CSC 445/545 Test #1

Fri. Oct. 6, 2000

1(a). [15] Set up the initial feasible dictionary for Phase 1 for the following problem:

Maximize $3x_1 - 2x_2 + 1x_3$

subject to

$1x_1$	+	$3x_2$	_	$2x_3$	\leq	-3
$3x_1$	—	$1x_{2}$	—	$1x_{3}$	\leq	-7
$-1x_1$	+	$3x_2$	+	$0x_3$	\leq	-5
x_1 ,		<i>x</i> ₂ ,		<i>x</i> ₃	≥	0

(b) [10] The final dictionary at the end of Phase 1 is:

x_4	=	36	+	$10x_2 +$	$2x_{5}$	+	$5x_6$	_	$6x_0$
x_1	=	5	+	$3x_2 +$	$0x_5$	+	$1x_{6}$	_	$1x_0$
<i>x</i> ₃	=	22	+	$8x_2 +$	$1x_{5}$	+	$3x_6$	_	$4x_0$
Z	=	0	+	$0x_2 +$	$0x_5$	+	$0x_6$	_	$1x_0$

Set up the initial dictionary to start Phase 2.

2(a). [15] I ran the Simplex method on a problem. The program generated two pages of output. Unfortunately, I lost the second page. The last dictionary on the first page is given below. Continue applying the Simplex method until termination.

x_2	=	1	+	1	x_1	—	1	x_4	+	2	x_5
<i>x</i> ₃	=	2	—	1	x_1	+	0	<i>x</i> ₄	—	1	<i>x</i> ₅
<i>x</i> ₆	=	2	—	3	x_1	+	2	<i>x</i> ₄	—	4	<i>x</i> ₅
Z.	=	10	+	1	x_1	_	2	<i>x</i> ₄	+	0	<i>x</i> ₅

(b) [10] What (if anything) can you say about the optimal solution to the dual problem given what you have done for part (a)?

3.(a) [25] Apply complementary slackness to determine if (5, 0, 4, 0) is an optimal solution to:

1

55

3

0

Maximize $4x_1 + 5x_2$ $+ 1x_3$ + $1x_4$ subject to $1x_1 - 1x_2$ $3x_4$ $-1x_3$ + \leq $5x_1 + 3x_2 + 1x_3$ $+ 4x_4$ \leq $5x_4$ $-1x_1 + 3x_2 + 2x_3 \leq$

 $x_1, x_2,$

4. Circle true or false for each question and justify your answer. To get marks for a question, the justification must be correct.

 $x_3,$

 x_4

 \geq

- (a) [5] The Simplex Method with an appropriate pivoting rule leads to a fast algorithm that runs in polynomial time for all inputs.
 True False
- (b) [5] If a problem does not have non-negativity constraints for its variables, it is not possible to solve the problem using the Simplex Method.

True False

(c) [5] Two dictionaries for a problem which have the same basis variables can correspond to two different basic feasible solutions.

True False

(d) [5] All linear programming problems have an optimal solution, and furthermore, there must be an optimal solution that is a basic feasible solution.

True False

(e) [5] If the primal problem is unbounded, then the dual problem must be infeasible.True False