Walking the faces of non-orientable
embeddings: Edges with sign -1 are red.



Consider a rotation system that has a vertex
v with the neigbours listed in clockwise order as:
Vi Ug, Uy, Uy, ..., Uy

This vertex is incident to d gaps and the gaps
correspond to corners of the faces it is on.

The gaps for v are:
9o (U, v, Uy)

a;: (U, v, U,) In our data structure we have

made the (arbitrary) decision
to store the gap information

4 (ugq, v, u : TRUNI
9d-1* (Ugg d) for g; in array position i.

94+ (Ug, V. Uo)



Each has a face number (corresponding to the face
the gap is on) and a gap parity.
The gap parity is either +1 or -1.

For each face, the gap where the face traversal
starts is assigned gap parity +1.

As the face is traversed, the current gap parity is:

-1:if an odd number of -1 edges have been
traversed so far

+1: if an even number of -1 edges have been
traversed so far.



Black gaps: parity +1, traversing Gaps for blue face:
face ccw by choosing the next (1,0, 5)

neighbour in cw order. (0,5, 4)
Red gaps: parity -1, fraversing (5’ 4’ 3)
cw by choosing the (4.3, 2)
next neighbour in ccw order. (3.2 1)
a (2.1,0)

c b Gaps for purple face:
$ o 0,1,4)
(1,4, 3)
(4, 3,0)

) ¢ (3,0,1)



Black gaps: parity +1, traversing face ccw by choosing the
next neighbour in cw order.

Red gaps: parity -1, traversing cw by choosing the

next neighbour in ccw order.




Theorem: Each face of an embedding has an even
number of -1 edges.

Proof:

The face traversal starts with a record
[(u, v), +1] and does not end until revisiting

[(u, v), +1].

Since the final sign is +1, an even number of -1
edges were traversed.



Euler genus g= (2-n+m - f)
O plane, 1 projective plane, 2 torus if orientable
and Klein bottle if non-orientable

http://www.map.mpim-bonn.mpg.de/2-manifolds

Klein bottle:
non-orientable genus 2



The face number and gap parity information
enables us to compute the change to the

Euler genus (if the surface is actually orientable,
the Euler genus is 2 times the non-orientable
genus) that results from adding an edge into two
gaps in O(1) time:

If the two gaps are on the same face:

If the gap parities are the same: no change +1 edge
genus increases by +1 with a -1 edge.

If the gap parities are different: -1 edge, genus is
the same, +1 edge, genus increases by 1.

If the two gaps are on different faces:
the change is +2.



Initialization:

for (i=0; i < n; i++)
{
for (§j=0; j < degree[i]; j++)

{
face_num[1][j]l= -1; // NULL

gap_parity[i]l[jl= 0; // NULL
}
}



To walk all the faces:

nf= O0;
for (1=0; 1 < n; 1++)
{

for (3j=0; jJ < degree[1]; J++)
{

if (face_num[i][j]== -1)
{
walk_face(i, j, nf,
n, degree, G, sign,
face_num, gap_parity);
nf++



// Walk a face assigning my_face_num to the gaps.

// Start with gap for vertex u and jth

// neighbour of u.

int walk_face(int start_u, int start_pos,
int my_face_num,
int n, 1nt degree[NMAX], 1nt G[NMAX][NMAX],
int si1gn[NMAX] [NMAX]
int face num[NMAX][NMAX]
int gap_parity[NMAX] [NMAX])

int u, v, w, first_u, first_v;
int direction, pos;



u= G[start_u][start_pos];
v= start_u;
direction= 1;

first_u= u;
first_v= v;

#1f DEBUG

printf("Face %2d: \n'",
my_ftace_num) ;
#endif



do

1
#if DEBUG

printf("[(%3d, %3d), %2d]\n",
u, v, direction);
#endif

for (pos=0; pos < degreel[v]; pos++)

{
if (G[v][pos]== u) goto found;

printf("Error- neighbour %3d of %3d not found\n",
u, vJ;
exit(0);

found:



found:
1f (direction == 1)
{
face_num[v] [pos]= my_face_num;
gap_parity[v] [pos]= direction;
¥

pos+= direction;
pos= (pos + degreel[v]) % degreel[v];



1f (direction == -1)
{
face_num[v] [pos]= my_face_num;
gap_parity[v] [pos]= direction;
}

direction *= sign[v][pos];
w= G[v][pos]; u=v; v=w;

} while (first_u != u |
first_v = v |
direction I=

|
|
1) ;
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Face 2:
(3, 0),
(0, 1),
(1, 4),
(4, 3),

_ Face 3:

(4, 1),
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(2, 5),
(5, 4),




Final data structures:

u(degree)
Then for each neighbour u:
[v, sign(u,v), face_num gap_parity]

0(3) :11 +, O+: :5! +, 1+: 3! Ty
1(3) : :O! +, 2+: :4! Ty 3+: _2 y T,
2(3) :1! +, 3+: :57 Ty 1_: :3! +,
3(3) :O! Ty 2_: :4! +, O+: -27 +,
4(3) :1! Ty 3_: :5! +, O+: 3! +,
5(3) :O! +, O+: :4! +, 3_: 2! Ty
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