A company cannot spend anymore than 120 hours per week making toys and 160 hours per week finishing toys.

	Sell	Materials	Make (hours)	Finish (hours)	Max sold
Plane (X1)	\$12	\$4	3	1	30
Boat (X2)	\$10	\$3	1	2	

Maximize 8 X1 + 7 X2 subject to 3 X1 + 1 X2 \leq 1 X1 + 2 X2 \leq 1 X1 + 0 X2 \leq X1, X2 \geq

Solution: (16, 72)

Solve for y using complementary slackness then give an economic interpretation of the dual variables.

After 3 pivots: X2 = 72 + 0.20 X3 - 0.60 X4 X5 = 14 + 0.40 X3 - 0.20 X4 X1 = 16 - 0.40 X3 + 0.20 X4z = 632 - 1.80 X3 - 2.60 X4

One more making hour: \$1.80. One more finishing hour: \$2.60 It would not help to be able to sell more planes.

What are B and B^{-1} ?

Maximize 8 X1 + 7 X2subject to $3 X1 + 1 X2 \leq 120$ $1 X1 + 2 X2 \leq$ 160 $1 X1 + 0 X2 \leq 30$ X1, X2 \geq 0 Use last dictionary to get B⁻¹: X2 = 72 + 0.2 X3 - 0.6 X4X5 = 14 + 0.4 X3 - 0.2 X4X1 = 16 - 0.4 X3 + 0.2 X4X3 X4 X5 X2 X5 X1 $\mathsf{B}^{-1} = \begin{bmatrix} -0.2 & 0.6 & 0\\ -0.4 & 0.2 & 1\\ 0.4 & -0.2 & 0 \end{bmatrix}$ $\mathsf{B} = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

Maximize 8 X1 + 7 X2 subject to 3 X1 + 1 X2 \leq 120 + t1 // making 1 X1 + 2 X2 \leq 160 + t2 // finishing 1 X1 + 0 X2 \leq 30 + t3 // max planes X1, X2 \geq 0

 $\begin{bmatrix} X2\\X5\\X1 \end{bmatrix} = B^{-1} b = \begin{bmatrix} -0.2 & 0.6 & 0\\-0.4 & 0.2 & 1\\0.4 & -0.2 & 0 \end{bmatrix} \begin{bmatrix} 120+t1\\160+t2\\30+t3 \end{bmatrix}$

X2= 72 - 0.2 t1 + 0.6 t2 // boats X5= 14 - 0.4 t1 + 0.2 t2 + t3 X1= 16 + 0.4 t1 - 0.2 t2 //planes Announcements:

CSC 545 only:

Survey Paper- due on Fri. Oct. 17 at 11:55pm.

Accepted until Tues. Oct. 21 at 11:55pm with a 10% late penalty.

Make sure you use 12 point font, at least 1.5 spacing and your .pdf file is uploaded.

Both classes:

Programming project 2: Due at 11:55pm on Fri. Oct. 24. Accepted with 10% penalty until Tues. Oct. 28 at 11:55pm. Two applications of linear programming to chemistry:

Finding the Clar number and the Fries number of a benzenoid in polynomial time using a LP.

The desired solutions are integer but it has been proven that the basic feasible solutions are all integral so integer programming tactics are not required. Matching: collection of disjoint edges. Benzenoid hexagon: hexagon with 3 matching edges. Fries number: maximum over all perfect matchings of the number of benzenoid hexagons.


```
Proof that the solutions to the LP are
integral:
@ARTICLE{LP_Fries,
author = {Hernan G. Abeledo and Gary
W. Atkinson},
title = {Polyhedral Combinatorics of
Benzenoid Problems},
journal = {Lect. Notes Comput. Sci},
year = {1998},
volume = \{1412\},
pages = \{202 - 212\}
```

One variables x_e for each edge e. Two variables per hexagon. All variables are constrained to be between 0 and 1.

 y_1 = 1 pink hex. is benzenoid because of red edges. y_2 = 1 pink hex. is benzenoid because of blue edges. y_3 = 1 aqua hex. is benzenoid because of red edges. y_4 = 1 aqua hex. is benzenoid because of blue edges.

Maximize $y_1 + y_2 + y_3 + y_4$

Maximize
$$y_1 + y_2 + y_3 + y_4$$

To get a perfect matching:

For each vertex, the number of edges incident sums to 1:

$$x_1 + x_2 = 1$$

 $x_2 + x_3 = 1$
 $x_3 + x_4 + x_{11} = 1$

To ensure benzenoid hexagons: Red edges of pink: $x_1 - y_1 \ge 0$ $x_3 - y_1 \ge 0$ $x_{9} - y_{1} \ge 0$ Blue edges of pink: $x_2 - y_2 \ge 0$ $x_{10} - y_2 \ge 0$ $x_{11} - y_2 \ge 0$ Red edges of aqua: X_1 $x_4 - y_3 \ge 0$ $x_{6} - y_{3} \ge 0$ $x_{8} - y_{3} \ge 0$

Blue edges of aqua:

$$x_5 - y_4 \ge 0$$

 $x_7 - y_4 \ge 0$
 $x_{11} - y_4 \ge 0$

Clar number: maximum over all perfect matchings of the number of independent benzenoid hexagons.

1 nm

Scanning Tunnelling Microscopy image of hexabenzocoronene

from I Gutman, Ž Tomović, K Müllen, J P Rabe, Chemical Physics Letters 397 (2004) 412–416 LP for the Clar number: The LH edge of each hexagon is its canonical edge.

The corresponding matching is the canonical matching for the hexagon.

If a hexagon is Clar, assume it realizes its canonical matching.

Two variables x_e , z_e for each edge e. One variable y_h for each hexagon h. All variables are constrained to be between 0 and 1.

 z_e = 1 if e is a perfect matching edge. x_e = 1 if e is a matching edge not in a benzenoid hexagon.

 $y_h = 1$ if h is an independent benzenoid hexagon and 0 otherwise.

Maximize $y_1 + y_2$

To get a perfect matching:

For each vertex, the number of edges incident sums to 1:

To get the independent benzenoid hexagons: For the pink hexagon:

$$x_1 + y_1 - z_1 = 0$$

 $x_3 + y_1 - z_3 = 0$
 $x_9 + y_1 - z_9 = 0$

If $y_1 = 1$ then $z_1 = z_3 = z_9 = 1 \implies$ $z_2 = z_{11} = z_{10} = 0$

If
$$y_1 = 1$$
, $y_2 = 0$
since
 $x_{11} + y_2 - z_{11} = 0$

http://www.springerimages.com/Images/RSS/1-10.1007_978-94-007-1733-6_8-24

It's possible to find the Fries number and the Clar number using linear programming.

This is an example of a problem that is an integer programming problem where the integer solution magically appears when solving the linear programming problem.

http://www.javelin-tech.com/blog/2012/07/sketch-entities-splitting/magician-2/