A company cannot spend anymore than 120 hours per week making toys and 160 hours per week finishing toys.

	Sell	Materials	Make (hours)	Finish (hours)	Max sold
Plane (X1)	$\$ 12$	$\$ 4$	3	1	30
Boat (X2)	$\$ 10$	$\$ 3$	1	2	--

Maximize 8 X1 + 7 X2
subject to
$3 X 1+1$ X2 ≤ 120
$1 X 1+2 X 2 \leq 160$
$1 \mathrm{X1}+0 \mathrm{X} 2 \leq 30$
$\mathrm{X} 1, \mathrm{X} 2 \geq 0$
Solve for y using
complementary
slackness then
give an economic interpretation of the dual variables.
Solution: $(16,72)$

After 3 pivots:
$\mathrm{X} 2=72+0.20 \mathrm{X} 3-0.60 \mathrm{X} 4$
$X 5=14+0.40 X 3-0.20 X 4$
$\mathrm{X} 1=16-0.40 \mathrm{X} 3+0.20 \mathrm{X} 4$
z $=632$ - 1.80 XU - 2.60 X4
One more making hour: \$1.80. One more finishing hour: $\$ 2.60$ It would not help to be able to sell more planes.

What are B and B^{-1} ?

Maximize 8 X1 + 7 X2
subject to
$3 \mathrm{X} 1+1 \mathrm{X} 2 \leq 120$
$1 X 1+2 X 2 \leq 160$
$1 \mathrm{X} 1+0 \mathrm{X} 2 \leq 30$
$\mathrm{X} 1, \mathrm{X} 2 \geq 0$

Use last dictionary to get B^{-1} :

$$
\begin{aligned}
& \mathrm{X} 2=72+0.2 X 3-0.6 \mathrm{X} 4 \\
& \mathrm{X} 5=14+0.4 \mathrm{X}=0.2 \mathrm{X} 4 \\
& \mathrm{X} 1=16-0.4 \mathrm{X} 3+0.2 \mathrm{X} 4
\end{aligned}
$$

X2 X5 X1
$B=\left[\begin{array}{lll}1 & 0 & 3 \\ 2 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$

$$
\left.\mathrm{B}^{-1}=\begin{array}{crc}
\mathrm{X} 3 & \mathrm{X} 4 & \mathrm{X} 5 \\
-0.2 & 0.6 & 0 \\
-0.4 & 0.2 & 1 \\
0.4 & -0.2 & 0
\end{array}\right]
$$

Maximize 8 XI + 7 X2
subject to
$3 \mathrm{X} 1+1 \mathrm{X} 2 \leq 120+\mathrm{t} 1$ // making
$1 \mathrm{X} 1+2 \mathrm{X} 2 \leq 160+\mathrm{t} 2$ // finishing $1 \mathrm{X} 1+0 \mathrm{X} 2 \leq 30+\mathrm{t} 3 / / \max \mathrm{planes}$ $\mathrm{X} 1, \mathrm{X} 2 \geq 0$
$\left[\begin{array}{l}X 2 \\ X 5 \\ X 1\end{array}\right]=\mathrm{B}^{-1} \quad \mathrm{~b}=\left[\begin{array}{rrr}-0.2 & 0.6 & 0 \\ -0.4 & 0.2 & 1 \\ 0.4 & -0.2 & 0\end{array}\right]\left[\begin{array}{c}120+t 1 \\ 160+t 2 \\ 30+t 3\end{array}\right]$
$\mathrm{X} 2=72-0.2 \mathrm{t} 1+0.6 \mathrm{t} 2 / /$ boats
$\mathrm{X} 5=14-0.4 \mathrm{t} 1+0.2 \mathrm{t} 2+\mathrm{t} 3$
$\mathrm{X} 1=16+0.4 \mathrm{t} 1-0.2 \mathrm{t} 2 / / \mathrm{p}$ lanes

Announcements:
CSC 545 only:
Survey Paper- due on Fri. Oct. 17 at 11:55pm. Accepted until Tues. Oct. 21 at 11:55pm with a 10\% late penalty.
Make sure you use 12 point font, at least 1.5 spacing and your .pdf file is uploaded.

Both classes:

Programming project 2:
Due at 11:55pm on Fri. Oct. 24.
Accepted with 10\% penalty until Tues. Oct. 28 at
11:55pm.

Two applications of linear programming to chemistry:

Finding the Clar number and the Fries number of a benzenoid in polynomial time using a LP.

The desired solutions are integer but it has been proven that the basic feasible solutions are all integral so integer programming tactics are not required.

Matching: collection of disjoint edges.
Benzenoid hexagon: hexagon with 3 matching edges. Fries number: maximum over all perfect matchings of the number of benzenoid hexagons.

Fries 22

Proof that the solutions to the LP are integral:
@ARTICLE\{LP_Fries,
author $=\{$ Hernan G. Abeledo and Gary
W. Atkinson\},
title $=\{$ Polyhedral Combinatorics of
Benzenoid Problems\},
journal $=\{$ Lect. Notes Comput. Sci\},
year $=\{1998\}$,
volume $=\{1412\}$,
pages $=\{202--212\}$

One variables x_{e} for each edge e. Two variables per hexagon.
All variables are constrained to be between 0 and 1 .

$y_{1}=1$ pink hex. is benzenoid because of red edges.
$y_{2}=1$ pink hex. is benzenoid because of blue edges.
$y_{3}=1$ aqua hex. is benzenoid because of red edges.
$y_{4}=1$ aqua hex. is benzenoid because of blue edges.
Maximize $y_{1}+y_{2}+y_{3}+y_{4}$

Maximize $y_{1}+y_{2}+y_{3}+y_{4}$

To get a perfect matching:

For each vertex, the number of edges incident sums to 1 :

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{2}+x_{3}=1 \\
& x_{3}+x_{4}+x_{11}=1
\end{aligned}
$$

To ensure benzenoid hexagons:
Red edges of pink:
$x_{1}-y_{1} \geq 0$
$x_{3}-y_{1} \geq 0$
$x_{9}-y_{1} \geq 0$
Blue edges of pink:
Blue edges of aqua:

$$
\begin{aligned}
& x_{5}-y_{4} \geq 0 \\
& x_{7}-y_{4} \geq 0 \\
& x_{11}-y_{4} \geq 0
\end{aligned}
$$

$$
x_{2}-y_{2} \geq 0
$$

$$
x_{10}-y_{2} \geq 0
$$

$$
x_{11}-y_{2} \geq 0
$$

Red edges of aqua:
$x_{4}-y_{3} \geq 0$
$x_{6}-y_{3} \geq 0$
$x_{8}-y_{3} \geq 0$

Clar number: maximum over all perfect matchings of the number of independent benzenoid hexagons.

Clar 14

1 nm

Scanning Tunnelling Microscopy

 image of hexabenzocoronenefrom
I Gutman, Ž Tomović, K Müllen, JP Rabe, Chemical Physics Letters 397 (2004) 412-416

LP for the Clar number: The LH edge of each hexagon is its canonical edge.

The corresponding matching is the canonical matching for the hexagon.

If a hexagon is Clar, assume it realizes its canonical matching.

Two variables x_{e} z_{e} for each edge e. One variable y_{h} for each hexagon h. All variables are constrained to be between 0 and 1.

$z_{e}=1$ if e is a perfect matching edge. $x_{e}=1$ if e is a matching edge not in a benzenoid hexagon.
$y_{h}=1$ if h is an independent benzenoid hexagon and 0 otherwise.

Maximize $y_{1}+y_{2}$
To get a perfect matching:
For each vertex, the number of edges incident sums to 1 :

$$
\begin{aligned}
& z_{1}+z_{2}=1 \\
& z_{2}+z_{3}=1 \\
& z_{3}+z_{4}+z_{11}=1
\end{aligned}
$$

To get the independent benzenoid hexagons: For the pink hexagon:

$$
\begin{aligned}
& x_{1}+y_{1}-z_{1}=0 \\
& x_{3}+y_{1}-z_{3}=0 \\
& x_{9}+y_{1}-z_{9}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } y_{1}=1 \text { then } \\
& z_{1}=z_{3}=z_{9}=1 \Rightarrow \\
& z_{2}=z_{11}=z_{10}=0
\end{aligned}
$$

$$
\text { If } y_{1}=1, y_{2}=0
$$

since

$$
x_{11}+y_{2}-z_{11}=0
$$

http://www.springerimages.com/Images/RSS/1-10.1007_978-94-007-1733-6_8-24

It's possible to find the Fries number and the Clar number using linear programming.

This is an example of a problem that is an integer programming problem where the integer solution magically appears when solving the linear programming problem.
http://www.javelin-tech.com/blog/2012/07/sketch-entities-splitting/magician-2/

