
Problem of the Day:

Draw pictures of all the caterpilars
that have 6 vertices.

Announcements:

Assignment #1 has 3 parts:

Part A: Literature Review [30 points]:

Upload your work to connex under Assignment #1A.

Part A is due: Wednesday Sept. 28 at 11:55pm.

Part B: Programming Question [30 points]:

Upload your work to connex under Assignment #1B.

Part B is due: Wednesday Sept. 28 at 11:55pm.

Part C: Written questions [40 points]:

Part C is due: Wednesday Sept. 28 at the beginning of class.

Graph Isomorphism

The graph isomorphism problem has no
known polynomial time algorithm which
works for an arbitrary graph.

Canonical form: If two graphs are
isomorphic, their canonical forms must be
the same, otherwise, they must be
different.

For trees and planar graphs, a canonical
form can be computed in polynomial time.

Which graphs are isomorphic to graph B?

Petersen

 Graph
? ? ?

Brute force canonical form for graphs:

Consider all n! permutations of the vertices.

The canonical form is the relabelled graph
that has the lexicographically minimum upper
triangular adjacency matrix.

Time: O(n! n2)

I have implemented this approach recursively
to give an example of C code that is similar to
what you need for the assignment.

Ideally, your programs should include
detailed comments.

You should also include error messages if
the input is not correct.

You do not need an “error message” at
the end of the input.

These are not included in order to show
the most important details of the code
(and you have me here for comments).

#include <stdio.h>
#include <stdlib.h>
#define NMAX 32

#define DEBUG 1

void copy(int n, int A[NMAX][NMAX],
 int B[NMAX][NMAX]);

void print_upper(int n, int A[NMAX][NMAX]);

void get_permuted_matrix(int n, int p[NMAX],
 int A[NMAX][NMAX], int p_A[NMAX][NMAX]);

void get_can_form(int level, int n,
 int A[NMAX][NMAX], int p_A[NMAX][NMAX],
 int can_A[NMAX][NMAX], int used[NMAX],
 int p[NMAX], int verbose);

int main(int argc, char *argv[])
{
 int n;
 int A[NMAX][NMAX];
 int p_A[NMAX][NMAX];
 int can_A[NMAX][NMAX];
 int used[NMAX];
 int p[NMAX];
 int n_graph;
 int verbose;

 if (argc!= 2)
 {
 printf("Usage: %s <verbose>\n", argv[0]);
 exit(0);
 }
 verbose= atoi(argv[1]);

The code in
red is for the
command
line parameter.

n_graph=0;
while (read_upper(&n, A))
{
 n_graph++;
 if (verbose)
 {
 printf("Input graph %3d:\n", n_graph);
 print_upper(n, A);
 }
 get_can_form(0, n, A, p_A, can_A, used,
 p, verbose);
 if (verbose)
 {
 printf("Canonical form for graph %3d\n",
 n_graph);
 }
 print_upper(n, can_A);
}

 printf("Normal termination: %10d graphs\n",
 n_graph);
}

At the end of the main, I have a normal
termination message. It is critical to use
these and check to ensure your jobs all
finish properly if you are running on
multiple CPU’s and/or the computations
take a long time. You do not need this for
the assignment.

int read_upper(int *n, int A[NMAX][NMAX])
{
 int i, j;

 if (scanf("%d", n)!=1) return(0);

 for (i=0; i < *n; i++)
 {
 A[i][i]=0;
 for (j= i+1; j < *n; j++)
 {
 if (scanf("%1d", &A[i][j])!= 1)
 return(0);
 A[j][i]= A[i][j];
 }
 }
 return(1);
}

scanf reads from
standard input.

void print_upper(int n,
 int A[NMAX][NMAX])
{
 int i, j;

 printf("%3d ", n);
 for (i=0; i < n; i++)
 for (j=i+1; j< n; j++)
 printf("%1d", A[i][j]);
 printf("\n");
}

printf prints to standard output.

int compare(int n, int A[NMAX][NMAX],
 int B[NMAX][NMAX])
{ int i, j;

 for (i=0; i < n; i++)
 {
 for (j=i+1; j < n; j++)
 {
 if (A[i][j] < B[i][j])
 return(-1); // A < B
 if (A[i][j] > B[i][j])
 return(1); // A > B
 }
 }
 return(0); // A = B
}

void get_permuted_matrix(int n,
 int p[NMAX], int A[NMAX][NMAX],
 int p_A[NMAX][NMAX])
{
 int i, j;

 for (i=0; i < n; i++)
 {
 for (j=0; j < n; j++)
 {
 p_A[p[i]][p[j]]= A[i][j];
 }
 }
}

void copy(int n, int A[NMAX][NMAX],
 int B[NMAX][NMAX])
{
 int i, j;

 for (i=0; i < n; i++)
 {
 for (j=0; j < n; j++)
 {
 B[i][j]= A[i][j];
 }
 }
}

void get_can_form(int level,
 int n, int A[NMAX][NMAX],
 int p_A[NMAX][NMAX],
 int can_A[NMAX][NMAX],
 int used[NMAX],
 int p[NMAX], int verbose)
{
 int i;
 int cmp;

// Initial level is level 0.
// Variables are initialized here.

 if (level ==0)
 {
 for (i=0; i < n; i++)
 {
 used[i]=0;
 }
 copy(n, A, can_A);
 }

// At level n, check if the matrix
// permuted by p is smaller.

if (level == n)
{
 get_permuted_matrix(n, p, A, p_A);
 cmp= compare(n, p_A, can_A);
 if (cmp < 0)
 {
 copy(n, p_A, can_A);
 }
 return;
}

if (level == n)
{
 get_permuted_matrix(n, p, A, p_A);
#if DEBUG
 printf("The matrix permuted by ");
 for (i=0; i < n; i++)
 printf("%1d ", p[i]);
 printf(" : ");
 print_upper(n, p_A);
#endif
 cmp= compare(n, p_A, can_A);

It’s good practice to use lots of debugging
messages. Put these in a try printing every step
before asking me for help with buggy programs.

 if (cmp < 0)
 {
#if DEBUG
 printf(
 "Smalller adjacency matrix:\n");
 printf("Before:");
 print_upper(n, can_A);
 printf("After :");
 print_upper(n, p_A);
#endif
 copy(n, p_A, can_A);
 }
 return;
}
More debugging messages!

 for (i=0; i < n; i++)
 {
 if (! used[i])
 {
 p[level]= i;

 used[i]= 1;
 get_can_form(level+1, n, A,
 p_A, can_A, used,
 p, verbose);

 used[i]= 0;
 }
 }
}

It is good practice to include the level of recursion
in debugging messages. For example:

for (i=0; i < n; i++)
{
 if (! used[i])
 {
#if DEBUG
 printf(
 "Level %2d: Set p[%2d]=%2d]\n",
 level, level, i);
#endif

Graph 1:

Input Canonical form

Input graph 1:
 4 111110
The matrix permuted by 0 1 2 3 : 4 111110
The matrix permuted by 0 1 3 2 : 4 111110
The matrix permuted by 0 2 1 3 : 4 111101
Smaller adjacency matrix:
Before: 4 111110
After : 4 111101
The matrix permuted by 0 2 3 1 : 4 111101
The matrix permuted by 0 3 1 2 : 4 111011
Smaller adjacency matrix:
Before: 4 111101
After : 4 111011
The matrix permuted by 0 3 2 1 : 4 111011

The matrix permuted by 1 0 2 3 : 4 111110
The matrix permuted by 1 0 3 2 : 4 111110
The matrix permuted by 1 2 0 3 : 4 110111
Smaller adjacency matrix:
Before: 4 111011
After : 4 110111
The matrix permuted by 1 2 3 0 : 4 110111
The matrix permuted by 1 3 0 2 : 4 101111
Smaller adjacency matrix:
Before: 4 110111
After : 4 101111
The matrix permuted by 1 3 2 0 : 4 101111

The matrix permuted by 2 0 1 3 : 4 111101
The matrix permuted by 2 0 3 1 : 4 111101
The matrix permuted by 2 1 0 3 : 4 110111
The matrix permuted by 2 1 3 0 : 4 110111
The matrix permuted by 2 3 0 1 : 4 011111
Smaller adjacency matrix:
Before: 4 101111
After : 4 011111
The matrix permuted by 2 3 1 0 : 4 011111

The matrix permuted by 3 0 1 2 : 4 111011
The matrix permuted by 3 0 2 1 : 4 111011
The matrix permuted by 3 1 0 2 : 4 101111
The matrix permuted by 3 1 2 0 : 4 101111
The matrix permuted by 3 2 0 1 : 4 011111
The matrix permuted by 3 2 1 0 : 4 011111
Canonical form for graph 1
 4 011111

Graph 2:

Input Canonical form

Input graph 2:
 4 110010
The matrix permuted by 0 1 2 3 : 4 110010
The matrix permuted by 0 1 3 2 : 4 101100
Smaller adjacency matrix:
Before: 4 110010
After : 4 101100
The matrix permuted by 0 2 1 3 : 4 110001
The matrix permuted by 0 2 3 1 : 4 011100
Smaller adjacency matrix:
Before: 4 101100
After : 4 011100
The matrix permuted by 0 3 1 2 : 4 101001
The matrix permuted by 0 3 2 1 : 4 011010
Smaller adjacency matrix:
Before: 4 011100
After : 4 011010

The matrix permuted by 1 0 2 3 : 4 101100
The matrix permuted by 1 0 3 2 : 4 110010
The matrix permuted by 1 2 0 3 : 4 100101
The matrix permuted by 1 2 3 0 : 4 010110
Smaller adjacency matrix:
Before: 4 011010
After : 4 010110
The matrix permuted by 1 3 0 2 : 4 100011
The matrix permuted by 1 3 2 0 : 4 001110
Smaller adjacency matrix:
Before: 4 010110
After : 4 001110

The matrix permuted by 2 0 1 3 : 4 011100
The matrix permuted by 2 0 3 1 : 4 110001
The matrix permuted by 2 1 0 3 : 4 010110
The matrix permuted by 2 1 3 0 : 4 100101
The matrix permuted by 2 3 0 1 : 4 010011
The matrix permuted by 2 3 1 0 : 4 001101
Smaller adjacency matrix:
Before: 4 001110
After : 4 001101

The matrix permuted by 3 0 1 2 : 4 011010
The matrix permuted by 3 0 2 1 : 4 101001
The matrix permuted by 3 1 0 2 : 4 001110
The matrix permuted by 3 1 2 0 : 4 100011
The matrix permuted by 3 2 0 1 : 4 001101
The matrix permuted by 3 2 1 0 : 4 010011
Canonical form for graph 2
 4 001101
Normal termination: 2 graphs

With verbose set to 0 and
#define DEBUG 0

Input:
4 111110
4 110010

Output:
 4 011111
 4 001101
Normal termination: 2 graphs

With verbose set to 1 and
#define DEBUG 0

Input:
4 111110
4 110010

Output:
Input graph 1:
 4 111110
Canonical form for graph 1
 4 011111
Input graph 2:
 4 110010
Canonical form for graph 2
 4 001101
Normal termination: 2 graphs

