The n-Queen graph: Vertices- squares on an n by n
chessboard. Two vertices are adjacent if a queen could
move from one square to another. That is, if the squares
are on the same row, column, diagonal or back diagonal.
Red vertices: dominating set vertices.

1. How many automorphisms of the graph map each
dominating set to itself?

2. How many different dominating sets does each one
correspond to?

n cm

[o

SELEENE: i

B

Annoucements

Some graph classes that may have polynomial time
algorithms for hard problems:

planar, perfect, k-trees, chordal, permutation, interval,
circular arc, intersection, bounded tree width, bounded
facewidth, claw-free, fullerenes, benzenoids,

The queen’s graph is not a regular graph.

[
[
[
Red cell Red cell Red cell
dominates dominates dominates

25 vertices. 23 vertices. 19 vertices.

Number of cells each cell dominates:

T
R
SEEEE
DOEEE
DR
EEBO

B

£

Our naive
approach suggests
that two cells can
dominate 25 + 25=
50 cells.

But if we sort these
numbers in reverse
order:

25, 23, 23, ...

We see that 2 cells
could dominate at
most 25 + 23 =48

vertices/cells.

Choose center cell o be in dominating set:

DEEEBRED

DEDEEan

Yellow squares are dominated.

The number of undominated cells each cell
would dominate decreases dramatically.
New sorted order: 12, 12,12, 12, 10, 10 ...

24 cells are not dominated: need at least 2 more
(12 + 12 > 24).

Greedy approach: choose a cell dominating a
maximum number of undominated vertices:

New sorted order: 8, 7, 7, 6,
12 cells are not dominated:
need at least 2 more (8+7 > 12).

If we backtrack and color center cell blue:

B0
DoEEEED
New sorted order: 23, 23, 23, ...

49 cells are not dominated:
need at least 3 more (23 + 23 + 23 > 49).

Our simple formula for an upper bound:
n_extra > num_not_dominated / (A + 1)
is very easy to compute: O(1) time.

It takes more time to maintain a better bound.

One tactic: maintain for k=0, 1, 2, .., n the

number of white vertices dominating k

undominated vertices (num[O...n]).

xX= maximum number of undominated vertices
some white vertex dominates.

Go from x downwards adding on for one vertex

at a time the number it might newly dominate

until the total is at least the number of

undominated vertices.

n_extra=0; sum=0;
for (k= x; k2 1; k--)
for (j=0; j < num[k]; j++)

{
nh_extra++,
sum+= k;
If (sum > num_not_dominated)
goto check_bound;
}

}

// white vertices can't dominate all the rest.
return(0);

check bound:;
if (size + n_extra >= min_size) return(0);

