Do the algebra required to find a simultaneous solutions to these two equations (from last class):

$$3x_1 + x_2 = 3$$

 $x_1 + 3x_2 = 5$

Linear function:

given real numbers c_0 , c_1 , c_2 , ..., c_n , $f(x_1, x_2, ..., x_n) = c_0 + c_1 x_1 + c_2 x_2 + ... + c_n x_n$ **Linear equation:** $f(x_1, x_2, ..., x_n) = b$. **Linear inequalities:** $f(x_1, x_2, ..., x_n) \le b, or$ $f(x_1, x_2, ..., x_n) \ge b.$ Linear constraints: linear equations and linear inequalities.

Linear programming problem: optimizing (minimizing or maximizing) a linear functions subject to linear constraints. Standard form (chapters 1-7):

```
Maximize c^T x
```

subject to

Ax ≤ b

and $b \ge 0$

The Diet Problem:

Find the cheapest diet satisfying certain nutritional requirements using certain foods. m= number of nutrients,

n= number of foods,

 b_i , i=1, 2, ..., m = amount of ith nutrient required, c_j , j=1, 2, ..., n = cost per unit of jth food, a_{ij} = number of units of ith nutrient in jth food, x_j , j=1, 2, ..., n = units of jth food in diet.

The cost of the diet (**objective function**): $c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n$. Minimize the cost of the diet: $c_1 x_1 + c_2 x_2 + c_3 x_3 + ... + c_n x_n$.

To ensure there is an adequate quantity of the ith nutrient, i=1, 2, ..., m (linear constraints):

$$a_{ij} x_j \ge b_i$$
, i= 1, 2, ...,m

To ensure number of units chosen make sense (non-negativity constraints): $x_j \ge 0, j=1, 2, ..., n.$ We also might have limits on certain foods or beverages. For example:

Suppose

- x_2 = number of beers
- x_3 = number of glasses of wine

To ensure there are at most 2.5 servings of alcohol in the diet:

 $x_2 + x_3 + \le 2.5$ (also a linear constraint).

I've found out the reason you cannot get channel 27. This is your microwave, not your television.

Product Mix Problem

A manufacturing company produces two models of industrial microwave ovens: X and the Y.

Components for both the products need to machined then assembled.

It takes 4 hours to machine the components for X and 3 hours to machine the components for Y.

A total of 100 machine hours are available per day.

It takes 2 hours to assemble X and 3 hours to assemble Y. There are 48 hours of assembly time available per day.

The market potential for X is 15 per day. The market potential for Y is 20 per day.

The marketing department wants the company to produce at least 10 products per day, in any combination.

Each X contributes \$2000 to profit and each Y contributes \$2500 to profit.

How many X and Y products should be produced per day to maximize profit?