Name: _____

ID Number: _____

CSC 445/545 Test #2

Monday Nov. 19, 2012

Instructions:

- 1. Put your name on every page of the exam.
- 2. No calculators or other aids. Closed book.
- 3. You should have 8 pages including this header page.

Question	Торіс	Max	Marks
1	Complementary Slackness	20	
2	Revised Simplex Method	20	
3	Integer Programming	20	
4	Curve Fitting	20	
	Total	80	

1. The problem a student is asked to solve by their COOP employer is:

(a) [6] What is the dual of this problem?

Maximize	$-2x_1$	+	$4x_{2}$		
subject to			x_2	\leq	1/2
	x_1	—	x_2	\leq	0
	$-5/3x_1$	+	<i>x</i> ₂	\leq	0
x_{1}	$x_2 \ge 0$				

(b) [14] Apply complementary slackness to this problem to determine if (3/10, 1/2) is the correct solution. Explain what you are doing at every step.

[20] A student started solving this 2. The Revised Simplex method: with the revised Simplex method: 1. Solve $A_B^T y = c_B$ for y. Maximize 2 $x_1 + 4 x_2 + 8 x_3$ 2. Compute $[c_N^T - y^T A_N]x_N$ to get subject to coefficients of non-basic variables. $0 x_1 + 1 x_2 + 2 x_3 \le 4$ 3. Solve for entering column d in the $0 x_1 + 1 x_2 - 3 x_3 \le 12$ *current dictionary:* $d = A_B^{-1} a$ *where a* $1 x_1 + 1 x_2 + 1 x_3 \le 10$ is the entering column taken from the $x_{1}, x_{2}, x_{3} \ge 0$ initial problem. and after several steps, had z = 28, $H_B^T = [2\ 5\ 1], x_B^T = (4,\ 8,\ 6), \text{ and}$

 $H_N^T = [6 \ 4 \ 3]$. Compute the updated values for H_B^T , the current solution x_B and z after **ONE** more iteration. Show all your work.

3.	The ultimate goal is to find an integer	You put this problem into the program			
	optimal solution to the problem which	you wrote and this was the final			
	has this initial dictionary:	dictionary:			
	X4 = -5 - 2 X1 + 2 X2 - 3 X3	X2 = 6.5 + 1.0 X3 + 0.5 X4 - 0.5 X6			
	X5 = -7 + 8 X1 + 4 X2 - 4 X3	X5 = 51.0 - 4.0 X3 + 2.0 X4 - 6.0 X6			
	X6 = 8 - 2 X1 + 0 X2 - 1 X3	X1 = 4.0 - 0.5 X3 + 0.0 X4 - 0.5 X6			
	X7 = 5 - 1 X1 + 0 X2 - 1 X3	X7 = 1.0 - 0.5 X3 + 0.0 X4 + 0.5 X6			
	z = 0 + 4 X1 - 1 X2 - 1 X3	z = 9.5 - 4.0 X3 - 0.5 X4 - 1.5 X6			
	IMDODTANT: In north (a) and (b) helows	I am astring way instants to tall may what to do			

IMPORTANT: In parts (a) and (b) below I am asking you just to tell me what to do next. I am not asking you to solve the problem.

(a) [6] What constraint(s) would you try adding next with your computer program if you were using the separation technique for integer programming?

(b) [14] Compute the Gomery cut for this equation: X2 = 6.5 + 1.0 X3 + 0.5 X4 - 0.5 X6

- 4. Consider the following three (x, y) data points: (1, 1), (4, 2), (6, 5).
- (a) [5] What problem would you solve (not in standard form) in order to find a linear approximation that minimizes the L_1 -norm?

- (b) [3] When you convert this problem to standard form, what will the objective function be?
- (c) [5] When you convert this to standard form, which equations arise for the point which has x = 6 and y = 5?

[Question 4 continued]

Mary and Paul were asked by their boss to find a linear fit for some data points. They found both an L_1 -fit and and L_{∞} -fit and plotted the results (see the next page). The blue points are the original 7 data points. The two fits are shown as red and green lines.

(d) [4] Your boss wants to know which line represents an L_{∞} -fit: the red one or the green one? Justify your answers based on how the L_1 and L_{∞} fits are defined.

(e) [3] The red line currently looks like a much better fit for the data. What advice would you give your boss in order to make the approach indicated by the green line give a better approximation?

Replace this page with excel picture.

Use this page if you need more space. Please clearly indicate the question you are answering.