What happens to Klee-Minty examples if maximum increase rule is used?
Klee-Minty, n=2

Maximize
10 X1 + 1 X2
subject to

$$
\begin{array}{r}
1 \text { X1 + 0 X2 } \\
20 \text { X1 }+1 \text { X2 } \leq 100
\end{array}
$$

X1 , X2 ≥ 0

Last class:
Original phase $1 \quad$: Minimize $z_{1}=x_{0}$
Standard form phase 1: Maximize $z_{2}=-x_{0}$ Algebraically equivalent formula:
$z_{2}=-7+1 X 1-1 X 2+0 X 3+0 X 4-1 X 6$ Objective function used for new problem:
$\mathrm{z}_{3}=1 \mathrm{X} 1-1 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4-1 \mathrm{X} 6$ Renumbering:
$z_{3}=1 X 1-1 X 2+0 X 3+0 X 4-1 X 5$
Note that $z_{3}=z_{2}+7$.
We want $x_{0}=0$ which means $z_{1}=0 \Rightarrow z_{2}=0$
for a feasible problem. When $z_{2}=0, z_{3}=7$.

Before pivoting to make feasible:
$\mathrm{X} 5=-3+\mathrm{X} 1 \quad-\mathrm{X} 3-2 \mathrm{X} 4+\mathrm{X} 0$
$X 6=-7+X 1-X 2+X 0$
$X 7=-5+X 1-2 X 2 \quad-X 4+X 0$
$z=0$

- XV

Taking the first pivot:
X0 enters. X6 leaves. z = -0.000000
The initial dictionary:
$\mathrm{X} 5=4+0 \mathrm{X} 1+1 \mathrm{X} 2-1 \mathrm{X} 3-2 \mathrm{X} 4+1 \mathrm{X} 6$
$X 0=7-1 X 1+1 X 2+0 X 3+0 X 4+1 X 6$
$X 7=2+0 X 1-1 X 2+0 X 3-1 X 4+1 X 6$
$z=-7+1 X 1-1 X 2+0 X 3+0 X 4-1 X 6$

The initial dictionary for z_{3} :
X6 $=4+0$ X1 +1 X2 -1 X3 -2 X4 +1 X5
$\mathrm{X} 7=7-1 \mathrm{X} 1+1 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4+1 \mathrm{X} 5$
$\mathrm{X} 8=2+0 \mathrm{X} 1-1 \mathrm{X} 2+0 \mathrm{X} 3-1 \mathrm{X} 4+1 \mathrm{X} 5$
$z_{3}=-0+1 \mathrm{X} 1-1 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4-1 \mathrm{X} 5$
X1 enters. X7 leaves. $z=-00000$
After 1 pivot:
$\mathrm{X} 6=4+1 \mathrm{X} 2-1 \mathrm{X} 3-2 \mathrm{X} 4+1 \mathrm{X} 5+0 \mathrm{X} 7$
$X 1=7+1 X 2+0 X 3+0 X 4+1 X 5-1 X 7$
$X 8=2-1 X 2+0 X 3-1 X 4+1 X 5+0 X 7$
$z_{3}=7+0 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4+0 \mathrm{X} 5-1 \mathrm{X} 7$

Renumber this:
X6 $=4+1$ X2 -1 X3 -2 X4 +1 X5 +0 X7
X1 $=7+1$ X2 $+0 \times 3$ +0 X4 +1 X5 -1 X7
X8 = 2-1 X2 +0 X3 -1 X4 +1 X5 +0 X7
$z_{3}=7+0 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4+0 \mathrm{X} 5-1 \mathrm{X} 7$
In terms of the original problem:
X5 $=4+1 \mathrm{X} 2-1 \mathrm{X} 3-2 \mathrm{X} 4+1 \mathrm{X} 6+0 \mathrm{X} 0$
$\mathrm{X} 1=7+1 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4+1 \mathrm{X} 6-1 \mathrm{X} 0$
X7 = 2-1 X2 +0 X3 -1 X4 +1 X6 +0 X0
Original objective function: Maximize $X_{1}+X_{2}+2 X_{3}+X_{4}$

Assignment 2:
Due at beginning of class on Fri. Oct. 3. Late submissions accepted with 10\% penalty until Tues. Oct. 7 at 12:30pm.

Project description for CSC 545: Due on Fri. Oct. 17 at 11:55pm.
are both available now from our web pages but not yet on connex (coming soon).

Our midterm is in class on Fri. Oct. 10.

What happens to Klee-Minty examples if maximum increase rule is used?
Klee-Minty, n=2

Maximize
10 X1 + 1 X2
subject to

$$
\begin{array}{r}
1 \text { X1 + 0 X2 } \\
20 \text { X1 }+1 \text { X2 } \leq 100
\end{array}
$$

X1 , X2 ≥ 0

The initial dictionary:
$\mathrm{X} 3=1-1 \mathrm{X} 1+0 \mathrm{X} 2$
$\mathrm{X} 4=100-20 \mathrm{X} 1-1 \mathrm{X} 2$

$\mathrm{z}=0+10 \mathrm{X} 1+1 \mathrm{X} 2$
If X1 enters, how much will z increase?
If X2 enters, how much will z increase?

X1 enters and X3 leaves: the increase to z is: 10.00 X2 enters and X4 leaves: the increase to z is: 100.00

X2 enters. X4 leaves.
After 1 pivot: (Before 3 pivots)
$X 3=1.00-1.00 \mathrm{X} 1+0.00 \mathrm{X} 4$
X2 $=100.00-20.00 \times 1-1.00 \times 4$
z $=100.00-10.00 \mathrm{X1}-1.00 \mathrm{X} 4$
The optimal solution: 100.000000

K1ee-Minty, $n=3$

Maximize
100 X1 +10 X2 + 1 X3
subject to

$$
\begin{array}{rlr}
1 \text { X1 }+0 \text { X2 }+0 \text { X3 } \leq & 1 \\
20 \text { X1 }+1 \text { X2 }+0 X 3 \leq & 100 \\
200 \text { X1 }+20 \text { X2 }+1 \text { X3 } \leq & 10000
\end{array}
$$

$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3 \geq 0$

The initial dictionary:
$\mathrm{X} 4=1-1 \mathrm{X} 1+0 \mathrm{X} 2+0 \mathrm{X} 3$
$\mathrm{X} 5=100-20 \mathrm{X} 1-1 \mathrm{X} 2+0 \mathrm{X} 3$
X6 = $10000-200 \mathrm{X} 1-20 \mathrm{X} 2-1 \mathrm{X} 3$
$z=0+100 \mathrm{X} 1+10 \mathrm{X} 2+1 \mathrm{X} 3$

If X1 enters, how much will z increase?
If X2 enters, how much will z increase?
If X3 enters, how much will z increase?

The initial dictionary:
$\mathrm{X} 4=1-1 \mathrm{X} 1+0 \mathrm{X} 2+0 \mathrm{X} 3$
$\mathrm{X} 5=100-20 \mathrm{X} 1-1 \mathrm{X} 2+0 \mathrm{X} 3$
$\mathrm{X} 6=10000-200 \mathrm{X} 1-20 \mathrm{X} 2-1 \mathrm{X} 3$
$z=0+100 \mathrm{X} 1+10 \mathrm{X} 2+1 \mathrm{X} 3$
X1: the increase to z is: 100 X2: the increase to z is: 1000 X3: the increase to z is: 10000

X3 enters. X6 1eaves. $z=0.00$

After 1 pivot: (Before 7 pivots)
$\mathrm{X} 4=1-1 \mathrm{X1}+0 \mathrm{X} 2+0 \mathrm{X} 6$
$X 5=100-20 X 1-1 X 2+0 X 6$
X3 =10000-200 X1 -20 X2 - 1 X6

$z=10000-100$ X1 -10 X2 - 1 X6
The optimal solution: 10000

Theorem [Klee-Minty, 1972] The Klee-Minty examples take 2^{n} - 1 iterations when the variable to enter is chosen using the Maximum Coefficient rule.

Proof: Problems 4.2 and 4.3.

Similar examples exist for Largest Increase rule [Jeroslow, 1973].

So why is the Simplex Method useful? In practice, it usually takes less than $3 \mathrm{~m} / 2$ iterations, and only rarely 3 m , for $\mathrm{m}<50$, and $\mathrm{m}+\mathrm{n}<200$ [Dantzig, 1963].

Monte Carlo studies of larger random problemssimilar results, see table in text [Kuhn and Quandt, 1963].

The Largest Increase rule may require fewer iterations but it requires more work per iteration. Thus, the Maximum Coefficient rule may be faster.

Application of Maximum Increase Rule: Dictionary:
$x_{i}=b_{i}-s * x_{j}+\ldots$.
If x_{j} enters and x_{i} leaves:
$\mathrm{s} \mathrm{x}_{\mathrm{j}}=\mathrm{b}_{\mathrm{i}} \quad-\mathrm{x}_{\mathrm{i}}+\ldots$
So $x_{j}=b_{i} / s-x_{i} / s+\ldots$
Looking at the z row:
$z=v \quad+\quad r \quad x_{j}$

So $x_{j}=b_{i} / s-x_{i} / s+\ldots$ Looking at the z row:
$\mathrm{Z}=\mathrm{V} \quad+\quad \mathrm{r} \mathrm{X}_{\mathrm{j}}+\ldots$
Replacing x_{j} in the z row:
$z=v+r\left(b_{i} / s\right)+$
Change to z is (r / s) * b_{i} where r is the coefficient of the entering variable in the z row, b_{i} is the constant term in the pivot row, and $-s$ is the coefficient of x_{j} in the pivot row of the dictionary Largest Increase Rule: Choose the entering variable to maximize this.

Maximize
5 XI + 2 XV + 4 XU + 3 XU
subject to

$$
\begin{array}{r}
-1 \mathrm{X} 1+1 \mathrm{X} 2+1 \mathrm{X} 3+2 \mathrm{X} 4 \leq 2 \\
1 \mathrm{X} 1+2 \mathrm{X} 2+0 \mathrm{X} 3+3 \mathrm{X} 4 \leq 8
\end{array}
$$

XI , XL , XX, X4 ≥ 0
If I told you the answer had X1 and X3 in the basis, how can you more directly find the final dictionary?
-1 X1 + 1 X2 +1 X3 +2 X4 ≤ 2 $1 X 1+2 X 2+0 X 3+3 X 4 \leq 8$

In matrix format with the slacks:

$$
\left[\begin{array}{rrrrrr}
-1 & 1 & 1 & 2 & 1 & 0 \\
1 & 2 & 0 & 3 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\binom{2}{8}
$$

When we are done we need to have x_{1} and x_{3} in the basis:

$\left[\begin{array}{rrrrrr}-1 & 1 & 1 & 2 & 1 & 0 \\ 1 & 2 & 0 & 3 & 0 & 1\end{array}\right] x=\binom{2}{8}$
$\left[\begin{array}{llllll}1 & * & 0 & * & * & * \\ 0 & * & 1 & * & * & *\end{array}\right] x=\binom{*}{*}$
To get here, multiply by B^{-1}
where $B=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right]$

To get here, multiply by B^{-1}
where $B=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& \mathrm{B}^{-1}
\end{aligned}
$$

$\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{rrrrrr}-1 & 1 & 1 & 2 & 1 & 0 \\ 1 & 2 & 0 & 3 & 0 & 1\end{array}\right]=$

$$
\left[\begin{array}{llllll}
1 & 2 & 0 & 3 & 0 & 1 \\
0 & 3 & 1 & 5 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\binom{2}{8}=\binom{8}{10}
$$

$\left[\begin{array}{llllll}1 & 2 & 0 & 3 & 0 & 1 \\ 0 & 3 & 1 & 5 & 1 & 1\end{array}\right] x=\binom{8}{10}$
Recall that $\mathrm{B}^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$
Last dictionary(reordered by subscript):
$\mathrm{X} 1=8-2 \mathrm{X} 2-3 \mathrm{X} 4+0 \mathrm{X} 5-1 \mathrm{X} 6$
$\mathrm{X} 3=10-3 \mathrm{X} 2-5 \mathrm{X} 4-1 \mathrm{X} 5-1 \mathrm{X} 6$
$z=80-20 X 2-32 X 4-4 X 5-9 X 6$
$-1 * B^{-1}$ is hiding in the dictionary (slack coefficients).

Recall that one way given a matrix B to find B^{-1} is to transform: $[B \mid I]$ into $\left[I \mid B^{-1}\right]$.

The slack portion of the matrix starts out as I and so it ends up as B^{-1}.

Because we rearrange the equations so that the non-basic variables are on the other side of the equation, we see -1 times the inverse in the dictionary.

