Name: \qquad

ID Number:

CSC 445/545 Test \#2

Monday Nov. 19, 2012

Instructions:

1. Put your name on every page of the exam.
2. No calculators or other aids. Closed book.
3. You should have 8 pages including this header page.

Question	Topic	Max	Marks
1	Complementary Slackness	20	
2	Revised Simplex Method	20	
3	Integer Programming	20	
4	Curve Fitting	20	
	Total	80	

1. The problem a student is asked to solve by their COOP employer is:
(a) [6] What is the dual of this problem?

Maximize $-2 x_{1}$ +x_{2}				
subject to			x_{2}	$\leq 1 / 2$
	x_{1}	-	x_{2}	≤ 0
$-5 / 3 x_{1}$	+	x_{2}	≤ 0	
$x_{1}, x_{2} \geq 0$				

(b) [14] Apply complementary slackness to this problem to determine if $(3 / 10,1 / 2)$ is the correct solution. Explain what you are doing at every step.
2. [20] A student started solving this with the revised Simplex method:
Maximize $2 x_{1}+4 x_{2}+8 x_{3}$ subject to
$0 x_{1}+1 x_{2}+2 x_{3} \leq 4$
$0 x_{1}+1 x_{2}-3 x_{3} \leq 12$
$1 x_{1}+1 x_{2}+1 x_{3} \leq 10$
$x_{1}, x_{2}, x_{3} \geq 0$
and after several steps, had $z=28$,
$H_{B}^{T}=\left[\begin{array}{lll}2 & 5 & 1\end{array}\right], x_{B}^{T}=(4,8,6)$, and
$H_{N}^{T}=\left[\begin{array}{lll}6 & 4 & 3\end{array}\right]$. Compute the updated values for H_{B}^{T}, the current solution x_{B} and z after ONE more iteration. Show all your work.
3. The ultimate goal is to find an integer optimal solution to the problem which has this initial dictionary:
$\mathrm{X} 4=-5-2 \mathrm{X} 1+2 \mathrm{X} 2-3 \mathrm{X} 3$ $\mathrm{X} 5=-7+8 \mathrm{X} 1+4 \mathrm{X} 2-4 \mathrm{X} 3$ $\mathrm{X} 6=8-2 \mathrm{X} 1+0 \mathrm{X} 2-1 \mathrm{X} 3$ $X 7=5-1 \quad \mathrm{X} 1+0 \mathrm{X} 2-1 \quad \mathrm{X} 3$
$\mathrm{z}=0+4 \mathrm{X} 1-1 \mathrm{X} 2-1 \mathrm{X} 3$

You put this problem into the program you wrote and this was the final dictionary:
$\mathrm{X} 2=6.5+1.0 \mathrm{X} 3+0.5 \mathrm{X} 4-0.5 \mathrm{X} 6$
$\mathrm{X} 5=51.0-4.0 \mathrm{X} 3+2.0 \mathrm{X} 4-6.0 \mathrm{X} 6$
$\mathrm{X} 1=4.0-0.5 \mathrm{X} 3+0.0 \mathrm{X} 4-0.5 \mathrm{X} 6$
$\mathrm{X} 7=1.0-0.5 \mathrm{X} 3+0.0 \mathrm{X} 4+0.5 \mathrm{X} 6$
$\mathrm{z}=9.5-4.0 \mathrm{X} 3-0.5 \mathrm{X} 4-1.5 \mathrm{X} 6$

IMPORTANT: In parts (a) and (b) below I am asking you just to tell me what to do next. I am not asking you to solve the problem.
(a) [6] What constraint(s) would you try adding next with your computer program if you were using the separation technique for integer programming?
(b) [14] Compute the Gomery cut for this equation:
$\mathrm{X} 2=6.5+1.0 \mathrm{X} 3+0.5 \mathrm{X} 4-0.5 \mathrm{X} 6$
4. Consider the following three (x, y) data points: $(1,1),(4,2),(6,5)$.
(a) [5] What problem would you solve (not in standard form) in order to find a linear approximation that minimizes the L_{1}-norm?
(b) [3] When you convert this problem to standard form, what will the objective function be?
(c) [5] When you convert this to standard form, which equations arise for the point which has $x=6$ and $y=5$?
[Question 4 continued]
Mary and Paul were asked by their boss to find a linear fit for some data points. They found both an L_{1}-fit and and L_{∞}-fit and plotted the results (see the next page). The blue points are the original 7 data points. The two fits are shown as red and green lines.
(d) [4] Your boss wants to know which line represents an L_{∞}-fit: the red one or the green one? Justify your answers based on how the L_{1} and L_{∞} fits are defined.
(e) [3] The red line currently looks like a much better fit for the data. What advice would you give your boss in order to make the approach indicated by the green line give a better approximation?

Replace this page with excel picture.

Use this page if you need more space. Please clearly indicate the question you are answering.

