.

Tape squares used in this computation:



Variable Range Meaning

Q[i, k]
0 ≤ i ≤ p(n),

1 ≤ k ≤ # states
At time i, M is in 
state qk

H[i,j]
0 ≤ i ≤ p(n), 

-p(n) ≤ j ≤ p(n)
Scanning square j 
at time i

S[i, j, k]

0 ≤ i ≤ p(n),

-p(n) ≤ j ≤ p(n),

1 ≤ k ≤ # symbols

Time i, square j 
contains symbol sk 



Clauses to make sure that satisfying assignments 
correspond to valid computations: 

Recall: Q[i, k]- At time i, M is in state qk

Group G1: At time i, M is in exactly one state:

(a) M is in at least one state at time i:

for each i, 0 ≤ i ≤ p(n), add a clause (s= # states):

(Q[i, 1] or  Q[i, 2] or   … or Q[i, s])

(b) M is in at most one state at time i: For each 
time i and pair j, k of states, 

0 ≤ i ≤ p(n),    1 ≤  j  < k  ≤ s, add a clause

(not Q[i, j] or not Q[i, k])



Clause 
Group

Restriction

G1 At time i, M is in exactly one state.

G2 At time i, the tape head scans exactly one square.

G3 At time i, each square contains exactly one symbol.

G4 At time 0, M is in initial checking stage.

G5 By time p(n), M enters state qY.

G6
Configuration at time i+1 follows the one at time i 
by one application of the transition relation.



Original problem: Input of size n.

The size of this SAT system has length 
which is at most some polynomial q(n).

If there is an O(nc) algorithm for SAT then 
there is an O(q(n)c) algorithm for this other 
problem which is in NP.

Therefore, if there is a polynomial time 
algorithm for SAT, there is a polynomial 
time algorithm for every problem in NP.

Conclusion: SAT is NP-complete.



Summary of class contents:


