The initial dictionary:

$$
\begin{aligned}
& \mathrm{X} 5=30-3 \mathrm{X} 1-3 \mathrm{X} 2+0 \mathrm{X} 3+0 \mathrm{X} 4 \\
& \text { X6= 16 +0 X1 +0 X2 -2 X3 -2 X4 } \\
& \text { X7= } 12 \text {-1 X1 -2 X2 -3 X3 -4 X4 } \\
& \text { X8= } 24-2 \times 1-2 \times 2-6 X 3-8 \text { X4 } \\
& z=0+1 X 1+2 X 2+3 X 3+4 X 4
\end{aligned}
$$

The final dictionary:

$$
\begin{aligned}
& \mathrm{X} 1=\mathrm{a}+3 \mathrm{X} 3+4 \mathrm{X} 4-2 / 3 \mathrm{X} 5+1 \mathrm{X7} \\
& \mathrm{X} 6=\mathrm{b}-2 \mathrm{X} 3-2 \mathrm{X} 4+0 \mathrm{X} 5+0 \mathrm{X7} \\
& \mathrm{X} 2=\mathrm{c}-3 \mathrm{X} 3-4 \mathrm{X} 4+1 / 3 \mathrm{X} 5-1 \mathrm{X} 7 \\
& \text { X8 = d -6 X3 -8 X4 +2/3 X5 +0 X7 } \\
& z=e+0 X 3+0 X 4+0 \quad X 5-1 X 7
\end{aligned}
$$

1. What matrix A in the computer corresponds to the initial dictionary?
2. What is the basis
matrix B for the final dictionary?
3. What matrix A
corresponds to the final dictionary?
4. How can you
determine B^{-1} from the final dictionary?
5. Solve for a, b, c, d, and e.

Announcements

The midterm is in class on Friday Oct. 10. A midterm study aid and some old midterms have been posted.

No office hours on Friday Oct. 10.
Special midterm tutorial: Thursday Oct. 9, 6pm, ECS 108. Bring any questions you have about anything in the class. I can go through solutions for assignment questions.

Student: Solves primal or dual problem whichever is easiest.

Primal: 9 variables, and 100 equations.
Dual: 100 variables, and 9 equations.
Text: claims that in practice, it is usually best to choose the problem with the least rows.

Student reads both primal and dual solutions from last dictionary.

Certificate: x^{\star} and y^{*}, the optimal primal and dual solutions.

Supervisor: Has certificate plus primal and dual problems.

1. Check that x^{\star} is primal feasible.
2. Check that y^{\star} is dual feasible.
3. Check $c^{\top} x^{\star}=b^{\top} y^{\star}$.

These checks guarantee optimality.
Easier usually than solving LP problem.

The problems:
The primal problem:

Maximize
$-3 X_{1}-2 X_{2}$
subject to
$1 X_{1}-1 X_{2} \leq-3$
$-2 X_{1}-1 X_{2} \leq-5$
$-0 X_{1}-2 X_{2} \leq-1$
$-1 X_{1}-4 X_{2} \leq 0$
$X_{1}, \quad X_{2} \geq 0$

The dual problem in standard form:

Maximize
$3 Y_{1}+5 Y_{2}+1 Y_{3}+0 Y_{4}$
subject to
$-1 Y_{1}+2 Y_{2}+0 Y_{3}+1 Y_{4} \leq 3$
$1 Y_{1}+1 Y_{2}+2 Y_{3}+4 Y_{4} \leq 2$
$Y_{1}, Y_{2}, Y_{3}, Y_{4} \geq 0$

The student notices that the primal has no initial feasible basis so cannot be handled by the code written for the project. So the student solves the dual instead:

The initial dictionary:
$Y 5=3+1 Y 1-2 Y 2+0 Y 3-1 Y 4$
$Y 6=2-1 Y 1-1 Y 2-2 Y 3-4 Y 4$
$z=0+3 Y 1+5 Y 2+1 Y 3+0 Y 4$

After 2 pivots:
$\mathrm{Y} 2=1.67-0.67 \mathrm{Y} 3-1.67 \mathrm{Y} 4-0.33 \mathrm{Y} 5-0.33 \mathrm{Y} 6$
$\mathrm{Y} 1=0.33-1.33 \mathrm{Y} 3-2.33 \mathrm{Y} 4+0.33 \mathrm{Y} 5-0.67 \mathrm{Y} 6$
$z=9.33-6.33 \mathrm{Y} 3-15.33 \mathrm{Y} 4-0.67 \mathrm{Y} 5-3.67 \mathrm{Y} 6$
The student guesses that 0.33 really means $1 / 3$ and 0.67 is $2 / 3$. So the certificate is:
$Y_{1}=1 / 3, \quad Y_{2}=5 / 3, \quad Y_{3}=0, \quad Y_{4}=0$
$X_{1}=-1$ (coeff. of $Y 5$) $=2 / 3$
$X_{2}=-1($ coeff. of $Y 6)=32 / 3=11 / 3$

The primal problem:
Maximize
$-3 X_{1}-2 X_{2}$ subject to
$X_{1}=2 / 3$
$X_{2}=11 / 3$
Check for primal feasibility, the red equations are tight:
$1 X_{1}-1 X_{2} \leq-3 \quad 1(2 / 3)-1(11 / 3)=-9 / 3$

$$
\leq-3
$$

$$
-2 X_{1}-1 X_{2} \leq-5-2(2 / 3)-1(11 / 3)=-15 / 3
$$

$$
\leq-5
$$

$-0 X_{1}-2 X_{2} \leq-1 \quad 0(2 / 3)-2(11 / 3)=-22 / 3$
≤-1
$-1 X_{1}-4 X_{2} \leq 0-1(2 / 3)-4(11 / 3)=-46 / 3$
≤ 0
$X_{1}, X_{2} \geq 0 \quad 2 / 3,11 / 3 \geq 0$

Check $Y_{1}=1 / 3, \quad Y_{2}=5 / 3, \quad Y_{3}=0, \quad Y_{4}=0$ for dual feasibility:

$$
\begin{aligned}
& -1 Y_{1}+2 Y_{2}+0 Y_{3}+1 Y_{4} \leq 3 \\
& 1 Y_{1}+1 Y_{2}+2 Y_{3}+4 Y_{4} \leq 2 \\
& Y_{1}, \quad Y_{2}, Y_{3}, Y_{4} \geq 0 \\
& -1(1 / 3)+2(5 / 3)+0 * 0+1 * 0=9 / 3 \leq 3 \\
& 1(1 / 3)+1(5 / 3)+2 * 0+4 * 0=6 / 3 \leq 2 \\
& 1 / 3, \quad 5 / 3, \quad 0,0 \geq 0
\end{aligned}
$$

Check the objective function values:
The primal problem:
Maximize

- $3 X_{1}-2 X_{2}$
$X_{1}=2 / 3$
$x_{2}=11 / 3$
$-6 / 3-22 / 3=-28 / 3 \quad-1-25 / 3-0+0=-28 / 3$
Conclusion:
$\cdot(2 / 3,11 / 3)$ is an optimal primal solution.
$\cdot(1 / 3,5 / 3,0,0)$ an optimal dual solution.

Complementary slackness allows us to find a dual solution from a primal one.

What can we conclude by looking at the equations which are not tight?

The slacks are then non-zero and hence must be in the basis and so they have a (implicit) zero coefficient in the z row.

So the corresponding y variables must be 0 .
Conclusion: if $x_{n+i} \neq 0$ then $y_{i}=0$.

The red equations are tight:
S7ack

$1(2 / 3)-1(11 / 3)$	$=-9 / 3$	≤-3	x_{3}
$-2(2 / 3)-1(11 / 3)$	$=-15 / 3$	≤-5	x_{4}
$0(2 / 3)-2(11 / 3)$	$=-22 / 3$	≤-1	x_{5}
$-1(2 / 3)-4(11 / 3)$	$=-46 / 3$	≤ 0	x_{6}

$\mathrm{X1}=0.67-0.33 \mathrm{X} 3+0.33 \mathrm{X} 4$
$X 2=3.67+0.67 X 3+0.33 X 4$
$X 5=6.33+1.33 X 3+0.67 X 4$
$X 6=15.33+2.33 X 3+1.67$ X4
$z=-9.33-0.33 \mathrm{X} 3-1.67 \mathrm{X} 4$

Conclusion: $y_{3}=y_{4}=0$.

What can we conclude by looking at the x_{i} 's that are non-zero, $i=1,2, \ldots, n$?
$x_{i}=-1^{*}$ (coefficient of the ith slack y_{m+i} for the dual problem's last dictionary).

So if x_{i} is non-zero, y_{m+i} cannot be in the basis in the last dual dictionary since otherwise it has an implicit 0 coefficient. So $y_{m+i}=0$ and equation i of the dual hence must be tight.

Conclusion: if x_{i} is non-zero, equation i of the dual must be tight.

The initial dictionary:
$\mathrm{Y} 5=3+1 \mathrm{Y} 1-2 \mathrm{Y} 2+0 \mathrm{Y} 3-1 \mathrm{Y} 4$
$\mathrm{Y} 6=2-1 \mathrm{Y} 1-1 \mathrm{Y} 2-2 \mathrm{Y} 3-4 \mathrm{Y} 4$
$z=0+3 Y 1+5 Y 2+1 Y 3+0 Y 4$
After 2 pivots:
$\mathrm{Y} 2=1.67-0.67 \mathrm{Y} 3-1.67 \mathrm{Y} 4-0.33 \mathrm{Y} 5-0.33 \mathrm{Y} 6$
$\mathrm{Y} 1=0.33-1.33 \mathrm{Y} 3-2.33 \mathrm{Y} 4+0.33 \mathrm{Y} 5-0.67 \mathrm{Y} 6$
$z=9.33-6.33 \mathrm{Y} 3-15.33 \mathrm{Y} 4-0.67 \mathrm{Y} 5-3.67 \mathrm{Y} 6$
$\begin{array}{ll}\mathrm{X} 1=2 / 3 & {[0.67]} \\ \mathrm{X} 2=14 / 3 & {[3.67]}\end{array}$

$$
\begin{aligned}
& X 1=0.67-0.33 X 3+0.33 X 4 \\
& X 2=3.67+0.67 X 3+0.33 X 4 \\
& X 5=6.33+1.33 X 3+0.67 X 4 \\
& X 6=15.33+2.33 X 3+1.67 X 4 \\
& z=-9.33-0.33 \mathrm{X} 3-1.67 \mathrm{X} 4
\end{aligned}
$$

Since x_{1} and x_{2} are non-zero, both dual equations must be tight:

$$
\begin{array}{r}
-1 Y_{1}+2 Y_{2}+0 Y_{3}+1 Y_{4} \leq 3 \\
1 Y_{1}+1 Y_{2}+2 Y_{3}+4 Y_{4} \leq 2
\end{array}
$$

Solving this:

$$
\begin{array}{r}
-1 Y_{1}+2 Y_{2}+0 Y_{3}+1 Y_{4}=3 \\
1 Y_{1}+1 Y_{2}+2 Y_{3}+4 Y_{4}=2
\end{array}
$$

$y_{3}=y_{4}=0$.
Add them together:

$$
3 Y_{2}=5 \text { so } Y_{2}=5 / 3
$$

$$
Y_{1}+Y_{2}=2 \text { so } Y_{1}=1 / 3
$$

The idea for complementary slackness:

 1. If $x_{n+i} \neq 0$ for some $i=1,2, \ldots, m$, then x_{n+i} is in the basis and hence has an implicit 0 coefficient in the z row of the last dictionary and this implies that $y_{i}=0$.2. If $x_{i} \neq 0$ for some $i=1,2, \ldots, n$, then the ith dual equation is tight $\left(y_{m+i}=0\right)$ because otherwise, if $y_{m+i} \neq 0$, it is in the basis of the last dual dictionary and hence would have an implicit 0 coefficient in the z row of the last dual dictionary and this would imply $x_{i}=0$.

In other words:

1. If equation i of the primal is not tight, $y_{i}=0$.
2. If $x_{i} \neq 0, i=1,2, \ldots, n$ the $i t h$ dual equation is tight.

Complementary Slackness Theorem (5.2): $x^{\prime}=$ feasible primal solution $y^{\prime}=$ feasible dual solution Necessary and sufficient conditions for simultaneous optimality of x^{\prime} and y^{\prime} are 1. For all $i=1,2, \ldots, m$, either
$\left(a_{i 1}{ }^{\star} x_{1}{ }^{\prime}+a_{i 2}{ }^{\star} x_{2}{ }^{\prime}+\ldots+a_{i n}{ }^{\star} x_{n}{ }^{\prime}\right)=b_{i}$ or $y_{i}^{\prime}=0$ (or both).
2. For all $i=1,2, \ldots, n$, either
$\left(a_{1 j}{ }^{\star} y_{1}{ }^{\prime}+a_{2 j}{ }^{\star} y_{2}{ }^{\prime}+\ldots+a_{m j}{ }^{\star} y_{m}{ }^{\prime}\right)=c_{i}$
or $x_{i}{ }^{\prime}=0$ (or both).

We have already argued that these conditions are necessary for optimality.

Why are they sufficient?

