1. Use the algorithm from last class to walk all the faces for the embedding represented by this rotation system.
2. Does it represent a planar embedding?

Recall: $g=(2-n+m-f) / 2$
0:135
1: 02
2:153
3: 024
4: 35
5: 042

```
\(f_{0}:(0,1)(1,2)(2,5)(5,0)(0,1)\)
\(\mathrm{f}_{1}:(0,3)(3,2)(2,1)(1,0)(0,3)\)
\(f_{2}:(0,5)(5,4)(4,3)(3,0)(0,5)\)
\(f_{3}:(2,3)(3,4)(4,5)(5,2)(2,3)\)
```

0: 135
1: 02
2: 153
3: 024
4: 35
5: 042

$$
g=(2-n+m-f) / 2
$$

Rotation Systems

G connected on an orientable surface:

$f_{0}:(a, b)(b, c)(c, a)(a, b)$
$f_{1}:(a, d)(d, e)(e, b)(b, a)(a, d)$

Greg McShane

How can we find a rotation system that represents a planar embedding of a graph?

Input graph:
 0: 134
 1: 024
 2: 13
 3: 024
 4: 013

Planar embedding

0: 143
1: 024
2: 13
3: 042
3: 042
$f=$ number of faces $n=$ number of vertices
$m=$ number of edges
Euler's formula: For any connected planar graph $G, f=m-n+2$.

Proof by induction:
How many edges must a connected graph on n vertices have?

Euler's formula: For any connected planar graph G, $f=m-n+2$.
[Basis]

The connected graphs on n vertices with a minimum number of edges are trees.
If T is a tree, then it has $n-1$ edges and one face when embedded in the plane. Checking the formula:
1 = ($n-1$) $-n+2 \Rightarrow 1=1$ so the base case holds.

[Induction step ($m \rightarrow m+1$)]

Assume that for a planar embedding \widetilde{G} of a connected planar graph G with n vertices and m edges that $f=m-n+2$. We want to prove that adding one edge (while maintaining planarity) gives a new planar embedding \widetilde{H} of a graph H such that f^{\prime} (the number of faces of H) satisfies $f^{\prime}=m^{\prime}-n+2$ where $m^{\prime}=m+1$ is the number of edges of H.

Adding one edge adds one more face.
Therefore, $f^{\prime}=f+1$. Recall $m^{\prime}=m+1$.
Checking the formula:
$f^{\prime}=m^{\prime}-n+2$
means that
$f+1=m+1-n+2$
subtracting one from both sides gives
$f=m-n+2$ which we know is true by induction.

Pre-processing for an embedding algorithm.

1. Break graph into its connected components.
2.For each connected component, break it into its 2-connected components (maximal subgraphs having no cut vertex).

A disconnected graph:

First split into its 4 connected components:

The yellow component has a cut vertex:

The 2-connected components of the yellow component:

The red component: the yellow vertices are cut vertices.

The 2-connected components of the red component:

How do we decompose the graph like this using a computer algorithm?

The easiest
way:
BFS (Breadth First Search)

One application:
How many connected components does a graph have and which vertices are in each component?

To find the connected components:
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
parent[i]= -1 ;
nComp $=0$;
for ($\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++$)
if (parent $[i]==-1$)
nComp++;
BFS(i, parent, component, nComp);

BFS(s, parent, component, nComp)
// Do not initialize parent.
// Initialize the queue so that BFS starts at s qfront=0; qrear=1; Q[qfront]= s;
parent[s]=s;
component[s]= nComp:
while (qfront < qrear) // Q is not empty
u= Q[qfront]; qfront++;
for each neighbour v of u
if (parent[v] == -1) // not visited
parent $[v]=u$; component $[v]=$ nComp;
Q[qrear]= v; qrear++;
end if
end for
end while

How could you modify BFS to determine if v is a cut vertex?

