Do the algebra required to find

 a simultaneous solutions to these two equations (from last class):$3 x_{1}+x_{2}=3$
$x_{1}+3 x_{2}=5$

Linear function:

given real numbers $c_{0}, c_{1}, c_{2}, \ldots, c_{n}$,
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$.
Linear equation: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$. Linear inequalities:
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b$, or
$f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b$.
Linear constraints: linear equations and linear inequalities.
Linear programming problem: optimizing (minimizing or maximizing) a linear functions subject to linear constraints.

Standard form (chapters 1-7):
Maximize $c^{\top} x$
subject to
$A x \leq b$
and $b \geq 0$

The Diet Problem:

Find the cheapest diet satisfying certain nutritional requirements using certain foods. $\mathrm{m}=$ number of nutrients, $\mathrm{n}=$ number of foods,
$b_{i}, i=1,2, \ldots, m=$ amount of ith nutrient required, $c_{j}, j=1,2, \ldots, n=$ cost per unit of $j t h$ food, $\mathrm{a}_{\mathrm{ij}}=$ number of units of ith nutrient in jth food, $x_{j}, j=1,2, \ldots, n=$ units of $j t h$ food in diet.

The cost of the diet (objective function): $c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}$.

Minimize the cost of the diet:
$c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+\ldots+c_{n} x_{n}$.

To ensure there is an adequate quantity of the ith nutrient, $i=1,2, \ldots, m$ (linear constraints):
$a_{i j} x_{j} \geq b_{i}, i=1,2, \ldots, m$
To ensure number of units chosen make sense (non-negativity constraints):
$x_{j} \geq 0, j=1,2, \ldots, n$.

We also might have limits on certain foods or beverages.
For example:
Suppose
$x_{2}=$ number of beers
$x_{3}=$ number of glasses of wine
To ensure there are at most 2.5 servings of alcohol in the diet:
$x_{2}+x_{3}+\leq 2.5$ (also a linear constraint).

I've found out the reason you cannot get channel 27 . This is your microwave, not your television.

Product Mix Problem

A manufacturing company produces two models of industrial microwave ovens: X and the Y.

Components for both the products need to machined then assembled.

It takes 4 hours to machine the components for X and 3 hours to machine the components for Y .

A total of 100 machine hours are available per day.

It takes 2 hours to assemble X and 3 hours to assemble Y. There are 48 hours of assembly time available per day.

The market potential for X is 15 per day. The market potential for Y is 20 per day.

The marketing department wants the company to produce at least 10 products per day, in any combination.

Each X contributes $\$ 2000$ to profit and each Y contributes $\$ 2500$ to profit.

How many X and Y products should be produced per day to maximize profit?

