Manufacturing Microwaves

A company produces both small and large microwave ovens.

Machine time: 4 hours for small ovens and 3 hours for large ones. A total of 100 machine hours are available per day.

Assembly time: 2 hours for small ovens and 3 hours for large ones. There are 48 hours of assembly time available per day.

Market potential: 15 per day for small ovens and 20 per day for large ones.

The marketing department wants the company to produce at least 10 products per day, in any combination.

Each small oven contributes $\$ 2000$ to profit and each large oven contributes $\$ 2500$ to profit.

What is the LP problem?

How many small and large ovens should be produced per day to maximize profit? x_{1} : Number of small microwaves to manufacture.
x_{2} : Number of large microwaves to manufacture.

Product	Machine Time	Assembly Time	Market Potential	Profit
Small	4	2	≤ 15	2000
Large	3	3	≤ 20	2500
Total	≤ 100	$<=48$	≥ 10	

Maximize 2000 X1 + 2500 X2 subject to
$4 x_{1}+3 x_{2} \leq 100$
$\begin{aligned} 2 x_{1}+3 x_{2} & \leq 48 \\ x_{1} & \leq 15 \\ x_{2} & \leq 20\end{aligned}$
And:

$$
X_{1}+X_{2} \geq 10
$$

Which in standard form is:
$-X_{1}-X_{2} \leq-10$
$X_{1}, X_{2} \geq 0$

Considering the units:
$S=$ number of smal1 ovens
$\mathrm{L}=$ number of large ovens
mach $=$ number of hours of machine time
asmb= number of hours of assembly time
spot $=$ pot for smal1 ovens
1pot= pot for 1arge ovens
mreq $=$ minimum number of required ovens

Maximize (profit/S)(S) + (profit/L)(L) subject to
$($ mach $/ S)(S)+($ mach $/ L)(L) \leq$ mach
(asmb/S)(S)+(asmb/L)(L) $\leq \mathrm{asmb}$
$($ spot $/ S)(S)+($ spot $/ L)(L) \leq s p o t$
$(1$ pot $/ S)(S)+(1 p o t / L)(L) \leq 1 p o t$
$(\mathrm{mreq} / \mathrm{S})(\mathrm{S})+(\mathrm{mreq} / \mathrm{L})(\mathrm{L}) \geq \mathrm{mreq}$

THE PRIMAL:What are dual units? Maximize (profit/S)(S) + (profit/L) (L) subject to
(mach/S) (S) + (mach/L) (L) \leq mach
(asmb/S)(S)+(asmb/L) (L) $\leq \mathrm{asmb}$
(spot/S) (S) + (spot/L) (L) \leq spot
$(1$ pot/S) (S) $+(1 p o t / L)(L) \leq 1 p o t$
$(m r e q / S)(S)+(m r e q / L)(L) \geq m r e q$

The dual problem:
Minimize
$100 Y_{1}+48 Y_{2}+15 Y_{3}+20 Y_{4}-10 Y_{5}$
subject to
$4 Y_{1}+2 Y_{2}+Y_{3} \quad-Y_{5} \geq 2000$
$3 Y_{1}+3 Y_{2}+Y_{4}-Y_{5} \geq 2500$
$Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5} \geq 0$
The units for the dual:
Y_{1} : profit/mach
Y_{2} : profit/asmb
Y_{3} : profit/spot
Y_{4} : profit/1pot
Y_{5} : profit/(mreq decreasing)

Solving the primal problem:

The initial dictionary:

$$
\begin{aligned}
& \mathrm{X} 3=100-4 \mathrm{X} 1-3 \mathrm{X} 2 \\
& \mathrm{X} 4=48-2 \mathrm{X} 1-3 \mathrm{X} 2 \\
& \mathrm{X} 5=15-1 \mathrm{X} 1+0 \mathrm{X} 2 \\
& \mathrm{X} 6=20+0 \mathrm{X} 1-1 \mathrm{X} 2 \\
& \mathrm{X} 7=-10+1 \mathrm{X} 1+1 \mathrm{X} 2 \\
& z=0+2000 \mathrm{X} 1+2500 \mathrm{X} 2
\end{aligned}
$$

Initial tableau: X1 X2 X3 X4 X5 X6 X7

The final dictionary:

$z=45000-833.33 \mathrm{X} 4-333.33 \mathrm{X} 5$
The optimal solution: 45000
The dual solution:
$\mathrm{Y} 1=0, \mathrm{Y} 2=833.33, \mathrm{Y} 3=333.33$, $\mathrm{Y} 4=0, \mathrm{Y} 5=0$

The optimal strategy is to produce 15 smal1 machines and 6 large machines. The dual solution:
$Y_{1}=0, Y_{2}=833.33, Y_{3}=333.33, Y_{4}=0, Y_{5}=0$ Recal1 the units:
Y_{2} : profit/assembly
Y_{3} : profit/spot
From this, we can see that increasing the assembly hours by one unit increases profit by $\$ 833.33$ and if there was potential to increase the number of small machines that could be sold by one unit, it would increase the profit by $\$ 333.33$.

The corresponding tableau:

[0 01	-1.00	-2.00	0	0	[X1]		22]
$\left[\begin{array}{lll}0 & 1 & \end{array}\right.$	0.33	-0.67	0	0	[X2]		
[0 00	0.33	0.33	0	1	[X3]	$=$	11]
[0 00	-0.33	0.67	1	0	[X4]		[14]
[100	0.00	1.00	0	0	[X5]		[15]
					[X6]		
					[X7]		

How does the optimal strategy change: t1 extra machine hours
t2 extra assembly hours t3 more small machines can be sold t4 more large machines can be sold t5 decrease to min number of machines produced.

Initial tableau:

X1 X2 X3 X4 X5 X6 X7

4	1		0	0	0	0]	[X1]	[100]
[23	0		1	0	0	0]	[X2]	[48]
10	0		0	1	0	0]	[X3]	= [15]
01	0		0	0	1	0]	[X4]	[20]
[-	0		0	0	0	$1]$	[X5]	[-10]
							[X6]	
							[X7]	

Final basis: X3, X2, X7, X6, X1

X1 X2 X3 X4 X5 X6 X7

	4	3	1	0	0	0	0	[X1]	[100]
	2	3	0	1	0	0	0	[X2]	[48]
	1	0	0	0	1	0	0	[X3]	= ${ }^{\text {15] }}$
	0	1	0	0	0	1	0	[X4]	[20]
	-1	-1	0	0	0	0	1	[X5]	[-10]
The basis matrix B :								[X6]	

[$\left.\begin{array}{lllll}1 & 3 & 0 & 0 & 4\end{array}\right][\mathrm{X} 3] \quad[100]$
[0 3 30002][X2] [48]
[0 0 00001$][\mathrm{X} 7]=[15]$
[0 1 10010 1][X6] [20]
$\left[\begin{array}{lllll}0 & -1 & 1 & 0 & -1\end{array}\right][\mathrm{X} 1][-10]$

I computed the inverse of B using the following Matlab commands:

$\mathrm{B}=$| $[1$ | 3 | 0 | 0 | 4 | $;$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 3 | 0 | 0 | 2 | $;$ |
| 0 | 0 | 0 | 0 | 1 | $;$ |
| 0 | 1 | 0 | 1 | 0 | |
| 0 | -1 | 1 | 0 | -1 | | ;

$\operatorname{invB}=\operatorname{inv}(B)$
The inverse is:

1	-1.00	-2.00	0	0
0	0.33	-0.67	0	0
0	0.33	0.33	0	1
0	-0.33	0.67	1	0
0	0.00	1.00	0	0

The inverse is:

1	-1.00	-2.00	0	0
0	0.33	-0.67	0	0
0	0.33	0.33	0	1
0	-0.33	0.67	1	0
0	0.00	1.00	0	0

The final dictionary:

X3 =	$22+$	1	X4	2	X
X2	6 -	0.33	X4 +	0.67	X5
X7	11 -	0.33	X4 -	0.33	X5
X6	$14+$	0.33	X4 -	0.67	X5
		0			

The inverse is hiding in here.

If the update to b is
[t1 t2 t3 t4 t5] ${ }^{\top}$ and the ti's are not too big, the change to the optimal solution is:
$\left.\begin{array}{rrrrrlll}{\left[\begin{array}{rrrrl}1 & -1.00 & -2.00 & 0 & 0\end{array}\right]} & {[\mathrm{t} 1} &] \\ {[} & 0 & 0.33 & -0.67 & 0 & 0 &] & {[\mathrm{t} 2}\end{array}\right]$

So the new solution would be:

$$
\begin{aligned}
& \mathrm{X} 3=22+\mathrm{t} 1-1.00 \mathrm{t} 2-2.00 \mathrm{t} 3 \\
& \mathrm{X} 2=6+0.33 \mathrm{t} 2-0.67 \mathrm{t} 3 \\
& \mathrm{X} 7=20 \quad+0.33 \mathrm{t} 2+0.33 \mathrm{t} 3+\quad+\mathrm{t} 5 \\
& \mathrm{X} 6=14 \quad-0.33 \mathrm{t} 2+0.67 \mathrm{t} 3+\mathrm{t} 4 \\
& \mathrm{X} 1=15+0.00 \mathrm{t} 2+1.00 \mathrm{t} 3
\end{aligned}
$$

In terms of the original variables:
$\begin{array}{ll}\mathrm{X} 1=15 & +0.00 \mathrm{t} 2+1.00 \mathrm{t} 3 \\ \mathrm{X} 2=6 & +0.33 \mathrm{t} 2-0.67 \mathrm{t} 3\end{array}$

1. Increase assembly hours by $3(\mathrm{t} 2=3)$: $X 1=15, X 2=7$,
profit increases by $833.33 * 3=2500$
2. Increase number of smal1 units that can be sold by 3 ($t 3=3$):
$X 1=18, X 2=4$,
profit increases by $333.33 * 3=1000$ 3. Increase both by 3 ($\mathrm{t} 2=3$, and $\mathrm{t} 3=3$): $\mathrm{X} 1=18, \mathrm{X} 2=5$,
profit increases by $833.33 * 3+333.33 * 3$
$=3500$

If there is too much of an increase to t2 (assembly hours), there is no longer any benefit:

There are two equations that impose a feasibility constraint on t2:
(1) $\mathrm{X} 3=22+1 \mathrm{t} 1-1.00 \mathrm{t} 2-2.00 \mathrm{t} 3$

$$
+0 \mathrm{t} 4+0 \mathrm{t} 5
$$

(2) $\mathrm{X} 6=14+0 \mathrm{t} 1-0.33 \mathrm{t} 2+0.67 \mathrm{t} 3$

$$
+1 \mathrm{t} 4+0 \mathrm{t} 5
$$

(1) $\mathrm{X} 3=22+1 \mathrm{t} 1-1.00 \mathrm{t} 2-2.00 \mathrm{t} 3$
(2) $\mathrm{X} 6=14+0 \mathrm{t} 1-0.33 \mathrm{t} 2+0.67 \mathrm{t} 3+\mathrm{t} 4$

The constraints are:
(1) t2 $<=22$ (tightest)
(2) $\mathrm{t} 2<=42$

Consider (1):
$\mathrm{X} 3=22+1 \mathrm{t} 1-1.00 \mathrm{t} 2-2.00 \mathrm{t} 3$
If th > 22, then constraint 1 is violated:
(at most 100 machine hours)
4 XI +3 XV ≤ 100
$X 1=15, X 2>6+22 / 3$

If there is too much of an increase to th (potential for small machines), there is no longer any benefit:

There are two equations that impose a feasibility constraint on th:
(1) $\mathrm{X} 2=6+0 \mathrm{t} 1+0.33 \mathrm{t} 2-0.67$ $\mathrm{t} 3+0 \mathrm{t} 4+0 \mathrm{t} 5$
(2) $\mathrm{X} 3=22+1$ ti - 1.00 t2 - 2.00 t3 +0 th + 0
(1) $\mathrm{X} 2=6+0 \mathrm{t} 1+0.33 \mathrm{t} 2-0.67 \mathrm{t} 3$
(2) $\mathrm{X} 3=22+1 \mathrm{t} 1-1.00 \mathrm{t} 2-2.00 \mathrm{t} 3$

The constraints are:
(1) $\mathrm{t} 3<=9$ (tightest)
(2) $\mathrm{t} 3<=11$

If t3 > 9, then the value of X 2 would go negative.

This means that the basis is no longer valid: X2 would exit the basis, and no large machines would be made.

