Using the smallest subscript rules (Bland's rule) to avoid cycling, where would you pivot in this dictionary? That is, which variable enters and which one exits?

$$
\begin{aligned}
& \mathrm{X} 1=0-1 \mathrm{X} 6+2 \mathrm{X} 2-1 \mathrm{X} 4+4 \mathrm{X} 5 \\
& \mathrm{X} 3=0-1 \mathrm{X} 6+2 \mathrm{X} 2-1 \mathrm{X} 4-0 \mathrm{X} 5 \\
& \mathrm{X} 7=3+1 \mathrm{X} 6+0 \mathrm{X} 2+0 \mathrm{X} 4-9 \mathrm{X} 5 \\
& \mathrm{X} 9=0+1 \mathrm{X} 6+0 \mathrm{X} 2+0 \mathrm{X} 4-2 \mathrm{X} 5 \\
& \mathrm{X} 8=0+0 \mathrm{X} 6-1 \mathrm{X} 2+1 \mathrm{X} 4-3 \mathrm{X} 5 \\
& z=0+10 X 6-1 X 2+0 X 4+1 X 5
\end{aligned}
$$

Recall: As long as $b_{i} \geq 0$ for $i=1,2, \ldots, m$, setting $\mathrm{x}_{\mathrm{i}}=0$ for $\mathrm{i}=1,2, \ldots \mathrm{n}$ (original variables)
and assigning the slack variables according to the dictionary:
$x_{n+i}=b_{i}$ for $i=1,2, \ldots m$
gives an initial feasible solution.
What can we do if one or more b_{i} 's are <0 ?

Maximize $x_{1}+x_{2}$ subject to:
$-x_{1}-x_{2} \leq-3$
$3 x_{1}-4 x_{2} \leq 2$

$$
x_{1}, \quad x_{2} \geq 0
$$

Initial dictionary:
XX $=-3.0+1.0$ XI +1.0 X2
$X 4=2.0-3.0 X 1+4.0 X 2$
$z=0.0+1.0 \mathrm{X} 1+1.0 \mathrm{X} 2$
Problem: $X_{3}=-3$ violates nonnegativity constraints.

Maximize $-x_{0}$ subject to:
$-x_{1}-x_{2}-x_{0} \leq-3$
$3 x_{1}-4 x_{2}-x_{0} \leq 2$

$$
x_{1}, x_{2}, x_{0} \geq 0
$$

It's easier for the program to use X5 instead of X0:
$\mathrm{X} 3=-3.0+1.0 \mathrm{X} 1+1.0 \mathrm{X} 2+1.0 \mathrm{X} 5$ $\mathrm{X} 4=2.0-3.0 \mathrm{X} 1+4.0 \mathrm{X} 2+1.0 \mathrm{X} 5$
$z=0.0+0.0 \mathrm{X} 1+0.0 \mathrm{X} 2-1.0 \mathrm{X} 5$

The problem is still not feasible. What can we do to fix it?
$\mathrm{X} 3=-3.0+1.0 \mathrm{X} 1+1.0 \mathrm{X} 2+1.0 \mathrm{X} 5$ $\mathrm{X} 4=2.0-3.0 \mathrm{X} 1+4.0 \mathrm{X} 2+1.0 \mathrm{X} 5$
$z=0.0+0.0 \mathrm{X1}+0.0 \mathrm{X} 2-1.0 \mathrm{X} 5$

Auxiliary problem:

 Minimize $x_{0}\left(M a x i m i z e-x_{0}\right)$subject to:
$-x_{1}-x_{2}-x_{0} \leq-3$
$3 x_{1}-4 x_{2}-x_{0} \leq 2$
$x_{1}, x_{2}, x_{0} \geq 0$
At the optimal solution: What does it mean if $x_{0}=0$? What does it mean if $x_{0}>0$?

Choose the variable to exit to be the one with the equation with the smallest b_{i} : the new variable x_{0} (X5) enters:
$\mathrm{X} 3=-3.00+1.00 \mathrm{X} 1+1.00 \mathrm{X} 2+1.00 \mathrm{X} 5$
$X 4=2.00-3.00 \mathrm{X} 1+4.00 \mathrm{X} 2+1.00 \mathrm{X} 5$
$z=0.00+0.00 \mathrm{X} 1+0.00 \mathrm{X} 2-1.00 \mathrm{X} 5$
X5 enters. X3 1eaves. $z=-0.000000$
$X 5=3.00-1.00 \times 1-1.00 \times 2+1.00 \times 3$
$X 4=5.00-4.00 X 1+3.00 X 2+1.00 X 3$
$z=-3.00+1.00 X 1+1.00 X 2-1.00 \mathrm{X} 3$

Now proceed as usual for the phase 1 problem:
X1 enters. X4 leaves. z = -3.000000
After 1 pivot:
$\mathrm{X} 5=1.75-1.75 \mathrm{X} 2+0.75 \mathrm{X} 3+0.25 \mathrm{X} 4$
$\mathrm{X} 1=1.25+0.75 \mathrm{X} 2+0.25 \mathrm{X} 3-0.25 \mathrm{X} 4$
$z=-1.75+1.75 \mathrm{X} 2-0.75 \mathrm{X} 3-0.25 \mathrm{X} 4$
X2 enters. X5 leaves. z = -1.750000

X2 enters. X5 1eaves. $z=-1.750000$
After 2 pivots:
$\mathrm{X} 2=1.00+0.43 \mathrm{X} 3+0.14 \mathrm{X} 4-0.57 \mathrm{X} 5$
$\mathrm{X1}=2.00+0.57 \mathrm{X} 3-0.14 \mathrm{X} 4-0.43 \mathrm{X} 5$
$z=-0.00+0.00 X 3+0.00 X 4-1.00 X 5$
The optimal solution: -0.000000 $\mathrm{X} 1=2.0000 \mathrm{X} 2=1.0000 \mathrm{X} 3=0.0000$ $X 4=0.0000 X 5=0.0000$

The original problem: Maximize $x_{1}+x_{2}$ subject to: $-x_{1}-x_{2} \leq-3$
$3 x_{1}-4 x_{2} \leq 2 \quad x_{1}, x_{2} \geq 0$
The auxiliary problem: Maximize $-x_{0}$ subject to:
$-x_{1}-x_{2}-x_{0} \leq-3$
$3 x_{1}-4 x_{2}-x_{0} \leq 2$
$x_{1}, x_{2}, x_{0} \geq 0$
Why is this solution feasible for the original problem?
$x_{1}=2, x_{2}=1, x_{3}=0, x_{4}=0, x_{0}=0$

The last dictionary of Phase 1:

$$
\begin{aligned}
& \mathrm{X} 2=1.00+0.43 \mathrm{X} 3+0.14 \mathrm{X} 4-0.57 \times 5 \\
& \mathrm{X} 1=2.00+0.57 \mathrm{X} 3-0.14 \mathrm{X} 4-0.43 \times 5 \\
& \mathrm{z}=-0.00+0.00 \mathrm{X} 3+0.00 \mathrm{X} 4-1.00 \times 5
\end{aligned}
$$

Our original objective function: Maximize x1 + x2

How do we add this to the dictionary?
$z=x 1+x 2$
and from the last phase 1 dictionary: $\mathrm{X} 1=2.00+0.57 \mathrm{X} 3-0.14 \mathrm{X} 4-0.43 \mathrm{X} 5$ $X 2=1.00+0.43 X 3+0.14 X 4-0.57 X 5$
So for the orginal problem:
$\mathrm{X} 1=2.00+0.57 \mathrm{X} 3-0.14 \mathrm{X} 4$
$X 2=1.00+0.43 X 3+0.14 X 4$

Therefore:
$z=3.00+1.00 X 3+0.00 X 4$

Change the z row from the last dictionary of Phase 1 and get rid of the variable $x_{0}(X 5)$:
$X 2=1.00+0.43 X 3+0.14 X 4$
$X 1=2.00+0.57 X 3-0.14 X 4$
$z=3.00+1.00 \mathrm{X} 3+0.00 \mathrm{X} 4$
This is a basic feasible solution that we can use to start the Simplex method for the original problem (Phase 2).

An approach you could take in your program. If you used:

For phase 1, use this:

If your pivots include row $m+1$ then your objective function will already be ready to use when you finish phase 1.
$\mathrm{X} 2=1.00+0.43 \mathrm{X} 3+0.14 \mathrm{X} 4$
$\mathrm{X} 1=2.00+0.57 \mathrm{X} 3-0.14 \mathrm{X} 4$

$z=3.00+1.00 \mathrm{X} 3+0.00 \mathrm{X} 4$

Conclusion: original problem is unbounded.

Maximize $x_{1}+x_{2}$ subject to:
$-x_{1}-x_{2} \leq-3$
$3 x_{1}-4 x_{2} \leq 2$

$$
x_{1}, \quad x_{2} \geq 0
$$

x_{3} is the slack on the first equation. We can make x_{3} as big as we want because there is no bound on how big we can make x_{2}.

Another example:

Maximize $x_{1}+x_{2}$ subject to:
$2 x_{1}-x_{2} \leq-5$
$0 x_{1}+1 x_{2} \leq 3$

$$
x_{1}, \quad x_{2} \geq 0
$$

Set up and solve the Phase 1 prob1em.

Minimize $x_{0}\left(M a x i m i z e-x_{0}\right)$
$2 x_{1}-x_{2}-x_{0} \leq-5$
$0 x_{1}+1 x_{2}-x_{0} \leq 3$
$x_{0}, x_{1}, x_{2} \geq 0$
The initial dictionary:
$x_{3}=-5-2 x_{1}+x_{2}+x_{0}$
$x_{4}=3+0 x_{1}-1 x_{2}+x_{0}$

$\mathrm{z}=0$

$$
-x_{0}
$$

The initial dictionary:
$x_{3}=-5-2 x_{1}+x_{2}+x_{0}$
$x_{4}=3+0 x_{1}-1 x_{2}+x_{0}$
$\begin{array}{ll}\mathrm{z}=0 & -\mathrm{x}_{0}\end{array}$
Pivot to make it feasible: X0 enters. X3 leaves. $z=0.0$ $\mathrm{X0}=5+2 \mathrm{X} 1-1 \mathrm{X} 2+1 \mathrm{X} 3$ $X 4=8+2 X 1-2 X 2+1 X 3$ ----------------------------------
$z=-5-2 X 1+1 X 2-1 X 3$

X2 enters. X4 1eaves. $z=-5.00$ After 1 pivot:
$\mathrm{X} 0=1.0+1.0 \mathrm{X} 1+0.5 \mathrm{X} 3+0.5 \mathrm{X} 4$ $\mathrm{X} 2=4.0+1.0 \mathrm{X} 1+0.5 \mathrm{X} 3-0.5 \mathrm{X} 4$
$z=-1.0-1.0 \mathrm{X1}-0.5 \mathrm{X} 3-0.5 \mathrm{X} 4$
The optimal solution: -1.000000

What can we conclude from this?

The original problem: Maximize $x_{1}+x_{2}$ subject to: $2 x_{1}-x_{2} \leq-5$
$0 x_{1}+1 x_{2} \leq 3$
$x_{1}, \quad x_{2} \geq 0$
The auxiliary problem:
Minimize x_{0}
$2 x_{1}-x_{2}-x_{0} \leq-5$
$0 x_{1}+1 x_{2}-x_{0} \leq 3$
$x_{0}, x_{1}, x_{2} \geq 0$
The solution:
$x_{0}=1, x_{1}=0, x_{2}=4$.

