How many faces do you get from walking the faces of this rotation system of K_4 ?

Is this an embedding of K_4 in the plane?

0 : 1 3 2 1 : 0 3 2 2 : 0 3 1 3 : 0 2 1

Rotation Systems

G connected on an orientable surface:

g=(2 - n + m - f)/2

a: b d c b: a c e c: a d f g b d: a e g f c e: b g d f: c d g g: c f d e

0 plane

1 torus

2

F0: (a, b)(b, c)(c, a)(a, b) F1: (a, d)(d, e)(e, b)(b, a)(a, d)

How can we find a rotation system that represents a planar embedding of a graph?

Planar embedding 0: 1 4 3 1: 0 2 4 2: 1 3 3: 0 4 2 4: 0 1 3 f= number of faces n= number of vertices m= number of edges

Euler's formula: For any connected planar graph G, f = m - n + 2.

Proof by induction:

How many edges must a connected graph on n vertices have?

Euler's formula: For any connected planar graph G, f = m - n + 2. [Basis] The connected graphs on n vertices with a minimum number of edges are trees. If T is a tree, then it has n-1 edges and one face when embedded in the plane. Checking the formula: $1 = (n-1) - n + 2 \implies 1 = 1$ so the base case holds.

[Induction step (m \rightarrow m+1)]

Assume that for a planar embedding \tilde{G} of a connected planar graph G with n vertices and m edges that f = m - n + 2. We want to prove that adding one edge (while maintaining planarity) gives a new planar embedding \tilde{H} of a graph H such that f' (the number of faces of H) satisfies f' = m' - n + 2where m' = m+1 is the number of edges of H.

Adding one edge adds one more face.

Therefore, f' = f + 1. Recall m'= m+1.

Checking the formula: f' = m' - n + 2means that f+1 = m+1 - n + 2subtracting one from both sides gives f = m - n + 2 which we know is true by induction.

Pre-processing for an embedding algorithm.

- 1. Break graph into its connected components.
- 2.For each connected component, break it into its 2-connected components (maximal subgraphs having no cut vertex).

A disconnected graph:

First split into its 4 connected components:

The yellow component has a cut vertex:

The 2-connected components of the yellow component:

The red component: the yellow vertices are cut vertices.

The 2-connected components of the red component:

How do we decompose the graph like this using a computer algorithm?

The easiest way:

BFS (Breadth First Search)

A bridge with respect to a subgraph H of a graph G is either:

- An edge e=(u, v) which is not in H but both u and v are in H.
- 2. A connected component C of G-H plus any edges that are incident to one vertex in C and one vertex in H plus the endpoints of these edges.

How can you find the bridges with respect to a cut vertex v?

How can we find a planar embedding of each 2connected component of a graph? One simple solution: Algorithm by Demoucron, Malgrange and Pertuiset.

```
@ARTICLE{genus:DMP,
AUTHOR = {G. Demoucron and Y. Malgrange
             and R. Pertuiset},
TITLE = {Graphes Planaires},
JOURNAL = {Rev. Fran\c{c}aise Recherche
              Op \ \{e\} rationnelle},
YEAR = {1964},
VOLUME = \{8\},
PAGES = {33--47} }
                                            19
```


A bridge can be drawn in a face if all its points of attachment lie on that face.

1. Find a bridge which can be drawn in a minimum number of faces (the blue bridge).

2. Find a path between two points of attachment for that bridge and add the path to the embedding.

No backtracking required for planarity testing!

Gibbons: if G is 2-vertex connected, every bridge of G has at least two points of contact and can therefore be drawn in just two faces.

Graphs homeomorphic to K_5 and $K_{3,3}$:

Rashid Bin Muhammad

Kuratowski's theorem: If G is not planar then it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Topological obstruction for surface S: degrees ≥3,does not embed on S, G-e embeds on S for all e. Minor Order Obstruction: Topological obstruction and G·e embeds on S for all e.

Wagner's theorem: G is planar if and only if it has neither K_5 nor $K_{3,3}$ as a minor.

The PetersenGraph.

Complete Graph on 5 Vertices.

Dale Winter

Obstructions for Surfaces

Fact: for any orientable or non-orientable surface, the set of obstructions is finite.

Consequence of Robertson & Seymour theory but also proved independently:

Orientable surfaces: Bodendiek & Wagner, '89

Non-orientable: Archdeacon & Huneke, '89.

How many torus obstructions are there?

8:	3	14:	1838
9:	43		
10 :	457	15 :	291
		16:	54
11:	2839	17:	8
12:	6426	18 :	1
13 :	5394	10 .	1

Minor Order Torus Obstructions: 1754

n/m	1 :	18	19	20	21	22	23	24	25	26	27	28	29	30
8	•	0	0	0	0	1	0	1	1	0	0	0	0	0
9	:	0	2	5	2	9	13	6	2	4	0	0	0	0
10	:	0	15	3	18	31	117	90	92	72	17	1	0	1
11	:	5	2	0	46	131	569	998	745	287	44	8	3	1
12	•	1	0	0	52	238	1218	2517	1827	472	79	21	1	0
13	:	0	0	0	5	98	836	1985	1907	455	65	43	0	0
14	:	0	0	0	0	9	68	463	942	222	41	92	1	0
15	:	0	0	0	0	0	0	21	118	43	13	91	5	0
16	•	0	0	0	0	0	0	0	4	3	5	41	0	1
17	•	0	0	0	0	0	0	0	0	0	0	8	0	0
18	•	0	0	0	0	0	0	0	0	0	0	1	0	0

All Torus Obstructions Found So Far:

n/m:	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
8 :					1		1	1											
9:		2	5	2	9	17	6	2	5										
10 :		15	9	35	40	190	170	102	76	21	1		1						
11 :	5	2	49	87	270	892	1878	1092	501	124	22	4	1						
12 :	1	12	6	201	808	2698	6688	6372	1933	482	94	6	2						
13 :			12	19	820	4967	12781	16704	7182	1476	266	52	1						
14 :				9	38	2476	15219	24352	16298	3858	808	215	19						
15 :						33	3646	22402	20954	8378	1859	708	184	5					
16 :							20	2689	17469	10578	3077	1282	694	66	1				
17 :									837	8099	4152	1090	1059	368	11				
18 :										133	2332	1471	511	639	102	1			
19 :												393	435	292	255	15			
20 :													39	100	164	63	2		
21 :															12	63	1		
22 :																2	22		
23 :																		4	
24 :																			2