
The n-Queen graph: Vertices- squares on an n by n 
chessboard. Two vertices are adjacent if a queen could 
move from one square to another. That is, if the squares 
are on the same row, column, diagonal or back diagonal.
Red vertices: dominating set vertices.
1. How many automorphisms of the graph map each 

dominating set to itself? 
2. How many different dominating sets does each one 

correspond to?



Annoucements
Some graph classes that may have polynomial time 
algorithms for hard problems:
planar, perfect, k-trees, chordal, permutation, interval, 
circular arc, intersection, bounded tree width, bounded 
facewidth, claw-free, fullerenes, benzenoids, ….



The queen’s graph is not a regular graph.

Red cell 
dominates
25 vertices.

Red cell 
dominates
23 vertices.

Red cell 
dominates
19 vertices.



Number of cells each cell dominates:

Our naïve 
approach suggests 
that two cells can 
dominate 25 + 25= 
50 cells.

But if we sort these 
numbers in reverse 
order:
25, 23, 23, …

We see that 2 cells 
could dominate at 
most 25 + 23 = 48 
vertices/cells.



Choose center cell to be in dominating set:

Yellow squares are dominated.
The number of undominated cells each cell 
would dominate decreases dramatically.
New sorted order: 12, 12, 12, 12, 10, 10 …
24 cells are not dominated: need at least 2 more  
(12 + 12 ≥ 24). 



Greedy approach: choose a cell dominating a 
maximum number of undominated vertices:

New sorted order: 8, 7, 7, 6, 6,   …
12 cells are not dominated: 
need at least 2 more  (8+7 ≥ 12). 



If we backtrack and color center cell blue:

New sorted order: 23, 23, 23, …
49 cells are not dominated: 
need at least 3 more  (23 + 23 + 23 ≥ 49). 



Our simple formula for an upper bound:
n_extra ≥ num_not_dominated / (∆ + 1)
is very easy to compute: O(1) time.

It takes more time to maintain a better bound.
One tactic: maintain for k= 0, 1, 2, … , n the 
number of white vertices dominating k 
undominated vertices (num[0…n]).
x= maximum number of undominated vertices

some white vertex dominates.
Go from x downwards adding on for one vertex 
at a time the number it might newly dominate 
until the total is at least the number of 
undominated vertices.



n_extra=0; sum=0;
for (k= x; k ≥ 1; k--)

for (j=0; j < num[k]; j++)  
{

n_extra++;
sum+= k;
if (sum ≥ num_not_dominated) 

goto check_bound;
}

}
// white vertices can’t dominate all the rest.
return(0);

check_bound:;
if (size + n_extra >= min_size) return(0);


