How many faces do you get from walking the faces of this rotation system of K_{4} ?

Is this an embedding of K_{4} in the plane?

$$
\begin{array}{lllll}
0 & : & 1 & 3 & 2 \\
1 & : & 0 & 3 & 2 \\
2 & : & 0 & 3 & 1 \\
3 & : & 0 & 2 & 1
\end{array}
$$

Rotation Systems

G connected on an orientable surface:

$$
g=(2-n+m-f) / 2
$$

FO: $(a, b)(b, c)(c, a)(a, b)$
FP: $(a, d)(d, e)(e, b)(b, a)(a, d)$

Greg McShane

$$
\begin{aligned}
& \text { a: b d c } \\
& \text { b: a c e } \\
& \text { c: a d f g b } \\
& \text { d: a e g f c } \\
& \text { e: b g d } \\
& \text { f: c d g } \\
& \text { g: c f d e } \\
& 0 \text { plane } \\
& 1 \text { torus } \\
& 2
\end{aligned}
$$

How can we find a rotation system that represents a planar embedding of a graph?

Input graph:
 0: 134
 1: 024
 2: 13
 3: 024
 4: 013

Planar embedding

0: 143
1: 024
2: 13
3: 042
4: 013
3: 042
4: 013
$f=$ number of faces $n=$ number of vertices
$m=$ number of edges
Euler's formula: For any connected planar graph $G, f=m-n+2$.

Proof by induction:
How many edges must a connected graph on n vertices have?

Euler's formula: For any connected planar graph G, $f=m-n+2$.
[Basis]

The connected graphs on n vertices with a minimum number of edges are trees.
If T is a tree, then it has $n-1$ edges and one face when embedded in the plane. Checking the formula:
1 = ($n-1$) $-n+2 \Rightarrow 1=1$ so the base case holds.

[Induction step ($m \rightarrow m+1$)]

Assume that for a planar embedding \widetilde{G} of a connected planar graph G with n vertices and m edges that $f=m-n+2$.
We want to prove that adding one edge (while maintaining planarity) gives a new planar embedding \widetilde{H} of a graph H such that f^{\prime} (the number of faces of H) satisfies $f^{\prime}=m^{\prime}-n+2$ where $m^{\prime}=m+1$ is the number of edges of H.

Adding one edge adds one more face.
Therefore, $f^{\prime}=f+1$. Recall $m^{\prime}=m+1$.
Checking the formula:
$f^{\prime}=m^{\prime}-n+2$ means that
$f+1=m+1-n+2$
subtracting one from both sides gives
$f=m-n+2$ which we know is true by induction.

Pre-processing for an embedding algorithm.

1. Break graph into its connected components.
2.For each connected component, break it into its 2-connected components (maximal subgraphs having no cut vertex).

A disconnected graph:

First split into its 4 connected components:

The yellow component has a cut vertex:

The 2-connected components of the yellow component:

The red component: the yellow vertices are cut vertices.

The 2-connected components of the red component:

How do we decompose the graph like this using a computer algorithm?

The easiest
way:
BFS (Breadth First Search)

A bridge with respect to a subgraph H of a graph G is either:

1. An edge $e=(u, v)$ which is not in H but both u and v are in H.
2. A connected component C of G-H plus any edges that are incident to one vertex in C and one vertex in H plus the endpoints of these edges.

How can you find the bridges with respect to a cut vertex v?

How can we find a planar embedding of each 2connected component of a graph? One simple solution: Algorithm by Demoucron, Malgrange and Pertuiset.
@ARTICLE\{genus:DMP,
AUTHOR $=\{G$. Demoucron and Y. Malgrange and R. Pertuiset\},
TITLE $=\{$ Graphes Planaires $\}$,
JOURNAL $=\{$ Rev. Fran $\backslash c\{c\}$ aise Recherche Op\'\{e\}rationnelle\},
YEAR $=\{1964\}$,
VOLUME = \{8\},
PAGES $=\{33--47\} \quad\}$

A bridge can be drawn in a face if all its points of attachment lie on that face.

Demoucron,

 Malgrange and Pertuiset '64:1. Find a bridge which can be drawn in a minimum number of faces (the blue bridge).

2. Find a path between two points of attachment for that bridge and add the path to the embedding.

No backtracking required for planarity testing!

Gibbons: if G is 2 -vertex connected, every bridge of G has at least two points of contact and can therefore be drawn in just two faces.

Counterexample:

Graphs homeomorphic to K_{5} and $K_{3,3}$:

Rashid Bin
Muhammad

Kuratowski's theorem: If G is not planar then it contains a subgraph homeomorphic to K_{5} or $K_{3,3}$.

Topological obstruction for surface S : degrees ≥ 3, does not embed on S,
G-e embeds on S for all e.

Minor Order Obstruction: Topological

 obstruction and G•e embeds on S for all e.Wagner's theorem: G is planar if and only if it has neither K_{5} nor $K_{3,3}$ as a minor.

The PetersenGraph.

Complete Graph on 5 Vertices.

Dale Winter

Obstructions for Surfaces

Fact: for any orientable or non-orientable surface, the set of obstructions is finite.

Consequence of Robertson \& Seymour theory but also proved independently:
Orientable surfaces: Bodendiek \& Wagner, '89
Non-orientable: Archdeacon \& Huneke, '89.
How many torus obstructions are there?

$8:$	3		
$9:$	43	$14:$	1838
$10:$	457	$15:$	291
$11:$	2839	$16:$	54
$12:$	6426	$17:$	8
$13:$	5394	$18:$	1

Minor Order Torus Obstructions: 1754

$\mathrm{n} / \mathrm{m}:$	18	19	20	21	22	23	24	25	26	27	28	29	30	
8	$:$	0	0	0	0	1	0	1	1	0	0	0	0	0
9	$:$	0	2	5	2	9	13	6	2	4	0	0	0	0
10	$:$	0	15	3	18	31	117	90	92	72	17	1	0	1
11	$:$	5	2	0	46	131	569	998	745	287	44	8	3	1
12	$:$	1	0	0	52	238	1218	2517	1827	472	79	21	1	0
13	$:$	0	0	0	5	98	836	1985	1907	455	65	43	0	0
14	$:$	0	0	0	0	9	68	463	942	222	41	92	1	0
15	$:$	0	0	0	0	0	0	21	118	43	13	91	5	0
16	$:$	0	0	0	0	0	0	0	4	3	5	41	0	1
17	$:$	0	0	0	0	0	0	0	0	0	0	8	0	0
18	$:$	0	0	0	0	0	0	0	0	0	0	1	0	0

All Torus Obstructions Found So Far:

n / m		18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8	:	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
9	:	0	2	5	2	9	17	6	2	5	0	0	0	0	0	0	0	0	0	0
10	:	0	15	9	35	40	190	170	102	76	21	1	0	1	0	0	0	0	0	0
11	:	5	2	49	87	270	892	1878	1092	501	124	22	4	1	0	0	0	0	0	0
12	:	1	12	6	201	808	2698	6688	6372	1933	482	94	6	2	0	0	0	0	0	0
13	:	0	0	12	19	820	4967	12781	16704	7182	1476	266	52	1	0	0	0	0	0	0
14	:	0	0	0	9	38	2476	15219	24352	16298	3858	808	215	19	0	0	0	0	0	0
15	:	0	0	0	0	0	33	3646	22402	20954	8378	1859	708	184	5	0	0	0	0	0
16	:	0	0	0	0	0	0	20	2689	17469	10578	3077	1282	694	66	1	0	0	0	0
17	:	0	0	0	0	0	0	0	0	837	8099	4152	1090	1059	368	11	0	0	0	0
18	:	0	0	0	0	0	0	0	0	0	133	2332	1471	511	639	102	1	0	0	0
19	:	0	0	0	0	0	0	0	0	0	0	0	393	435	292	255	15	0	0	0
20	:	0	0	0	0	0	0	0	0	0	0	0	0	39	100	164	63	2	0	0
21	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	63	1	0	0
22	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	22	0	0
23	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
24	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2

