
1. Use the algorithm from last class to walk all 
the faces for the embedding represented by this 
rotation system.
2. Does it represent a planar embedding?
Recall: g= (2 – n + m – f)/2

0: 1 3 5
1: 0 2
2: 1 5 3
3: 0 2 4
4: 3 5
5: 0 4 2



f0: (0,1)(1,2)(2,5)(5,0)(0,1)
f1: (0,3)(3,2)(2,1)(1,0)(0,3)
f2: (0,5)(5,4)(4,3)(3,0)(0,5)
f3: (2,3)(3,4)(4,5)(5,2)(2,3)

0: 1 3 5
1: 0 2
2: 1 5 3
3: 0 2 4
4: 3 5
5: 0 4 2

g= (2 – n + m – f)/2



Rotation Systems

f0: (a, b)(b, c)(c, a)(a, b)

f1: (a, d)(d, e)(e, b)(b, a)(a, d)

G connected on an 
orientable surface:

g= (2 – n + m – f)/2

0  plane

1 torus
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http://picard.ups-tlse.fr/~mcshane/img/genus2A.jpg


How can we find a 
rotation system 
that represents a 
planar embedding 
of a graph?

Input graph:
0: 1 3 4
1: 0 2 4
2: 1 3
3: 0 2 4
4: 0 1 3

Planar embedding
0: 1 4 3
1: 0 2 4
2: 1 3
3: 0 4 2
4: 0 1 3



f= number of faces
n= number of vertices
m= number of edges

Euler’s formula: For any connected planar 
graph G, f= m-n+2.

Proof by induction:

How many edges must a connected graph on 
n vertices have?



Euler’s formula: For any connected planar 
graph G, f= m-n+2.

[Basis]
The connected graphs on n vertices with a 
minimum number of edges are trees.
If T is a tree, then it has n-1 edges and one 
face when embedded in the plane.
Checking the formula:
1 = (n-1) – n + 2 ⟹ 1 = 1 so the base case 
holds.



[Induction step (m   m+1)]

Assume that for a planar embedding෩𝐺 of a  
connected planar graph G with n vertices 
and m edges that f= m-n+2.
We want to prove that adding one edge 
(while maintaining planarity) gives a new 

planar embedding ෩𝐻 of a graph H such that
f’ (the number of faces of H)
satisfies f’ = m’ – n + 2
where m’= m+1 is the number of edges of H.







Adding one edge adds one more face.

Therefore, f’ = f+ 1. Recall m’= m+1.

Checking the formula:
f’ = m’ – n + 2
means that
f+1 = m+1 – n + 2
subtracting one from both sides gives
f= m – n + 2 which we know is true by 
induction.



Pre-processing for an embedding 
algorithm.

1.Break graph into its connected 
components.

2.For each connected component, break it 
into its 2-connected components 
(maximal subgraphs having no cut 
vertex).



A disconnected graph:

isolated 
vertex



First split into its 4 connected components:



The yellow component has a cut vertex:



The 2-connected components of the 
yellow component:



The red component: the yellow vertices 
are cut vertices.



The 2-connected components of the red 
component:



How do we decompose the graph like 
this using a computer algorithm?

The easiest 
way:

BFS (Breadth 
First Search)
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One application:

How many connected components does a 
graph have and which vertices are in each 
component?
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To find the connected components:

for (i=0; i < n; i++)

parent[i]= -1;

nComp= 0;

for (i=0; i < n; i++)

if (parent[i] == -1)

nComp++;

BFS(i, parent, component, nComp);
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BFS(s, parent, component, nComp)

// Do not initialize parent.

// Initialize the queue so that BFS starts at s

qfront=0; qrear=1; Q[qfront]= s; 

parent[s]=s;

component[s]= nComp;
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while (qfront < qrear) // Q is not empty

u= Q[qfront]; qfront++; 

for each neighbour v of u 

if (parent[v] == -1) // not visited

parent[v]= u; component[v]= nComp;

Q[qrear]= v; qrear++; 

end if

end for            

end while
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How could you modify BFS to 
determine if v is a cut vertex?


