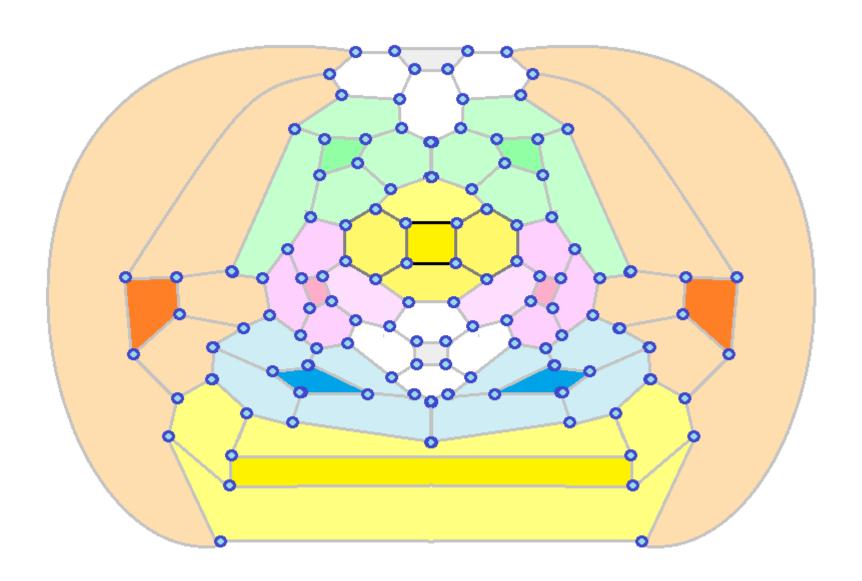
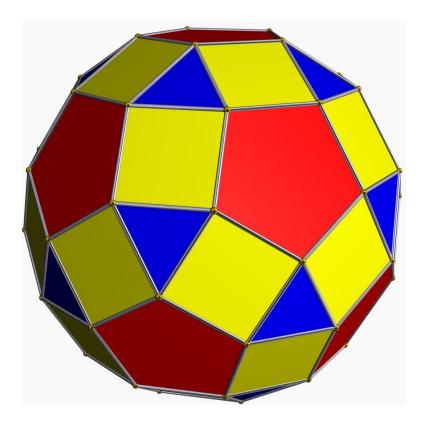
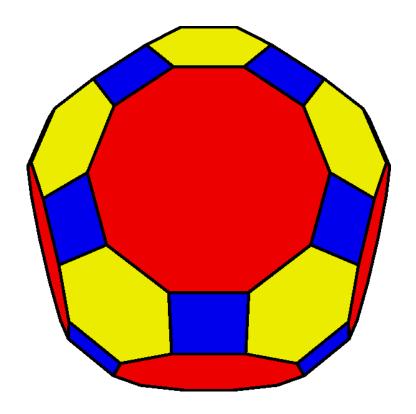
Is bumpy chiral? One picture of bumpy:





Small
Rhombicosadodecahedron
[On Big Bang Theory]



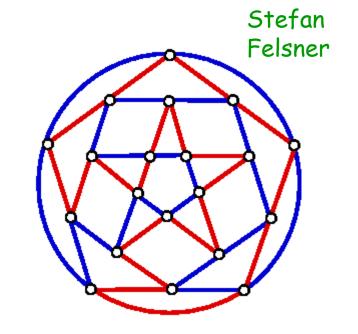
Great Rhombicosadodecahedron [rhombi]

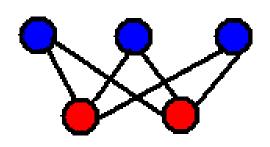
Pictures from:

http://upload.wikimedia.org/wikipedia/commons/3/31/Small_rhombicosidodecahedron.png http://gnu.ist.utl.pt/software/3dldf/grtrhmb.html

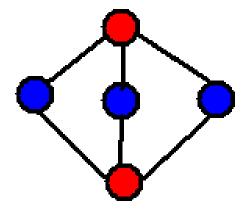
Assignment #2 is available from the class web page.

A graph G is planar if it can be drawn on the plane with no crossing edges.



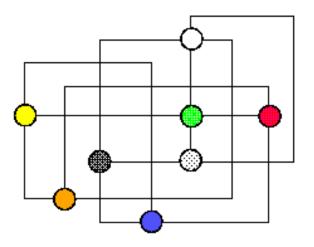


planar graph G



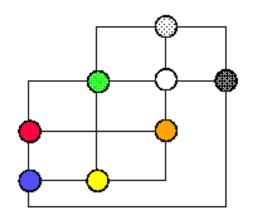
planar embedding of G

Used as a starting point to find nice pictures of non-planar graphs:



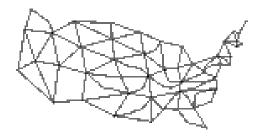
A graph showing normal relationships with lots of crossings in it.

Codeguru



The same graph optimized to show only one crossing in it. The relations are maintained as it is.

Map 4-colouring:



Linear time algorithms for embedding:

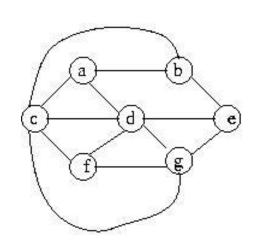
Hopcroft & Tarjan, '74

Booth and Lueker, '76

Boyer & Myrvold, '01

OPEN: Find a really simple O(n) or maybe O(n log n) algorithm.

Rotation Systems



a:	b	\mathbf{d}	C		
b:	a	c	e		
			f	_	
d:	a	e	g	f	c
e:	b	g	d		
f:	c	\mathbf{d}	g		
g:	c	f	d	e	

G connected on an orientable surface:

$$g=(2-n+m-f)/2$$

plane

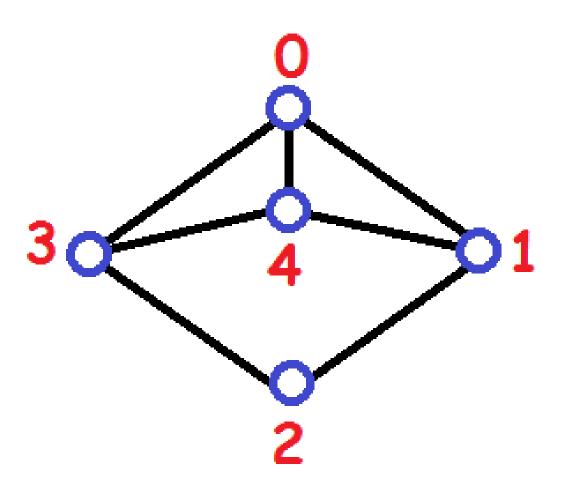
1 torus

FO: (a, b)(b, c)(c, a)(a, b)

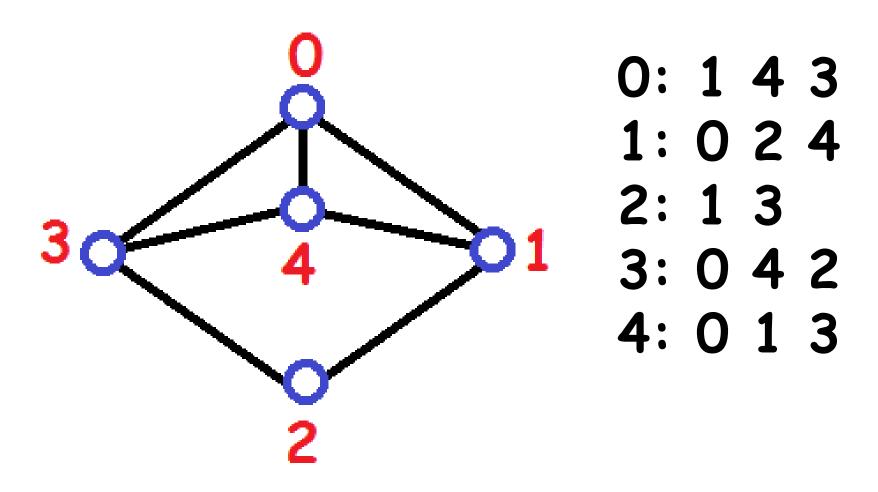
F1: (a, d)(d, e)(e, b)(b, a)(a, d)

Greg McShane

What is the rotation system for this graph?



What is the rotation system for this graph?



To walk the faces from a rotation system:

Treat each edge as two arcs: $(u,v) \rightarrow (u,v)$ and (v,u).

Mark all arcs as not visited.

For each unvisited arc (u,v) do: walk the face with (u, v).

To walk the face with (u,v):

Arcs traversed are marked as visited.

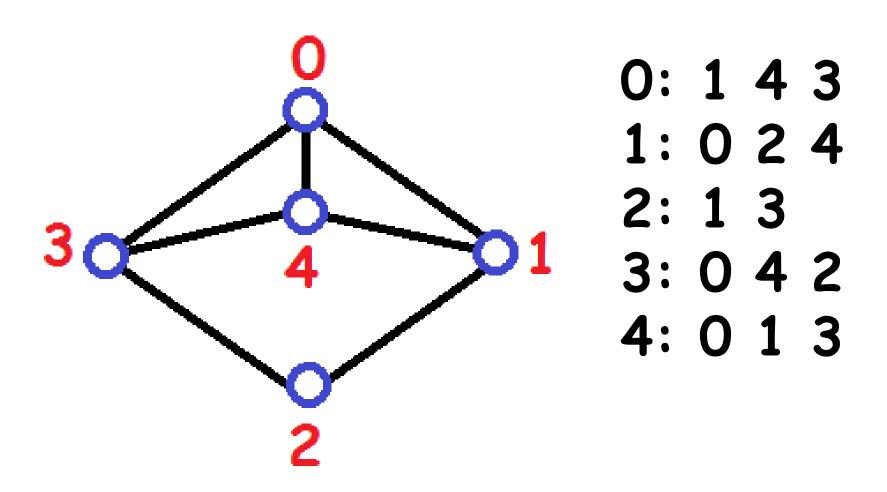
The next arc to choose after an arc (u,v) is the arc (v,w) such that w is the vertex in the list of neighbours of v that comes after u in cyclic order.

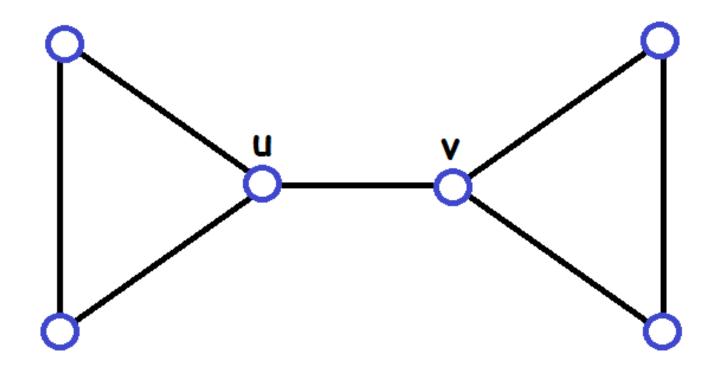
Continue traversing arcs until returning to arc (u,v).

Walk the faces of this planar embedding of a graph:

- 0: 1 4 3
- 1: 0 2 4
- 2: 1 3
- 3: 0 4 2
- 4: 0 1 3

This graph has 4 faces.





Important: Do not stop until seeing the starting ARC again. It's possible to have both (u,v) and (v,u) on the same face.