
Weights 
on edges 
are 1.

These two graphs have the same sized 
minimum cuts between every pair of 
vertices:
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A bigger example:
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Crossing Cuts

Cuts (X, X’) and (Y, Y’) cross if all 4 of:

X  Y

X  Y’

X’  Y

X’  Y’

are non-empty.
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These

2 cuts

cross
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Simplifying the picture
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(𝑋, ത𝑋) is a minimum s,t-cut with s in X 
and t in ത𝑋.

(𝑌, ത𝑌) is a minimum u,v-cut with u in Y and 
v in ത𝑌.

Both u and v are in  ത𝑋 (u could be t).

Theorem:

Suppose that (𝑋, ത𝑋) and (𝑌, ത𝑌) cross.Then 
there exists some minimum u,v-cut (𝑍, ҧ𝑍)
which does not cross (𝑋, ത𝑋).
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X= P ⋃ Q,  Y= P ⋃ R.
Without loss of generality, s is in P.
Assume u ∈ R and v ∈ S. 
The vertex t might be u or v.

(𝑋, ത𝑋)= min 
s,t-cut.

(𝑌, ത𝑌)= min 
u,v-cut.
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(𝑋, ത𝑋)= min 
s,t-cut.

(𝑌, ത𝑌)= min 
u,v-cut.

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑋, ത𝑋)= b + c + d + e ≤ a + b +c
since otherwise (P, ത𝑃) is a smaller s,t-cut.
So d+e ≤ a  ⟹ e ≤ a.
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(𝑋, ത𝑋)= min 
s,t-cut.

(𝑌, ത𝑌)= min 
u,v-cut.

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡: e ≤ a.
c+ f + e ≤ c + f + a + d = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑌, ത𝑌)
So (𝑆, ҧ𝑆) is a non-crossing u,v-cut.
This cut is either smaller (contradicting that the 
original cut was minimum) or the same size.



The previous theorem is the basis for 
the proof of correctness of the 
Gomory-Hu cut tree algorithm.

It means that if we have found a 
minimum st-cut (𝑋, ത𝑋) and both u and v 
are in ത𝑋, then we are guaranteed to find 
some minimum u,v-cut by restricting 
attention to just ത𝑋. The vertices in X 
can be contracted together.
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Theorem [Triangle inequality for cutsets]

Let fi,j be the maximum amount of flow 
possible from vertex i to vertex j. From 
our flow theory we know that this also 
equals the capacity of a minimum i,j-cut.

Then fi,k  Min {fij, fj,k} for all i, j, k.,
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fi,k  Min {fij, fj,k} for all i, j, k.

n
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(𝑋, ത𝑋)= min 
i,k-cut.

fj,k ≤ fi,k

fi,j ≤ fi,k



Theorem [Triangle inequality for cutsets]

Let fi,j be the maximum amount of flow 
possible from vertex i to vertex j. From 
our flow theory we know that this also 
equals the capacity of a minimum i,j-cut.

Then fi,k  Min {fij, fj,k} for all i, j, k.,

Corollary:

f1,k  Min { f1,2, f2,3, f3,4, … fk-1, k }

Proof by induction.
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Theorem: A graph G has at most n-1 distinct 
flow values between pairs of vertices.

Idea in proof: 

Start with a complete graph on n vertices with 
each edge (u,v) labelled with fuv. Choose a 
maximum weight spanning tree T of G. Any 
chord (w,x) of T must have fw,x equal to the 
minimum weight edge on the path connecting w 
to x.

Gomory-Hu algorithm: Constructs a maximum 
weight spanning tree T.
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Recall: Any chord (w,x) of T must have 
fw,x equal to the minimum weight of an 
edge on the path connecting w to x.

Furthermore, if (u,v) is a minimum weight 
edge on the path from w to x, then one 
minimum w,x-cut of G can be found by 
considering T- (u,v) and setting

X= subset of vertices in same component 
as vertex w in T-(u,v), and

X’= the rest of the vertices

where T is the Gomery-Hu cut tree.
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1. Find a maximum number of edge disjoint paths and a 
minimum cut between s and t and between u and v.

2. Find a minimum s,t-cut (𝑃, ത𝑃 ) and a minimum u,v-
cut (𝑄, ത𝑄 ) that cross. Then find another minimum 
u,v-cut (𝑅, ത𝑅 ) that does not cross (𝑃, ത𝑃 ).



Gomory-Hu Cut Tree Algorithm

At every step of the algorithm we have 
constructed some tree T.

Each node of T corresponds to a subset 
of the vertices of G with each vertex of 
G in exactly one subset.

I will call the vertices of T supernodes 
(each supernode corresponds to one or 
more vertices of the original graph).
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Initially, T consists of one supernode 
which corresponds to the set of all 
vertices of G. At each step of the 
algorithm, a supernode containing two or 
more vertices from G is split into two 
supernodes which are connected by an 
edge.

This means at each iteration, the tree 
gains one more edge and one more vertex.

We stop when each supernode 
corresponds to exactly one vertex from G.
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At each phase of the algorithm:

1. Let S be a supernode of T that corresponds 
two or more vertices in G. Choose two 
vertices s and t from S. Create G’ from G :  
for each component  T’ of T – S, contract 
together the vertices of T’ in G.

2. Find a minimum s,t-cut (X, X’) in G’ which has 
capacity fs,t.
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To update the tree T:

1.  Delete vertex S (and the edges incident to S).
2. Add two supernodes x and x’ where x  

corresponds to the vertices of G from S which 
end up on the X side of the cut and x’ to the 
ones from S on the X’ side.  Add edge (x,x’) 
with weight fs,t.

3. For edge (v, S) in the previous tree, vertex v 
was in a subtree T’ of T-S that was contracted 
to a single vertex v’. If v’ ends up on the X 
side of the cut, then add edge (v, x). 
Otherwise, add edge (v, x’). The new weight is 
the same as the weight of (v, S).
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Example:
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