Convert this problem into our standard form: Minimize $3 x_{1}+4.5 x_{2}-6 x_{3}$ subject to
$1 x_{1}-2 x_{2}-3 x_{3} \geq 6.2$
$4 x_{1}+5 x_{2}-6 x_{3} \leq 5$
$7 x_{1}+8 x_{2}-9 x_{3}=-3$
$x_{2}, x_{3} \geq 0$
How would this problem be input to your program?

Announcements:

Assignment \#1 has been posted: due Sept. 19
(or Sept. 23 with 10% late penalty)
Programming Project 1 has been posted: due Sept. 26 (or Sept. 30 with a 10% late penalty).

If you send me e-mail questions, use CSC 445: meaningful subject or CSC 545: meaningful subject

No office hour Tues. Sept. 16 at 1:30pm (dept. meeting).

Labor Shift Scheduling Problem

Unable to hire new police officers because of budget limitations, the Gotham City Police commissioner is trying to utilize the force better. The minimum requirements for police patrols for weekdays are noted below:

Time Period Min
Midnight - 4:00 am 6
4:00 am - 8:00 am 4
8:00 am - noon
noon-4:00 pm
4:00 pm - 8:00 pm
8:00 pm - Midnight 16

The police officers can start their shifts at the starting time of any of the above time periods. However they have to patrol for 8 hours. What is the minimum number of officers required to satisfy the requirements? Express this an LP problem. ${ }_{3}$

June7/07 Raeside cartoon lampoons VPD, Times Colonist.
public class Repeat_Add
public static void main(String [] args)
\{
int i, next_print;
float x, y;
double error;
$x=1.0 f / 3 ; \quad / / x=1 / 3$
$y=0$;
next_print=3;
for (i=1; i <= 3000000; i++)
\{

$$
\begin{aligned}
& y=y+x ; \\
& \text { error= } y \text { - (double) } i / 3 \text {; }
\end{aligned}
$$

if ($\mathrm{i}==$ next_print)
\{
System.out.println(y + " should be " + (i/3)

+ " Error = " + error); next_print= next_print * 10;
\}
\}

Errors resulting from repeatedly adding 1/3 (edited to make this more readable).
1.0
9.999999 should be 10 100.000175 should be 100 999.97644 should be 1000 9999.832 should be 10000 Error $=-0.16796875$ 100165.48 should be 100000 Error $=165.4765625$ 976144.56 should be 1000000 Error $=-23855.4375$

The "error" would be zero if the mathematics was 100% precise. But it is not due to floating point errors. This is why we compare values to some small epsilon instead of zero to test if they are zero or not.

Another sample problem:

Maximize $5 x_{1}+5 x_{2}+3 x_{3}$ subject to

How is this typed in as input?
$x_{1}, x_{2}, x_{3} \geq 0$

Another sample problem: 34

Maximize $5 x_{1}+5 x_{2}+3 x_{3} 553$ subject to

$$
\left.\begin{array}{rl}
\quad x_{1}+3 x_{2}+x_{3} & \leq 3 \\
+3 x_{3} & \leq 2 \\
-x_{1}-x_{2}+2 x_{3} \leq 4 & 3
\end{array}\right)
$$

The initial dictionary:

$$
\begin{aligned}
& \mathrm{X} 4=3.00-1.00 \mathrm{X1}-3.00 \mathrm{X} 2-1.00 \mathrm{X} 3 \\
& X 5=2.00+1.00 \mathrm{X1}+0.00 \mathrm{X} 2-3.00 \mathrm{X} 3 \\
& X 6=4.00-2.00 \mathrm{X1}+1.00 \mathrm{X} 2-2.00 \mathrm{X} 3 \\
& X 7=2.00-2.00 \times 1-3.00 \times 2+1.00 \text { X3 } \\
& z=-0.00+5.00 \mathrm{X} 1+5.00 \mathrm{X} 2+3.00 \mathrm{X} 3
\end{aligned}
$$

The program output will be in dictionary format.
How much does z increase if $\mathrm{X} 1, \mathrm{X} 2$, or X 3 enters?

X1 enters. X7 1eaves. $z=-0.000000$
After 1 pivot:
$\mathrm{X} 4=2.00-1.50 \mathrm{X} 2-1.50 \mathrm{X} 3+0.50 \mathrm{X} 7$
$X 5=3.00-1.50 \times 2-2.50 \times 3-0.50 \times 7$
$X 6=2.00+4.00 \times 2-3.00 X 3+1.00 \times 7$
$X 1=1.00-1.50 \mathrm{X} 2+0.50 \mathrm{X} 3-0.50 \mathrm{X} 7$
$z=5.00-2.50 \mathrm{X} 2+5.50 \mathrm{X} 3-2.50 \mathrm{X} 7$

X3 enters. X6 leaves. $z=5.000000$
After 2 pivots:
$\mathrm{X} 4=1.00-3.50 \mathrm{X} 2+0.50 \mathrm{X} 6+0.00 \mathrm{X} 7$
$\mathrm{X} 5=1.33-4.83 \mathrm{X} 2+0.83 \mathrm{X} 6-1.33 \mathrm{X} 7$
$X 3=0.67+1.33 X 2-0.33 X 6+0.33 X 7$
$\mathrm{X1}=1.33-0.83 \mathrm{X} 2-0.17 \mathrm{X6}-0.33 \mathrm{X} 7$
$z=8.67+4.83 \mathrm{X} 2-1.83 \mathrm{X6}-0.67 \mathrm{X7}$

X2 enters. X5 1eaves. $z=8.666667$
After 3 pivots:
$\mathrm{X} 4=0.03+0.72 \mathrm{X} 5-0.10 \mathrm{X6}+0.97 \mathrm{X7}$
$\mathrm{X} 2=0.28-0.21 \mathrm{X} 5+0.17 \mathrm{X6}-0.28 \mathrm{X7}$
$X 3=1.03-0.28 X 5-0.10 \times 6-0.03 X 7$
$\mathrm{X} 1=1.10+0.17 \mathrm{X} 5-0.31 \mathrm{X6}-0.10 \mathrm{X7}$
$z=10.00-1.00 \times 5-1.00 \times 6-2.00 \times 7$

How could we argue that this must be the optimal solution?

LP problems can be:

1. infeasible,

2. unbounded, or
3. they have at least one basic (corresponding to a dictionary) optimal solution.
