Walking the faces of non-orientable embeddings: Edges with sign -1 are red.

$0: 153$
$1: 042$
$2: 153$
$3: 042$
$4: 153$
$5: 042$

Consider a rotation system that has a vertex v with the neighbours listed in clockwise order as: $v: u_{0}, u_{1}, u_{2}, \ldots, u_{d}$

This vertex is incident to d gaps and the gaps correspond to corners of the faces it is on.

The gaps for v are:
$g_{0}:\left(u_{0}, v, u_{1}\right)$
$g_{1}:\left(u_{1}, v, u_{2}\right)$
$g_{d-1}:\left(u_{d-1}, v, u_{d}\right)$
$g_{d}:\left(u_{d}, v, u_{0}\right)$
In our data structure we have made the (arbitrary) decision to store the gap information for g_{i} in array position i.

Each has a face number (corresponding to the face the gap is on) and a gap parity.
The gap parity is either +1 or -1 .
For each face, the gap where the face traversal starts is assigned gap parity +1 .

As the face is traversed, the current gap parity is:
-1 : if an odd number of -1 edges have been traversed so far
+1 : if an even number of -1 edges have been traversed so far.

Black gaps: parity +1 , traversing face caw by choosing the next neighbour in cw order.
Red gaps: parity -1, traversing cw by choosing the next neighbour in ccw order.

Gaps for blue face:
$(1,0,5)$
$(0,5,4)$
$(5,4,3)$
$(4,3,2)$
$(3,2,1)$
$(2,1,0)$

Gaps for purple face:
$(0,1,4)$
$(1,4,3)$
$(4,3,0)$
$(3,0,1)$

Black gaps: parity +1 , traversing face ccw by choosing the next neighbour in cw order.
Red gaps: parity -1, traversing cw by choosing the next neighbour in ccw order.

Theorem: Each face of an embedding has an even number of -1 edges.

Proof:

The face traversal starts with a record $[(u, v),+1]$ and does not end until revisiting $[(u, v),+1]$.

Since the final sign is +1 , an even number of -1 edges were traversed.

Euler genus $g=(2-n+m-f)$

0 plane, 1 projective plane, 2 torus if orientable and Klein bottle if non-orientable
http://www.map.mpim-bonn.mpg.de/2-manifolds

Klein bottle: non-orientable genus 2

The face number and gap parity information enables us to compute the change to the Euler genus (if the surface is actually orientable, the Euler genus is 2 times the non-orientable genus) that results from adding an edge into two gaps in O (1) time:

If the two gaps are on the same face:
If the gap parities are the same: no change +1 edge genus increases by +1 with a -1 edge.
If the gap parities are different: -1 edge, genus is the same, +1 edge, genus increases by 1 .

If the two gaps are on different faces: the change is +2 .

Initialization:

for ($\mathbf{i = 0 ; ~} \mathbf{i}<\mathrm{n} ; \mathbf{i + +}$)
\{
for ($\mathrm{j}=0$; j < degree[i]; j++) \{
face_num[i][j]= -1; // NULL gap_parity[i][j]= $0 ; / /$ NULL \}
\}

To walk all the faces:
nf= 0;
for ($\mathbf{i}=0 ; \mathbf{i}<\mathrm{n} ; \mathrm{i}++$)
\{
for ($\mathrm{j}=0$; j < degree[i]; j++)
\{
if (face_num[i][j]== -1)
\{
walk_face(i, j, nf,
n, degree, G, sign, face_num, gap_parity); nf++

\}

\}
\}
// Walk a face assigning my_face_num to the gaps. // Start with gap for vertex u and jth
// neighbour of u.
int walk_face(int start_u, int start_pos, int my_face_num, int n, int degree[NMAX], int G[NMAX][NMAX], int sign[NMAX] [NMAX], int face_num[NMAX][NMAX], int gap_parity[NMAX][NMAX])
\{
int u, v, w, first_u, first_v; int direction, pos;
u= G[start_u][start_pos];
v= start_u;
direction= 1;
first_u= u;
first_v= v;
\#if DEBUG
printf("Face \%2d: \n",
my_face_num) ;
\#endif
do

\{

\#if DEBUG printf("[(\%3d, \%3d), \%2d]\n", u, v, direction);

\#endif

for (pos=0; pos < degree[v]; pos++) \{

if (G[v][pos]== u) goto found;

```
}
printf("Error- neighbour %3d of %3d not found\n",
    u, v);
exit(0);
```

found:

found:

if (direction == 1)
\{
face_num[v][pos]= my_face_num; gap_parity[v][pos]= direction;
\}
pos+= direction; pos= (pos + degree[v]) \% degree[v];
if (direction == -1)
\{
face_num[v][pos]= my_face_num; gap_parity[v][pos]= direction; \} direction *= sign[v][pos];
$\mathrm{w}=\mathrm{G}[\mathrm{v}][\mathrm{pos}]$; $\mathrm{u}=\mathrm{v}$; $\mathrm{v}=\mathrm{w}$;
\} while (first_u != u || first_v != v || direction $!=1$;

Face 0:
$[(1,0), 1]$
$[(0,5), 1]$
$[(5,4), 1]$
$[(4,3), 1]$
$[(3,2), 1]$
$[(2,1), 1]$
Face 1:
$\left.\begin{array}{rr}{[(5,} & 0), \\ {[(0,} & 1]\end{array}\right]$
$[(3,2),-1]$
$[(2,5), 1]$

Face 2:
$[(3,0), 1]$
$[(0,1), 1]$
$[(1,4),-1]$
$[(4,3),-1]$
Face 3:
$[(4,1), 1]$
$[(1,2), 1]$
$[(2,5),-1]$
$[(5,4),-1]$

Final data structures:
u(degree)
Then for each neighbour u:
[v, sign(u,v), face_num gap_parity]
$0(3):[1,+, 0+][5,+, 1+][3,-, 2+]$ 1(3): $[0,+, 2+][4,-, 3+][2,+, 0+]$ $2(3):[1,+, 3+][5,-, 1-][3,+, 0+]$
$3(3):[0,-, 2-][4,+, 0+][2,+, 1-]$
$4(3):[1,-, 3-][5,+, 0+][3,+, 2-]$
$5(3):[0,+, 0+][4,+, 3-][2,-, 1+]$

$$
\begin{array}{ccccccccc}
5 & & & & & & & & \\
4 & 1 & 1 & 2 & 1 & 3 & 1 & 4 & 1 \\
4 & 0 & 1 & 4 & 1 & 3 & -1 & 2 & 1 \\
4 & 0 & 1 & 1 & 1 & 4 & -1 & 3 & 1 \\
4 & 0 & 1 & 2 & 1 & 1 & -1 & 4 & 1 \\
4 & 0 & 1 & 3 & 1 & 2 & -1 & 1 & 1
\end{array}
$$

Face 1:
$[(2,0), 1]$
$[(0,3), 1]$
$[(3,2), 1]$
Face 2:
$[(3,0), 1]$
$[(0,4), 1]$
$[(4,3), 1]$
Face 0:
$[(1,0), 1]$
Face 3:
$\begin{array}{ll}{[(0,2),} & 1] \\ {[(2,} & 1), \\ 1]\end{array}$

Face 4:
$[(4,1), 1]$
$[(1,3),-1]$
$[(3,2),-1]$
$[(2,4), 1]$
Face 5:
$[(3,1), 1]$
$[(1,2), 1]$
$[(2,4),-1]$
$[(4,3),-1]$

$0(4):[1,+, 0+][2,+, 1+][3,+, 2+][4,+, 3+]$ 1(4): $[0,+, 3+][4,+, 4+][3,-, 5+][2,+, 0+]$ $2(4):[0,+, 0+][1,+, 5+][4,-, 4-][3,+, 1+]$ $3(4):[0,+, 1+][2,+, 4-][1,-, 5-][4,+, 2+]$ 4(4): $[0,+, 2+][3,+, 5-][2,-, 4+][1,+, 3+]$

