CSC 445/545 Test \#1

Fri. Oct. 6, 2000

1(a). [15] Set up the initial feasible dictionary for Phase 1 for the following problem:
Maximize $3 x_{1}-2 x_{2}+1 x_{3}$
subject to

$$
\begin{aligned}
1 x_{1}+3 x_{2}-2 x_{3} & \leq-3 \\
3 x_{1}-1 x_{2}-1 x_{3} & \leq-7 \\
-1 x_{1}+3 x_{2}+0 x_{3} & \leq-5 \\
x_{1}, & \\
x_{2}, &
\end{aligned}
$$

(b) [10] The final dictionary at the end of Phase 1 is:

Set up the initial dictionary to start Phase 2.
2(a). [15] I ran the Simplex method on a problem. The program generated two pages of output. Unfortunately, I lost the second page. The last dictionary on the first page is given below. Continue applying the Simplex method until termination.

$$
\begin{aligned}
& x_{2}=1+1 x_{1}-1 x_{4}+2 x_{5} \\
& x_{3}=2-1 x_{1}+0 x_{4}-1 x_{5} \\
& x_{6}=2-3 x_{1}+2 x_{4}-4 x_{5} \\
& z=10+1 x_{1}-2 x_{4}+0 x_{5}
\end{aligned}
$$

(b) [10] What (if anything) can you say about the optimal solution to the dual problem given what you have done for part (a)?
3.(a) [25] Apply complementary slackness to determine if (5, $0,4,0$) is an optimal solution to:

Maximize $4 x_{1}+5 x_{2}+1 x_{3}+1 x_{4}$
subject to

$$
\begin{array}{rlllll}
1 x_{1}-1 x_{2} & -1 x_{3}+3 x_{4} & \leq & 1 \\
5 x_{1}+3 x_{2}+1 x_{3}+4 x_{4} & \leq & 55 \\
-1 x_{1}+3 x_{2}+2 x_{3}-5 & 5 x_{4} & \leq 3 \\
x_{1}, & & x_{2}, & & x_{3}, & \\
x_{4} & \geq 0
\end{array}
$$

4. Circle true or false for each question and justify your answer. To get marks for a question, the justification must be correct.
(a) [5] The Simplex Method with an appropriate pivoting rule leads to a fast algorithm that runs in polynomial time for all inputs.
True
False
(b) [5] If a problem does not have non-negativity constraints for its variables, it is not possible to solve the problem using the Simplex Method.
True
False
(c) [5] Two dictionaries for a problem which have the same basis variables can correspond to two different basic feasible solutions.
True
False
(d) [5] All linear programming problems have an optimal solution, and furthermore, there must be an optimal solution that is a basic feasible solution.
True
False
(e) [5] If the primal problem is unbounded, then the dual problem must be infeasible.

True
False

