
Given this 3-SAT problem:

(x1 or x2 or x3) AND

(¬x1 or ¬x2 or ¬x2) AND

(¬x3 or ¬x1 or x2)

1. Draw the graph that you would use if
you want to solve this problem using an
algorithm for vertex cover.

2. What size of vertex cover would you
look for in order to decide if this 3-SAT
system is satisfiable?

A problem Q in NP is NP-complete if the
existence of a polynomial time algorithm for
Q implies the existence of a polynomial time
algorithm for all problems in NP.

How do we prove SAT is NP-complete?

Theorem: SAT (Satisfiability) is in NP.

Proof.

Variables: u1, u2, u3, ... un.

Certificate: sequence b1, b2, b3, ... bn of
true/false values.

Check for each clause if at least one literal
is true.

Time: O(n+k) where k is the number of
occurrences of a literal in a clause.

Every problem Q which is in NP has a
non-deterministic TM M which:

1. Guesses a certificate of length n.

2. Checks the certificate in p(n) time.

Start state- q0

Final state- the computation will
terminate in a special state qN when the
certificate is not correct and in a state
qY if the certificate is correct.

Cook’s Theorem: SAT is NP-complete.

Idea of proof:

Construct a collection of clauses whose
length is polynomial in p(n) and hence is
also polynomial in n.

A satisfying truth assignment corresponds
to a computation of M which non-
deterministically guesses a correct
certificate and checks it.

The number of tape squares used is bounded:

p(n)= maximum number of steps that M takes on
an input of size n.

Tape squares used in this computation:

Variable Range Meaning

Q[i, k]
0 ≤ i ≤ p(n),

1 ≤ k ≤ # states
At time i, M is in
state qk

H[i,j]
0 ≤ i ≤ p(n),

-p(n) ≤ j ≤ p(n)
Scanning square j
at time i

S[i, j, k]

0 ≤ i ≤ p(n),

-p(n) ≤ j ≤ p(n),

1 ≤ k ≤ # symbols

Time i, square j
contains symbol sk

Clauses to make sure that satisfying assignments
correspond to valid computations:

Recall: Q[i, k]- At time i, M is in state qk

Group G1: At time i, M is in exactly one state:

(a) M is in at least one state at time i:

for each i, 0 ≤ i ≤ p(n), add a clause (s= # states):

(Q[i, 1] or Q[i, 2] or … or Q[i, s])

(b) M is in at most one state at time i: For each
time i and pair j, k of states,

0 ≤ i ≤ p(n), 1 ≤ j < k ≤ s, add a clause

(not Q[i, j] or not Q[i, k])

Clause
Group

Restriction

G1 At time i, M is in exactly one state.

G2 At time i, the tape head scans exactly one square.

G3 At time i, each square contains exactly one symbol.

G4 At time 0, M is in initial checking stage.

G5 By time p(n), M enters state qY.

G6
Configuration at time i+1 follows the one at time i
by one application of the transition relation.

Original problem: Input of size n.

The size of this SAT system has length
which is at most some polynomial q(n).

If there is an O(nc) algorithm for SAT then
there is an O(q(n)c) algorithm for this other
problem which is in NP.

Therefore, if there is a polynomial time
algorithm for SAT, there is a polynomial
time algorithm for every problem in NP.

Conclusion: SAT is NP-complete.

Summary of class contents:

