In a previous lecture, this dictionary resulted after the first phase 1 pivot:

- X0 = 3 1 X1 1 X2 + 1 X3X4 = 5 - 4 X1 + 3 X2 + 1 X3
- z = -3 + 1 X1 + 1 X2 1 X3

How can you solve a problem like this using your computer program?

1. What should you type in as input?

2. How should you handle the results when the program finishes?

1

If you still are having problems getting your program to work, send me e-mail for help. You will need to use it later in the term to start Programming Project #2 and to find answers to problems.

Assignment 2: Due at beginning of class on Fri. Oct. 3. Late submissions accepted with 10% penalty until Tues. Oct. 7 at 12:30pm.

Our midterm is in class on Fri. Oct. 10. A midterm study aid and old exams are available from the class web page.

Last class:

The primal: Maximize $x_1 + 2 x_2$ subject to The dual: Minimize 10 $y_1 + 4y_2$ subject to:

 $x_1 + x_2 \le 10$ -2 $x_1 + x_2 \le 4$

 $x_1, x_2 \ge 0$

 $y_1 - 2 y_2 \ge 1$ $y_1 + y_2 \ge 2$

 y_1 , $y_2 \ge 0$

```
The primal:
Maximize x_1 + 2 x_2
subject to
```

We can see the multiple of each equation that was subtracted from the z row by the coefficient of its slack variable. Consequence: The dual solution is hiding in the final dictionary for the primal problem:

y_i= -1 * (coefficient in the z row of the ith slack variable).

For the primal: The initial dictionary: X3 = 10.00 - 1.00 X1 - 1.00 X2X4 = 4.00 + 2.00 X1 - 1.00 X2z = 0.00+ 1.00 X1 + 2.00 X2After 2 pivots:

X1 = 2.00 - 0.33 X3 + 0.33 X4X2 = 8.00 - 0.67 X3 - 0.33 X4

z = 18.00 - 1.67 X3 - 0.33 X4

The dual: Minimize 10 $y_1 + 4y_2$ subject to:

$$y_1 - 2 y_2 \ge 1$$

 $y_1 + y_2 \ge 2$

$$y_1, y_2 \ge 0$$

Get the first initial feasible dictionary for Phase 1 for this problem.

For the dual: The initial dictionary: Phase 1: Before pivoting to make feasible.

Y3 = -1.0+ 1.0 Y1 -2.0 Y2 +1.0 Y0 Y4 = -2.0+ 1.0 Y1 +1.0 Y2 +1.0 Y0z = 0.0+ 0.0 Y1 +0.0 Y2 -1.0 Y0

Where should the first pivot be to make this feasible?

Y0 enters. Y4 leaves. The initial dictionary: Y3 = 1.0+ 0.0 Y1 - 3.0 Y2 + 1.0 Y4Y0 = 2.0- 1.0 Y1 - 1.0 Y2 + 1.0 Y4z = -2.0+ 1.0 Y1 + 1.0 Y2 - 1.0 Y4

Y1 enters. Y0 leaves. z = -2.0

The last Phase 1 Dictionary: Y3 = 1.0-3.0 Y2 +1.0 Y4 +0.0 Y0 Y1 = 2.0-1.0 Y2 +1.0 Y4 -1.0 Y0 z = 0.0+0.0 Y2 +0.0 Y4 -1.0 Y0

The objective function: Minimize $10 y_1 + 4y_2$

What dictionary do we use to start Phase 2? Be careful: standard form is to MAXIMIZE. The first Phase Dictionary: Y3 = 1.00 - 3.00 Y2 + 1.00 Y4Y1 = 2.00 - 1.00 Y2 + 1.00 Y4z = -20.00 + 6.00 Y2 - 10.00 Y4Y2 enters.Y3 leaves. z = -20.0After 1 pivot: Y2 = 0.33 - 0.33 Y3 + 0.33 Y4Y1 = 1.67 + 0.33 Y3 + 0.67 Y4z = -18.00 - 2.00 Y3 - 8.00 Y4

The dual solution is hiding in the final dictionary for the primal problem:

 $y_i = -1 *$ (coeff. in z row of the ith slack variable). Since the dual of the dual is the primal, the primal solution is hiding in the final dictionary for the dual problem. $x_i = -1 *$ (coeff. in z row of the ith slack variable).

The final dual dictionary: Y2 = 0.33- 0.33 Y3 + 0.33 Y4 Y1 = 1.67+ 0.33 Y3 + 0.67 Y4 z =-18.00- 2.00 Y3 - 8.00 Y4

The primal: Maximize $x_1 + 2 x_2$ subject to $x_1 + x_2 \le 10$ $-2 x_1 + x_2 \le 4$

 $x_1, x_2 \ge 0$

The primal: Maximize $x_1 + 2 x_2$ subject to The dual: Minimize 10 $y_1 + 4y_2$ subject to:

 $x_1 + x_2 \le 10$ -2 $x_1 + x_2 \le 4$

 $x_1, x_2 \ge 0$

 $y_1 - 2 y_2 \ge 1$ $y_1 + y_2 \ge 2$

 $y_1, y_2 \ge 0$

Consider: Consider: $x_1 = 2, x_2 = 8$ $y_1 = 5/3 y_2 = 1/3$

What conclusions can we make?

Maximize 2 $x_1 - 1 x_2 + 3 x_3$ subject to 2 $x_1 + 4 x_2 - 1 x_3 \le 3$ 1 $x_1 - 1 x_2 + 0 x_3 \le 5$ 2 $x_1 + 1 x_2 + 1 x_3 \le 2$ $x_1, x_2, x_3 \ge 0$

1.What is the dual?
2.Put the dual in standard form.

Maximize 2 $x_1 - 1 x_2 + 3 x_3$ subject to

 $2 x_1 + 4 x_2 - 1 x_3 \le 3$ $1 x_1 - 1 x_2 + 0 x_3 \le 5$ $2 x_1 + 1 x_2 + 1 x_3 \le 2$ $x_1, x_2, x_3 \ge 0$ Question 1: What is the dual? Minimize $3 y_1 + 5 y_2 + 2 y_3$ subject to

Minimize $3 y_1 + 5 y_2 + 2 y_3$ subject to

 $2 y_1 + 1 y_2 + 2 y_3 \ge$

2

4 y_1 - 1 y_2 + 1 $y_3 \ge -1$ -1 y_1 + 0 y_2 + 1 $y_3 \ge 3$ $y_1, y_2, y_3 \ge 0$ Solution 2: Standard form. Maximize -3 y_1 -5 y_2 -2 y_3 subject to

Numerical analysis practitioners usually us x to denote a column vector and x^{T} for a row vector.

This is the convention I will use. Note that it sometimes differs from our text.

Matrix notation for duality: The primal: Maximize $c^{T} \times$ subject to Ax \leq b, x \geq 0.

The dual: Minimize $b^{T} y$ subject to $A^{T} y \ge c$ $y \ge 0$. The dual in standard form: Maximize $-b^{T}$ y subject to $-A^{T}$ y $\leq -C$, y ≥ 0 . Question 3: Solve the primal and dual problems using the Simplex method.

Solution 3: Solve the primal. 3 - 2 X1 - 4 X2 + 1 X3X4 = X5 = 5 - 1 X1 + 1 X2 + 0 X3X6 = 2 - 2 X1 - 1 X2 - 1 X3z = 0 + 2 X1 - 1 X2 + 3 X3X3 enters. X6 leaves. z = 0After 1 pivot: X4 = 5 - 4 X1 - 5 X2 - 1 X6X5 = 5 - 1 X1 + 1 X2 + 0 X6X3 = 2 - 2 X1 - 1 X2 - 1 X66 - 4 X1 - 4 X2 - 3 X6 7 = The optimal solution: 6

Solution 3: Solve the dual. Maximize $-3 y_1 -5 y_2 -2 y_3$ subject to

 y_1 , y_2 , $y_3 ≥0$ Phase 1: Which variable should leave? $Y_4 = -2 + 2$ $Y_1 + 1$ $Y_2 + 2$ $Y_3 + 1$ Y_0 $Y_5 = 1 + 4$ $Y_1 - 1$ $Y_2 + 1$ $Y_3 + 1$ Y_0 $Y_6 = -3 - 1$ $Y_1 + 0$ $Y_2 + 1$ $Y_3 + 1$ Y_0

z = 0 + 0 Y1 + 0 Y2 + 0 Y3 - 1 Y0

The initial feasible dictionary for phase 1: Y4 = 1 + 3 Y1 + 1 Y2 + 1 Y3 + 1 Y6Y5 = 4 + 5 Y1 - 1 Y2 + 0 Y3 + 1 Y6YO = 3 + 1 Y1 + 0 Y2 - 1 Y3 + 1 Y6z = -3 - 1 Y1 + 0 Y2 + 1 Y3 - 1 Y6

Y3 enters. Y0 leaves. z = -3

After 1 pivot: Y4 = 4 + 4 Y1 + 1 Y2 + 2 Y6 - 1 Y0 Y5 = 4 + 5 Y1 - 1 Y2 + 1 Y6 + 0 Y0 Y3 = 3 + 1 Y1 + 0 Y2 + 1 Y6 - 1 Y0

z = 0 + 0 Y1 + 0 Y2 + 0 Y6 - 1 Y0

The optimal solution: 0

What dictionary should be used to start phase 2?

The objective function: Maximize $-3 y_1 - 5 y_2 - 2 y_3$ The initial dictionary: Y4 = 4 + 4 Y1 + 1 Y2 + 2 Y6 Y5 = 4 + 5 Y1 - 1 Y2 + 1 Y6Y3 = 3 + 1 Y1 + 0 Y2 + 1 Y6

z = -6 - 5 Y1 - 5 Y2 - 2 Y6

The dual optimal solution: -6 The primal optimal solution: 6

Why are they not equal?

Question 4: Explain how to get the primal solution from the dual and the dual solution from the primal. The final primal dictionary: X4 = 5 - 4 X1 - 5 X2 - 1 X6 X5 = 5 - 1 X1 + 1 X2 + 0 X6 X3 = 2 - 2 X1 - 1 X2 - 1 X6

z = 6 - 4 X1 - 4 X2 - 3 X6

Look at the z row of final dictionary:

Y1 = -1 * (coeff. of 1st slack, X4) = 0 Y2 = -1 * (coeff. of 2nd slack, X5) = 0Y3 = -1 * (coeff. of 3rd slack, X6) = 3 The final dual dictionary: Y4 = 4 + 4 Y1 + 1 Y2 + 2 Y6 Y5 = 4 + 5 Y1 - 1 Y2 + 1 Y6 Y3 = 3 + 1 Y1 + 0 Y2 + 1 Y6z = -6 - 5 Y1 - 5 Y2 - 2 Y6

Look at the z row of final dictionary:

X1 = -1 * (coeff. of 1st slack, Y4) = 0 X2 = -1 * (coeff. of 2nd slack, Y5) = 0X3 = -1 * (coeff. of 3rd slack, Y6) = 2

Maximize 2 $x_1 - 1 x_2 + 3 x_3$ PRIMAL subject to $2 x_1 + 4 x_2 - 1 x_3 \le 3$ $1 x_1 - 1 x_2 + 0 x_3 \le 5$ $2 x_1 + 1 x_2 + 1 x_3 \le 2$ $x_1, x_2, x_3 \ge 0$ x=(0,0,2)Minimize $3 y_1 + 5 y_2 + 2 y_3$ subject to DUAL 2 $2 y_1 + 1 y_2$ + 2 $y_3 \ge$ 4 y_1 - 1 y_2 + 1 $y_3 \ge -1$ $-1 y_1 + 0 y_2 + 1 y_3 \ge 3$ y₁, y₂, y₃ ≥0 y = (0, 0, 3)

The primal solution is: (0, 0, 2) The dual solution is: (0, 0, 3) We know that both of these are optimal solutions because:

1.(0, 0, 2) is primal feasible.

2.(0, 0, 3) is dual feasible.

3. The value of the primal at (0,0,2) equals the value of the dual at (0, 0, 3) [both are equal to 6]. The primal: Maximize $c^{T} \times subject$ to Ax $\leq b$, x ≥ 0 . The dual: Minimize $b^{\top} y$ subject to $A^{\top} y \ge c$ $y \ge 0$.

The Duality Theorem If the primal has an optimal solution x^* with $z = c^T x^*$, then the dual also has an optimal solution y^* , and $b^T y^* = c^T x^*$. A linear programming problem can have an optimal solution, or it can be infeasible or unbounded.

Thought question: which combinations are possible?

Primal\Dual	Optimal	Infeasible	Unbounded
Optimal			
Infeasible			
Unbounded			