
How many faces do you get from walking 
the faces of this rotation system of K4? 
 
Is this an embedding of K4 in the plane? 
 



Rotation Systems 

F0: (a, b)(b, c)(c, a)(a, b) 

F1: (a, d)(d, e)(e, b)(b, a)(a, d) 

G connected on an 
orientable surface: 

g= (2 – n + m – f)/2 

        

 
0  plane 

1 torus 
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How can we find a 
rotation system 
that represents a 
planar embedding 
of a graph? 

Input graph: 
0: 1 3 4 
1: 0 2 4 
2: 1 3 
3: 0 2 4 
4: 0 1 3 

Planar embedding 
0: 1 4 3 
1: 0 2 4 
2: 1 3 
3: 0 4 2 
4: 0 1 3 



f= number of faces 
n= number of vertices 
m= number of edges 
 
Euler’s formula: For any connected planar 
graph G, f= m-n+2. 
 
Proof by induction: 
 
How many edges must a connected graph on 
n vertices have? 
 
 



Euler’s formula: For any connected planar 
graph G, f= m-n+2. 
 
 
[Basis] 
The connected graphs on n vertices with a 
minimum number of edges are trees. 
If T is a tree, then it has n-1 edges and one 
face when embedded in the plane. 
Checking the formula: 
1 = (n-1) – n + 2 ⟹ 1 = 1 so the base case 
holds. 



[Induction step (m   m+1)] 
 

Assume that for a planar embedding 𝐺  of a  
connected planar graph G with n vertices 
and m edges that f= m-n+2. 
We want to prove that adding one edge  
(while maintaining planarity) gives a new 

planar embedding 𝐻  of a graph H such that 
f’ (the number of faces of H) 
satisfies f’ = m’ – n + 2 
where m’= m+1 is the number of edges of H. 
 



 
 



 
 



Adding one edge adds one more face. 
 
Therefore, f’ = f+ 1. Recall m’= m+1. 
 
Checking the formula: 
f’ = m’ – n + 2 
means that 
f+1 = m+1 – n + 2 
subtracting one from both sides gives 
f= m – n + 2 which we know is true by 
induction. 
 



Pre-processing for an embedding 
algorithm. 
 
1. Break graph into its connected 

components. 
2.For each connected component, break it 

into its 2-connected components 
(maximal subgraphs having no cut 
vertex). 



A disconnected graph: 

isolated  
vertex 



First split into its 4 connected components: 



The yellow component has a cut vertex: 



The 2-connected components of the 
yellow component: 



The red component: the yellow vertices 
are cut vertices. 



The 2-connected components of the red 
component: 



How do we decompose the graph like 
this using a computer algorithm? 

The easiest 
way: 
 
BFS (Breadth 
First Search) 
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A bridge with respect to a subgraph H 
of a graph G is either: 
1. An edge e=(u, v) which is not in H 

but both u and v are in H. 
2. A connected component C of G-H 

plus any edges that are incident to 
one vertex in C and one vertex in H 
plus the endpoints of these edges. 
 

How can you find the bridges with 
respect to a cut vertex v? 
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How can we find a planar embedding of each 2-
connected component of a graph? 
One simple solution: Algorithm by Demoucron, 
Malgrange and Pertuiset. 
 
@ARTICLE{genus:DMP, 
   AUTHOR = {G. Demoucron and Y. Malgrange 
                       and R. Pertuiset}, 
   TITLE = {Graphes Planaires}, 
   JOURNAL = {Rev. Fran\c{c}aise Recherche 
                        Op\'{e}rationnelle}, 
   YEAR = {1964}, 
   VOLUME = {8}, 
   PAGES = {33--47}   } 
 



A bridge can be drawn in a face if all its points of 
attachment lie on that face. 



1. Find a bridge which can be drawn in a 
minimum number of faces (the blue bridge). 

Demoucron, 
Malgrange and 
Pertuiset ’64: 



2. Find a path between two points of attachment 
for that bridge and add the path to the 
embedding. 



No backtracking required for planarity testing! 



Gibbons: if G is 2-vertex connected, every 
bridge of G has at least two points of contact 
and can therefore be drawn in just two faces. 

Counterexample: 



Graphs homeomorphic to K5 and K3,3: 

Rashid Bin 

Muhammad 



Kuratowski’s theorem: If G is not planar then it 
contains a subgraph homeomorphic to K5 or K3,3. 

Topological obstruction for surface S: 

degrees ≥3,does not embed on S, 

G-e embeds on S for all e.  



Dale Winter 

Minor Order Obstruction: Topological 
obstruction and G۰e embeds on S for all e. 

Wagner's theorem: G is planar if and only if it 
has neither K5 nor K3,3 as a minor. 



Fact: for any orientable or non-orientable 
surface, the set of obstructions is finite. 

Consequence of Robertson & Seymour theory 
but also proved independently: 

Orientable surfaces: Bodendiek & Wagner, ’89 

Non-orientable:  Archdeacon & Huneke, ’89. 

How many torus obstructions are 
there? 

Obstructions for Surfaces 



n/m: 18 19 20 21  22   23   24   25  26 27 28 29 30           

 8 :  0  0  0  0   1    0    1    1   0  0  0  0  0  

 9 :  0  2  5  2   9   13    6    2   4  0  0  0  0  

10 :  0 15  3 18  31  117   90   92  72 17  1  0  1  

11 :  5  2  0 46 131  569  998  745 287 44  8  3  1  

12 :  1  0  0 52 238 1218 2517 1827 472 79 21  1  0  

13 :  0  0  0  5  98  836 1985 1907 455 65 43  0  0  

14 :  0  0  0  0   9   68  463  942 222 41 92  1  0  

15 :  0  0  0  0   0    0   21  118  43 13 91  5  0  

16 :  0  0  0  0   0    0    0    4   3  5 41  0  1  

17 :  0  0  0  0   0    0    0    0   0  0  8  0  0  

18 :  0  0  0  0   0    0    0    0   0  0  1  0  0  

 

  8 :         3 
   9 :       43 
 10 :      457      
 11 :    2839     
 12 :    6426     
 13 :    5394     

 

 14 :    1838     
 15 :      291      
 16 :       54       
 17 :         8  
 18 :         1        

 

Minor Order Torus 
Obstructions: 1754 



n/m: 18 19 20  21  22   23    24    25    26    27   28   29   30  31  32 33 34 35 36           

 8 :  0  0  0   0   1    0     1     1     0     0    0    0    0   0   0  0  0  0  0  

 9 :  0  2  5   2   9   17     6     2     5     0    0    0    0   0   0  0  0  0  0  

10 :  0 15  9  35  40  190   170   102    76    21    1    0    1   0   0  0  0  0  0  

11 :  5  2 49  87 270  892  1878  1092   501   124   22    4    1   0   0  0  0  0  0  

12 :  1 12  6 201 808 2698  6688  6372  1933   482   94    6    2   0   0  0  0  0  0  

13 :  0  0 12  19 820 4967 12781 16704  7182  1476  266   52    1   0   0  0  0  0  0  

14 :  0  0  0   9  38 2476 15219 24352 16298  3858  808  215   19   0   0  0  0  0  0  

15 :  0  0  0   0   0   33  3646 22402 20954  8378 1859  708  184   5   0  0  0  0  0  

16 :  0  0  0   0   0    0    20  2689 17469 10578 3077 1282  694  66   1  0  0  0  0  

17 :  0  0  0   0   0    0     0     0   837  8099 4152 1090 1059 368  11  0  0  0  0  

18 :  0  0  0   0   0    0     0     0     0   133 2332 1471  511 639 102  1  0  0  0  

19 :  0  0  0   0   0    0     0     0     0     0    0  393  435 292 255 15  0  0  0  

20 :  0  0  0   0   0    0     0     0     0     0    0    0   39 100 164 63  2  0  0  

21 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0  12 63  1  0  0  

22 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  2 22  0  0  

23 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  0  0  4  0  

24 :  0  0  0   0   0    0     0     0     0     0    0    0    0   0   0  0  0  0  2  

 

All Torus Obstructions Found So Far: 


