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girth: size of a smallest cycle 

Girth 5 
Girth 4 

r-regular: every vertex has degree r. 

(r,g)-cage: r-regular graph of 
girth g with a minimum 
number of vertices 



 

 

(r,g)-cage: r-regular graph of girth g with 
a minimum number of vertices 

Not a (3,5)-cage 
(3,5)-cage 



Some cages: 

 

(3,3)-cage: K4 

(3,5)-cage: 
Petersen graph 

(3,4)-cage: K3,3 

(3,6)-cage: 
Heawood graph 



More 3-regular cages: 

 

(3,8)-cage: 

Tutte-Coxeter 
graph 

(3,7)-cage: 

McGee graph 



Some other cages 

 

(5,5)-cage: Robertson-
Wagner graph 

(4,5)-cage: 
Robertson graph 



Motivation: Network Reliability 

4-edge cut of circulant 
6-edge cut of 
Petersen graph 



Girth 4 Girth > 4 



The Moore Bound: 

(3,5)-cage: 10 

g odd: 

3 * 2 (g-1)/2 - 2 

 

(3,6)-cage: 14 

g even: 

2 (g+2)/2 - 2 



Moore graphs:  cages which satisfy the 
Moore bound. 

 
(d, 2k)-cages:  

(d, 2k+1)-cages: 



Hoffman–Singleton theorem:  any 
Moore graph with girth 5 must have 
degree 2, 3, 7, or 57.  

Proof: Uses eigenvalues of B= A2 + A 
where A is the adjacency matrix. The 
graphs with degree 2, 3, and 7 are the 
pentagon, Petersen graph, and Hoffman–
Singleton graph, respectively.  

BIG OPEN QUESTION: Does a Moore 
graph with girth 5 and degree 57 exist? 



Moore graphs with girth 5 and degrees 
2, 3, 7: 

 

 

Hoffman-Singleton graph 



 
There are 18 (3,9)-cages, and v(3,9) = 58. The 
first such cage was found by Biggs & Hoare 
(1980), the fact that v(3,9) = 58 and the 
remaining examples are due to Brinkmann, McKay 
& Saager (1995). Verified in new work (SODA). 
 
There are 3 (3,10)-cages, all bipartite, and 
v(3,10) = 70. This is due to O'Keefe & Wong 
(1980). 
 
http://www.win.tue.nl/~aeb/graphs/cages/cages.html 



More recent work (in collaboration with 
Exoo): 
 
(3,11)-graph  of order 112 found by 
Balaban in 1973 is minimal and unique. 
 
The order of a (4,7)-cage is 67 and we 
give one example.  
 
Improved the lower bounds on the orders 
of (3,13)-cages  and (3,14)-cages to 202 
and 260, respectively.  



Up to date cage info (Gordon Royle): 
http://mapleta.maths.uwa.edu.au/~gordon/remote/cages/index.html 

Combinatorial data: 

http://mapleta.maths.uwa.edu.au/~gordon/ 
Small graphs,  Small multigraphs 
Cubic graphs 
Symmetric cubic graphs (Foster Census)  
Vertex-transitive graphs 
Cayley graphs (by group) 
Vertex-transitive cubic graphs 
Cubic Cages and higher valency cages 
Planar graphs 

http://mapleta.maths.uwa.edu.au/~gordon/remote/cages/index.html
http://mapleta.maths.uwa.edu.au/~gordon/


More info on cages: 
http://school.maths.uwa.edu.au/~gordon/remote/cages/index.html 

Cubic cages of small girth  

The Cages 
Smallest 
Known 

n(3,g) Number Reference 

(3,3)-cages  4 4 1 K_4 

(3,4)-cages  6 6 1 K_3,3 

(3,5)-cages  10 10 1 Petersen 

(3,6)-cages  14 14 1 Heawood 

(3,7)-cages  24 22 1 McGee graph  

(3,8)-cages  30 30 1 Tutte's 8-cage 

(3,9)-cages  58 46 18 Brinkmann/McKay/Saager 

(3,10)-cages  70 62 3 O'Keefe/Wong 

(3,11)-cages  112 94 [112] 1 McKay/Myrvold - Balaban 

(3,12)-cages  126 126 1 Generalized hexagon 

http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g03.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g03.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g03.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g04.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g04.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g04.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g05.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g05.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g05.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g06.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g06.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g06.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g07.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g07.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g07.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g08.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g08.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g08.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g09.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g09.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g09.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g10.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g10.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g10.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g11.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g11.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g11.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g12.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g12.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g12.s6


Cubic cages of small girth  

The Cages 
Smallest 
Known 

n(3,g) Number Reference 

(3,13)-cages  272 190 [202] 1+ 
McKay/Myrvold - 
Hoare 

(3,14)-cages 384 254 [258] 1+ McKay - Exoo 

(3,15)-cages 620 382 1+ Biggs 

(3,16)-cages 960 510 1+ Exoo 

(3,17)-cages 2176 766 1+ Exoo 

(3,18)-cages 2640 1022 1+ Exoo 

(3,19)-cages 4324 1534 1+ H(47) 

(3,20)-cages 6048 2046 1+ Exoo 

http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g13.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g13.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g13.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g14v384.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g14v384.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g14v384.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g15.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g15.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g15.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g16v960.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g16v960.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g16v960.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g17v2176.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g17v2176.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g17v2176.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g18v2640.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g18v2640.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g18v2640.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g19.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g19.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/cagesk3g19.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g20v6048.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g20v6048.s6
http://school.maths.uwa.edu.au/~gordon/remote/cages/k03g20v6048.s6


There is a BIG gap between the best 
available lower bounds on the number of 
vertices of a cage and the smallest 
graphs found so far with a given girth. 
 
Auspicious target: 
Search for a small 3-regular graph of 
girth 14 which has some symmetry. 
 
Girth 13: 190-272 
Girth 14: 258-384 



Redrawing some smaller cages to show one 
cyclic symmetry: 
 

(012) (3) 



Redrawing some smaller cages to show one 
cyclic symmetry: 
 

(0123) (45) 



Redrawing some smaller cages to show one 
cyclic symmetry: 
 

(01234) (01234) 

Edges from 
i to i+2 
(jump 2) 



Redrawing some smaller cages to show one 
cyclic symmetry: 
 

(012345) (012345) (01) 

matching 
edges jump 3 



McGee Graph: Note that the girth is 7 but 
there is an 8-cycle at the top level. 
Obvious lower bound=22, n= 24 for (3,7)-
cage. 
 Matching jump 4, cycle jump 3: 



Tutte-Coxeter 
graph (3,8)-cage. 

10-cycle: one down 
edge per vertex. 
 
Matching with 
jump=5, one down 
edge and one up 
edge per vertex. 
 
Cycle with jump 3: 
one up edge per 
vertex. 



Balaban’s 10-cage from wikipedia. 



Computation time 

Girth Result maus new 

9 18 cages 259 days 5 days 

11 104 bad 2.5 years 25.6 hours 

112 6.7 years 

13 > 200 2.3 years 

14 > 256 18.8 hours 

Same environment since McKay involved 
in both projects. 



Backtracking Rules of Thumb 
 
1. Start with what you know. 
2. Do strong redundancy checks near the root of 
the search tree, but only fast checks in other 
places. 
3. If there are choices to be made, select a 
decision with a minimum number of options. 
4. Abort early if possible. 
5. Do as little as possible at each recursive 
call. 
6. Keep it simple if you can. 
7. Distribute work by sending branches of the 
computation tree to various machines. 
 



 
1. Start with what you know. 



2. Do strong redundancy checks near the root of 
the search tree, but only fast checks in other 
places. Fast check: 

If x0, x1, … xk 
are isolated 
vertices then 

G + (v, x0) = 

G + (v, x1) = 

… 

G+(v, xk). 



Make leftmost choice of isomorphic 
alternatives. 



Extensive redundancy checks: 

Label nodes: c1, c2, … ck where ci is choice made in 
going from level i-1 to level i. Maintain: each node 
enumerates all cages which contain the current 
graph as a subgraph not enumerated by some lex. 
earlier portion of the tree. 

Backtrack 
computation 
tree 



3. If there are choices to be made, select a 
decision with a minimum number of options. 
 
Decisions: add an edge incident to some vertex v 
which has degree(v) < 3. 
 
Edges which are legal to add are recorded. 
 
We determine a decision with a minimum number 
of options.  (not done in maus). 



 
4. Abort early if possible. 
 
If some vertex v with degree(v) < 3 has no 
choices for an incident edge, back up. 
 
Note: there may still be some way to add edges 
preserving girth. 
 



6. Keep it simple if you can. 
Data structure: 
Distance matrix indexed by vertices v such that 

degree(v) < 3. Decreases in size as you move 
away from the root of the backtrack 
computation. 

Distance algebra: 
1. Add (u, v) to G: 

d(x,y) = Min{d(x, y), d(x, u)+ 1 + d(v, y), 
                                   d(y, u) + 1 + d(v, x)} 

2. Values  g-1 =   = g-1. 

3. BAD= g-2. Used for values  g-2 where an 
edge should not be added due to 
isomorphism constraints. 



7. Distribute work by sending branches of the 
computation tree to various machines. 
 
Cut computation tree at a particular level. 
 
Label subproblems: 
 
0..M 0..M 0..M 0..M … 0..M 
Not 
0000    11111   …  MMMM 
 
Autoson was used to automatically distribute 
computation to various machines. 
 





Pictures from: 

http://mathworld.wolfram.com/CageGraph.html 



To search for graphs beating the current 
ones with symmetry: 
 
Initial target: assume that there is some 
symmetry in the automorhism group that 
consists of all p cycles for some integer p. 
 
Step 1: re-express the known examples 
this way if we can. 



The (3,4)-cage: K3,3 



The Petersen graph 
(3,5)-cage: 



The (3,6)-cage: 



(3,7)-cage: 24= 3 * 8 



(3,8)-cage: 
 
30= 3 * 10 







Cycle structures of the (3,10)-Wong cage 
are not amenable to this approach. 
 
The automorphism group order: 24 
The types of permutations: 
1. [  1: 14] [  2: 28]  
2. [  1:  2] [  2:  6] [  4: 14]  
3. [  1:  4] [  3: 22]    // 4 fixed points and 22 3-cycles  

4. [  1:  6] [  2: 32]  
5. [  1: 70] // identity permutation. 

 
Meaning of notation:  
[cycle size: number of that cycle size] 



(5,5)-cage: 30= 5*6 





x 







Bad theta graphs: 



The (3,6)-cage: 



Bad theta  
subgraphs: 
 
Girth is at most 
2(r+g+b) 
no matter  
what  
jumps 
are  
used 



We saw this: 
(3,4)-cage 
(3,6)-cage 
 
Theorem proves 
girth is at most 6. 



Corollary: 
If the underlying small graph G has this as 
a subgraph then the girth is at most 12. 



Sunshine graphs have a bad barbell and 
this limits the girth to 16: 



Programs use BFS to determine girth 
and to compute for a small graph on n 
vertices a lower bound on p for the 
girth g where the big graph has n*p 
vertices. 
 
An exponential backtrack is currently 
being used to try and assign jumps. 
 



Future work: 

1.  3-regular cages- see Gordon 
Royle’s page for open cases. 

2.  Cages: See survey by P. K. Wong. 

3.  Constructions for “small” graphs 
of large girth. 

4. Backtrack to solve other problems. 

5. Non-uniform voltage graphs. 


