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ABSTRACT
The Lightning Network (LN) is a second layer technology for solv-

ing the scalability problem of blockchain-based cryptocurrencies

such as Bitcoin. The LN nodes (i.e., LN users), linked by payment

channels, can make payments to each other directly or through

multiple hops of payment channels, subject to the available bal-

ances of the serving channels. In current LN implementation, the

channel capacity (i.e., the sum of the bidirectional balances in the

channel) is open to the public, but the bidirectional balances are

kept secret for privacy concerns. Nevertheless, the balances can be

directly measured by conducting multiple fake payments to probe

the precise value of the balance. Such a method, while effective,

creates many fake invoices and incurs high cost when used for

discovering balances for multiple users.

We present a novel non-intrusive balance tomography (NIBT)
method, which infers the channel balances by performing legal

transactions between two pre-created LN nodes. NIBT iteratively

reduces the balance ranges and uses an efficient balance inference

algorithm to find the optimal payment in each iteration to cut off

the maximum balance ranges. Experimental results show that NIBT

can accurately infer about 92% of all covered balances with an

extremely low cost.

CCS CONCEPTS
• Security andprivacy→ Spoofing attacks; Pseudonymity, anonymity
and untraceability; •Computingmethodologies→Optimization
algorithms.

KEYWORDS
Cryptocurrency; Blockchain; Lightning network; Network tomog-

raphy

1 INTRODUCTION
As blockchain-based cryptocurrencies, such as Bitcoin [17] and

Ethereum [27], have been widely adopted today, the number of

cryptocurrency-based transactions increases in a fast pace. Due to

the inherent feature of decentralization, however, blockchain-based

cryptocurrencies often rely on some global algorithms, such as

Proof-of-Work consensus algorithm [8], to confirm each transaction.

This greatly limits the transaction rate within tens of transactions

per second whereas other traditional payment networks such as

Visa can support peaks of up to 47, 000 transactions per second [24].

To address the scalability issue of blockchain, extensive work has

been done in the past years in several orthogonal directions [13].

Among them, payment channel network (PCN) [19], which carries

out transactions off-chain, is one of the most promising propos-

als. Users, who would like to make payments over a PCN, open

payment channels to PCN and lock a certain mount of fund as a

deposit secured by a smart contract. Then payments are made by

re-adjusting the fund allocation on the channels. These channels

form a network in which payments can be routed between any

two users (under constraints which will be disclosed later). Most

transactions on PCN can be made off-chain without involving the

main blockchain except some special situations, e.g., i) channel

establishment, ii) channel close-out, and iii) the rare events of non-

cooperative behaviors (e.g., dispute). Thus, the payment overhead

on the main blockchain can be drastically reduced.

Currently, several fully-fledged PCN systems have been designed

[3, 4, 19]. Among them, the Lightning Network (LN) [19] is recog-

nized as the most prominent PCN in the Bitcoin community. LN not

only significantly improves the scalability of Bitcoin blockchain,

but also enables users to perform payments privately with low or

negligible fees. To make a tradeoff between the routing efficiency

and the user privacy, LN on one hand publishes the channel ca-

pacity (i.e., the sum of the bidirectional balances in the channel)

together with the IP address of each LN node, but on the other

hand preserves the balance of each node on the channel and applies

onion-routing protocol [5]. With onion-routing, users other than

the payer and the payee do not know who pays to whom; they

only know from whom the payment is received (i.e., the immediate

upstream neighbor) and to whom the payment should be forwarded

(i.e., the immediate downstream neighbor). An illustrative example

of the LN is shown in Fig. 1.

The balances of the channels are critical information in LN. On
the positive side, this information may help users quickly search

for feasible payment paths [20, 21, 28]. In addition, it can facilitate

the detection of unbalanced channels (i.e., a channel is said unbal-

anced when one balance is much higher than the other), which

can severely hinder the liquidity of LN [6, 22]. On the negative side,
this information discloses the privacy of users, and can be used by

misbehaving users to lock down other users’ balances to obtain a

dominant position in LN [18]. Moreover, a recent study shows that it
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Figure 1: Example of the Lightning Network: the payment
channel between user 𝑈𝑖 and 𝑈 𝑗 includes the balance of 𝑈𝑖

(denoted by 𝐵𝑖 𝑗 ) and the balance of 𝑈 𝑗 (denoted by 𝐵 𝑗𝑖 ). The
channel capacity 𝐶𝑖 𝑗 is defined as 𝐶𝑖 𝑗 = 𝐵𝑖 𝑗 + 𝐵 𝑗𝑖 . 𝐶𝑖 𝑗 is made
open to the public but the balance of each user is private.
The payer𝑈1 can send payment of amount 𝑡 to the payee𝑈4

via the path 𝑈1 → 𝑈2 → 𝑈3 → 𝑈4 only if 𝐵12, 𝐵23, 𝐵34 all are
higher than 𝑡 .
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Figure 2: Direct measurement on channel balances [10].

would be possible to track payments from the sender to the receiver,

thereby breaking relationship anonymity and value privacy, should

the balance information be disclosed to the public [23]. Weighing

the benefits and the damages, LN hides the balance information as

its current practice.

Nevertheless, it is not difficult to disclose channels’ balances. In

this regard, the onion-routing policy of LN is actually a double-

edged sword. It protects the privacy of the payer and payee, but in

themeanwhile provides attackers with opportunities to discover the

balances of channels [10]. As shown in [10], attackers can directly

measure an unknown balance of a payment channel by executing

multiple fake payments. In the example illustrated in Fig. 2, assume

that the attacker𝑀 wants to discover the balance 𝐵𝐴𝐵 . It first opens

a payment channel with 𝐴, and conducts three fake payments to

𝐵, which carried 0.01, 0.02, 0.03 BTC, respectively. The first two

payments arrive at 𝐵, but 𝐵 cannot redeem them due to the incorrect

payment hash. Thus, 𝐵 returns an error message to 𝐴 which then

forwards it to𝑀 . The third payment cannot go through 𝐴 due to

the insufficient balances of 𝐵𝐴𝐵 (i.e., 𝐵𝐴𝐵 < 0.03 BTC). In this case,

𝐴 returns a message indicating “InsufficientFunds” to 𝑀 . In this

way, 𝑀 can determine that the balance 𝐵𝐴𝐵 is between 0.02 BTC

and 0.03 BTC. Such balance discovery attack is quite simple but

effective since it is not easy to trace back to𝑀 due to the protection

with onion-routing [10].

Note that “attackers” who would like to detect the balances of

channels may not necessarily have malicious purpose. Instead, “at-

tackers” may use the balance information for the social well-being,

e.g., solving the unbalanced channel problem. However, either from

a malicious purpose’s view or from a well-intentioned purpose’s

view, measuring the channels directly by extensive fake payments
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Figure 3: Infer channel balances with non-intrusive balance
tomography.

may be problematic for the following reasons: (1) Intrusive, abun-
dant fake payments may not only disturb the normal transactions

of payees who lie behind the victim parties (i.e. user B in Fig. 2), but

also cause dishonesty concerns; (2) Inefficient, to obtain one bal-

ance of a channel, “attackers” need to perform tens of iterations in

average, consuming nearly one minute; (3) Expensive, to measure

the balances on multiple nodes, “attackers” have to open multiple

channels, each of which connects to one node, generally causing

high fees in channel opening [1].

To avoid above issues, we exploit an indirect way to infer chan-
nel balances based on legal payments, which are routed through the

victim channels. More specifically, we use a pair of accounts, con-

necting to LNwith two payment channels, and perform transactions

between our two accounts to infer all the intermediate balances

of channels that covered by the transactions. The two accounts

could be created by the same attacker or by two collusive attackers.

The payment is made from one attack account to the other attack

account just like transferring money from the left hand to the right

hand of the same person. By doing this, balances information can

be obtained silently - without any abnormal events, efficiently - all

covered balances are inferred simultaneously, and economically -

only need to open two channels.We name this method non-intrusive
balance tomography (NIBT), and the framework is shown in Fig. 3.

In summary, this paper makes the following contributions:

• We pioneer the use of network tomography [26] for inferring

the channel balances in LN. Through conducting legitimate
payments between our two accounts, we infer the balances

using the results of these payments: if a payment is suc-

cessfully fulfilled, all balances along the payment paths are

larger than the payment amount; Otherwise, the balance

of the channel that failed the payment is smaller than the

payment amount. Thus, balance inference incurs min-type

operations and is more challenging than existing network

tomography research that studied additive metrics, such as

delay and traffic rate [15, 26], where the value of a path is

the total value of all the links on the path.

• We design an adaptive payment strategy to infer all covered

balances accurately and efficiently. For a given path set be-

tween the two accounts, we compute an optimal payment on

each of the path that can mostly cut off the current possible

ranges of balances, and conduct the payment sequentially

on the optimal path to shrink the ranges of balances to their

minimum. To accelerate the algorithm, we prove that the

gain function is a piece-wise concave function, based on

which binary search can be applied to search for the global

optimal solution.



• We evaluate NIBT with simulation over real Lightning Net-

work topology. Experimental results show that NIBT can

accurately infer about 92% of all covered balances simulta-

neously with the cost less than 4 USD in total. Besides, it

can also discover 94% and 98% of the slightly and seriously

unbalanced channels, respectively.

2 BACKGROUND AND RELATEDWORK
2.1 The Lightning Network (LN)
LN is built on top of the bitcoin blockchain. It is a peer-to-peer

network, where nodes can make transactions with each other with-

out involving the main blockchain. Each node in LN is linked by

payment channels. To initiate a payment to a remote node, the payer

has to i) discover a feasible route to the recipient, ii) generate a secu-
rity key to protect the funds from nodes along the path, iii) transfer

the funds to its neighbouring node by adjusting the two balances
in their payment channel.

2.1.1 Payment Channel. A payment channel between two bitcoin

parties can be established by both parties depositing a certain

amount of funds into a joint account with 2-by-2 multi-signature

address. The total deposited funds is called the channel capacity.
Once a payment channel is established, both parities, who share

the payment channel, register an actual Bitcoin transaction on the

Bitcoin blockchain and then announce it to the rest of LN.

2.1.2 Balances in Payment Channels. The actual transferring abil-

ity of a payment channel is determined by how the funds are dis-

tributed between the two parties. The division of the funds between

party A and party B is called the balance of A and the balance of B,

respectively. Assume A’s balance is 𝐵𝑎 . Then A can make a payment

to B with an amount 𝑃𝑎 as long as 𝑃𝑎 ≤ 𝐵𝑎 . After the transaction,

the balance of A will be decreased by 𝑃𝑎 while the balance of B

will be increased by the same amount. The total capacity of the

payment channel remains unchanged and is known in the whole

LN. Nevertheless, the balances of both parties are secretly preserved

for the sake of privacy.

2.1.3 Routing in LN. LN adopts a source routing policy. Any user,

who would like to make a payment to another user other than its

direct neighbor, should find a feasible routing path, and pay a small

fee to the intermediate nodes on the path. Payments on the paths

are conducted with the onion-routing protocol [9]. In addition,

LN includes mechanisms to protect the security and ensure the

atomicity of transactions [19].

2.2 Criticality of Channel Balances
In present LN specifications [19], the balances on both directions

of a channel are considered private information as disclosing this

information to public may allow a malicious user to launch various

attacks.

• Lockdown attack: The goal of the lockdown attack is to

block one or more Lightning nodes in multipath payments,

in order to win a dominant position in LN [18]. With the

exact balance information, misbehaving nodes can make

several payments that go through the victim nodes to use

up all balances of these nodes, hence limiting the capability

of these nodes in relaying payments.

• Payment retrospect: LN performs onion routing for each

payment to protect the privacy of payers and payees. By

monitoring the variations of the real-time balances, it is not

difficult to reconstruct the whole path of each payment [11].

On the other hand, the absence of knowledge of channel bal-

ances may, to a certain degree, degrade the performance of certain

functionalities of LN.

• Inefficient routing: To make a payment to a recipient, the

payer should find a feasible path with sufficient funds route

the payment. Without the knowledge of balances, the payer

may select an infeasible path (i.e., a path on which there is

a channel with insufficient balance). As a result, the payer

may have to try several paths before he finds a feasible one.

• Skewed channels: A skewed channel means one balance

in the channel is much higher than the other. The skewed

channel is generally formed when the payment flows from

one direction are more than the other direction. If such a

situation lasts for a long time, one balance in the channel

will become zero, which means no payment flow can go

through from this direction. The skewed channels seriously

hinder the liquidity of LN, and cause other concerns as stated

in [22][6]. The absence of balance informationmakes skewed

channels invisible, and impede routing strategies from fairly

allocating payment channels.

2.3 Challenges in Inferring Balances
A channel’s balance can be inferred by repeatedly probing the

channel with multiple payments of different amounts [10]. At a first

glance, probing balances of a channel may seem like bandwidth

inference in traditional computer networks. Unfortunately, the

balance inference problem in LN is more challenging than the

bandwidth inference problem as explained below.

2.3.1 Cost. In the balance inference problem one needs to open

at least one payment channel in LN, deposit enough funds in the

channel and make multiple payments. These operations impose

three kinds of cost [12]: (1) the transaction fee of opening and

closing channels, (2) the routing fee collected by intermediate LN

nodes once the payments have been fulfilled, and (3) the potential
loss for locking funds in the channel. An efficient balance inference

method should minimize the overall cost. Among the above three,

the first cost (about 1.53 USD
1
per channel) dominates the second

cost (about 1.09 × 10
−6

USD per-hop per-USD transfer). The third

cost is difficult to evaluate because it totally depends on how you

invest the locked funds in other places. Hence, we only consider

the first two costs in the paper.

2.3.2 Constraint on the Maximum Payment. LN limits the maxi-

mum amount one can transfer in a single payment to about 0.043

BTC, and the maximum amount one can put in a channel (i.e. the

1
In LN, the cost is calculated in the unit of satoshis. In the paper, we use the market

price as of May 25, 2020 for cost estimation, which is 1 satoshis = 8.8982 × 10
−5

USD.

The first cost is estimated according to the averaged transaction fee from Feb 25, 2020

to May 25, 2020 [1].



maximum channel capacity) to about 0.167 BTC [19]. These con-

straints make it difficult to infer the exact balances of a channel

with large capacity.

2.3.3 Balance Dynamics. Once a payment is successfully delivered,

all the balances of the channels on the payment path will decreases

accordingly by the payment amount. Therefore, unrestricted prob-

ing payments may lead to extensive skewed channels, which may

block the normal transactions as well as the subsequent probings.

In addition, the inferred results may become meaningless if the

inference process alters the values of balances.

2.3.4 Dishonesty Concerns. Recent work propose several balance

disclosure solutions [10, 23, 25]. All these solutions conduct many

fake payments in order to reduce the cost and keep balances un-

changed. Although, at the present, LN specification does not specify

any punishment for making such fake payments, there is no reason

to believe that the LN community is not concerned when facing

spikes of fake payments.

We aim to tackle all the above challenges, and design an efficient

balance inference approach, which has low cost, can infer large

balances, does not change current balances and, above all, generates

no fake payments (i.e., non-intrusive).

3 NON-INTRUSIVE BALANCE TOMOGRAPHY
3.1 Overview
We design a novel balance inference approach, NIBT, where we

generate two LN nodes (e.g., 𝑀1 and 𝑀2 as shown in Fig. 3) and

conduct end-to-end payments between the two nodes. This is the

first time that the concept of network tomography [26] is introduced

to this area and is modified to well address the above challenges

for balance inference in LN. In our new approach, we first open

two channels to connect the two nodes to LN. Next we search a

group of paths (refer to Section 4.1 for details of path construction)

between the two nodes to form a candidate path set. For each

path, we calculate an optimal payment amount that can obtain the

most balance information on that path. Among all paths, we select

the path that can gain the most balance information and conduct

payment with the optimal amount on this path. Finally, we update

the balance distributions according to the result of the payment.

The whole process repeats until the number of payments exceeds a

given budget or we cannot obtain any more balance information.

Remark 1. It is worthy noting a subtle detail in the initial stage
when the two monitor nodes establish channels in LN. Their connected
nodes may not deposit any funds in the channels! For example, in Fig. 3,
the balance from𝑈1 to𝑀1 and the balance from𝑈4 to𝑀2 may both be
zero in the beginning, and in this case a payment from𝑀1 to𝑀2 would
not be possible. This is the so-called inbound capacity problem [14],
which may exist for any newly built channel. The problem can be
easily solved with various methods, e.g., our two accounts can increase
the inbound capacity by spending in LN [14].

Now we explain why our approach can tackle the challenges of

balance inference in LN.

• Low cost: As mentioned earlier, among the three kinds of

cost for performing balance inference, the fees for opening

and closing channels dominate the others. Compared to the

direct probingmethod (shown in Fig. 2) that attacks one node

with one channel [10], we just need to open two channels in

total to infer all balances covered by our payment paths.

• Non-interference in current balances: A successful pay-

ment changes the balances of the channels on the payment

path. To restore the balances, we require the recipient quickly

refund the sender using the reverse path.

• Non-intrusive for other LN nodes: All payments that we

use for balance inference are legal payments without any

misbehavior. In addition, since our method does not interfere

the current balances, it causes no disturbance on LN users’

transactions.

• Applicable for large channels:All existing approaches for
balance disclosure conduct fake payments to probe the chan-

nels. It is impossible for these methods to probe the channels

whose balances exceed the maximum amount allowed in

one payment (0.043 BTC). This is because they do not create

any successful payment and thus cannot accumulate mul-

tiple payment amounts to probe a large balance. With our

approach, we can let the recipient node hold multiple pay-

ments simultaneously and then pay back the payments to

the sender node after the information of the large balance

has been probed.

3.2 Analysis and Problem Formulation
We model LN with a directed graph 𝐺 (𝑁, 𝐸), where 𝑁 is the set

of LN users and 𝐸 is the set of channels between the users. For

a channel between user 𝑎 and user 𝑏, 𝑏𝑎𝑏 represents the balance

from the user 𝑎 to user 𝑏. 𝑐𝑎𝑏 = 𝑏𝑎𝑏 + 𝑏𝑏𝑎 represents the capacity

of the channel. 𝑢𝑎𝑏 and 𝑙𝑎𝑏 denote the upper and the lower bounds

of balance 𝑏𝑎𝑏 , respectively.

As shown in Fig. 3, 𝑀1 and 𝑀2 are our two monitoring nodes,

which connect to LN and make payments to each other to discover

channel balances. A path 𝑝𝑖 = {𝑒𝑖
1
, · · · , 𝑒𝑖𝑛𝑖 } includes a set of chan-

nels that carry a payment from one monitor to the other monitor.

We use 𝑏𝑖
𝑘
and 𝑐𝑖

𝑘
to denote the corresponding balance (i.e., the bal-

ance along the path direction from the sender to the recipient) and

the capacity of channel 𝑒𝑖
𝑘
, respectively. The upper bound and the

lower bound of 𝑏𝑖
𝑘
is represented by 𝑢𝑖

𝑘
and 𝑙𝑖

𝑘
, respectively.

Remark 2. We do not need to infer the balances on the two channels
directly connected to the two monitors, e.g., in Fig. 3 the balance from
𝑀1 to node𝑈1 and the balance from𝑈4 to𝑀2, as these balances are
known to the monitors. Hence, 𝑝𝑖 = {𝑒𝑖

1
, · · · , 𝑒𝑖𝑛𝑖 } does not include the

first and the last channels.

To infer balances, the range of balances of the channels on path

𝑝𝑖 is shrunken by conducting payments on the path. We use an

indicate variable 𝑝𝑖 (𝑚) to denote the result of a payment on 𝑝𝑖 with

an amount𝑚, where 𝑝𝑖 (𝑚) = 0 means the payment has been suc-

cessfully fulfilled, and 𝑝𝑖 (𝑚) = 𝑘 (0 < 𝑘 ≤ 𝑛𝑖 ) means the payment

failed at the 𝑘-th channel. Note that LN offers the above information

to the sender (i.e., a payment is either successful or failed at an

intermediate channel).

Clearly, there is a correlation between the ranges of balances on

the path and the payment result 𝑝𝑖 (𝑚):



(1) 𝑝𝑖 (𝑚) = 0 if and only if all balances on the path are no

smaller than𝑚;

(2) 𝑝𝑖 (𝑚) = 𝑘 (0 < 𝑘 ≤ 𝑛𝑖 ) if and only if all balances before the

𝑘-th channel are no smaller than𝑚 and the balance of the

𝑘-th channel is smaller than𝑚.

Therefore, we can deduce the upper bounds and lower bounds

of balances on 𝑝𝑖 based on the payment result on the path. Given

a series of payment results P𝑖 (·) = {𝑝𝑖 (𝑚1), 𝑝𝑖 (𝑚2), · · · , 𝑝𝑖 (𝑚𝑡𝑖 )},
the lower bound and the upper bound of balance 𝑏𝑖

𝑘
(1 ≤ 𝑘 ≤ 𝑛𝑖 )

can be updated, respectively, by

𝑙𝑖
𝑘
= max

𝑝𝑖 (𝑚 𝑗 )=0 | |𝑝𝑖 (𝑚 𝑗 )>𝑘,1≤ 𝑗≤𝑡𝑖
𝑚 𝑗 , (1)

𝑢𝑖
𝑘
= min

𝑝 (𝑚 𝑗 )=𝑘,1≤ 𝑗≤𝑡𝑖
𝑚 𝑗 . (2)

Since the range of a balance may be reduced multiple times

during the inference process, based on the payment results of all

paths that traverse balance 𝑏𝑎𝑏 , the lower bound and upper bound

of balance 𝑏𝑎𝑏 can be updated, respectively, by

𝑙𝑎𝑏 = max

𝑏𝑖
𝑘
=𝑏𝑎𝑏 ,1≤𝑖≤𝑛

𝑙𝑖
𝑘

(3)

𝑢𝑎𝑏 = min

𝑏𝑖
𝑘
=𝑏𝑎𝑏 ,1≤𝑖≤𝑛

𝑢𝑖
𝑘
, (4)

where 𝑛 is the total number of candidate paths between the two

monitors.

To infer all balances accurately, we can conduct multiple pay-

ments with different payment amounts on all candidate paths and

shrink the distribution ranges of balances based on the payment

results. However, conducting too many payments not only takes

time, but also increases the routing fees. Therefore, given a can-

didate set of end-to-end paths P = {𝑝1, . . . , 𝑝𝑛} and a total budget

𝜂, we aim to shrink all balance ranges as much as possible. The

optimization problem is formulated as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
∑

𝑏𝑎𝑏 ∈e
(𝑢𝑎𝑏 − 𝑙𝑎𝑏 ) (5)

𝑠 .𝑡 .
∑

1≤𝑖≤𝑛
|P𝑖 (·) | ≤ 𝜂 (6)

𝑢𝑎𝑏 = min

𝑏𝑖
𝑘
=𝑏𝑎𝑏 ,1≤𝑖≤𝑛

𝑢𝑖
𝑘

(7)

𝑙𝑎𝑏 = max

𝑏𝑖
𝑘
=𝑏𝑎𝑏 ,1≤𝑖≤𝑛

𝑙𝑖
𝑘

(8)

Remark 3. (The budget 𝜂) As discussed in Section 2.3, the cost
for opening/closing channels in our method is fixed (i.e., fees for open-
ing/closing two channels). Hence, we only need to control the routing
fee. When setting a suitable budget 𝜂, we should also consider an-
other important factor, the time used for balance inference, which is
directly linked to the total number of payments (i.e., probes). For this
reason, we use the total number of (end-to-end) payments to control
the “budget" 𝜂, i.e., inequality (6). Since the per-hop transfer fee is ex-
tremely low, we can treat the routing fee for each end-to-end payment
roughly the same, and as such the 𝜂 value also well reflects the actual
monetary cost.

Due to the iterative bound update process, the optimization

problem (5) does not render an analytical solution. To tackle this,

we first calculate the optimal payment amount on each path that

1 2 3 ...M1 M2ni ni+1

(a) Payment amount m on path 𝑝𝑖 .

…

(b) Balance ranges on 𝑝𝑖 .

Figure 4: An example of path 𝑝𝑖 carrying payment amount
𝑚.

can cut off the most balance ranges (Section 3.3). Then we conduct

the payment and update the balance ranges based on the payment

result. The above steps are repeated until the number of payments

exceeds the budget 𝜂 or no balance ranges can be cut off further

(Section 3.4).

3.3 Optimal Payment on a Single Path
Before performing any measurement, we do not have any informa-

tion regarding the balances. As such, the best one can do is to follow

the “principle of insufficient reason" [7], i.e., “assigning uniform

prior distributions to unknown parameters". Using this principle,

we assume initially that the balance 𝑏𝑎𝑏 follows the uniform distri-

bution on the range [𝑙𝑎𝑏 , 𝑢𝑎𝑏 ]. The probability density function of

the balance 𝑏𝑎𝑏 is thus

𝑓 (𝑥) =
{

1

𝑢𝑎𝑏−𝑙𝑎𝑏 𝑙𝑎𝑏 ≤ 𝑥 ≤ 𝑢𝑎𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9)

When we start to conduct payments the probability density

function will be updated to a conditional probability function when

the payment results influence the distribution of the balance. Given

a payment amount 𝑚 on path 𝑝𝑖 = {𝑒𝑖
1
, · · · , 𝑒𝑖𝑛𝑖 }, the payment

result will influence the distribution of 𝑏𝑖
𝑘
if and only if both of the

following two conditions are satisfied:

(1) 𝑙𝑖
𝑘
< 𝑚 < 𝑢𝑖

𝑘
;

(2) 𝑝𝑖 (𝑚) = 0 or 𝑝𝑖 (𝑚) ≥ 𝑘 ;

In this case, the probability density function of𝑏𝑖
𝑘
will be updated

by

𝑓 (𝑥 |𝑝𝑖 (𝑚) = 0 𝑜𝑟 𝑝𝑖 (𝑚) > 𝑘) =
{

1

𝑢𝑖
𝑘
−𝑚 𝑚 ≤ 𝑥 ≤ 𝑢𝑖

𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(10)

or

𝑓 (𝑥 |𝑝𝑖 (𝑚) = 𝑘) =
{

1

𝑚−𝑙𝑖
𝑘

𝑙𝑖
𝑘
≤ 𝑥 ≤ 𝑚

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

Once any distribution of a balance on path 𝑝𝑖 is updated by a

payment result, we say that this payment on path 𝑝𝑖 can obtain a
gain. We use 𝐺𝑖 (𝑚) to denote the expected gain of the payment,

which is calculated by the expected length it can reduce from the

balance ranges on 𝑝𝑖 .



According to Remark 2, we do not need to consider the channels

directly connected to the monitors. Hence, the expected gain𝐺𝑖 (𝑚)
can be calculated by

𝐺𝑖 (𝑚) =𝐺𝑖
1
(𝑚) + 𝑝𝑟𝑜𝑏 (𝑏𝑖

1
≥ 𝑚)𝐺𝑖

2

+ · · ·
+ 𝑝𝑟𝑜𝑏 (𝑏𝑖

1
≥ 𝑚) · · · 𝑝𝑟𝑜𝑏 (𝑏𝑖𝑛𝑖−1

≥ 𝑚)𝐺𝑖
𝑛𝑖

(12)

where 0 ≤ 𝑝𝑟𝑜𝑏 (𝑏𝑖
𝑘
≥ 𝑚) ≤ 1, 1 ≤ 𝑘 ≤ 𝑛𝑖 is the probability

that payment amount𝑚 can go through 𝑏𝑖
𝑘
and 𝐺𝑖

𝑘
is the expected

gain on 𝑏𝑖
𝑘
. Suppose that the payment amount𝑚 splits the range of

balance𝑏𝑖
𝑘
on 𝑝𝑖 as shown in Fig. 4. The probability of 𝑝𝑟𝑜𝑏 (𝑏𝑖𝑘 ≥ 𝑚)

can be calculated by

𝑝𝑟𝑜𝑏 (𝑏𝑖
𝑘
≥ 𝑚) =

𝑢𝑖
𝑘
−𝑚

𝑢𝑖
𝑘
− 𝑙𝑖

𝑘

(13)

The expected gain that the payment amount𝑚 can obtain from 𝑏𝑖
𝑘

is

𝐺𝑖
𝑘
(𝑚) =

𝑢𝑖
𝑘
−𝑚

𝑢𝑖
𝑘
− 𝑙𝑖

𝑘

(𝑚 − 𝑙𝑖
𝑘
) +

𝑚 − 𝑙𝑖
𝑘

𝑢𝑖
𝑘
− 𝑙𝑖

𝑘

(𝑢𝑖
𝑘
−𝑚) (14)

=
𝑢𝑖
𝑘
−𝑚

𝑢𝑖
𝑘
− 𝑙𝑖

𝑘

· 2(𝑚 − 𝑙𝑖
𝑘
)

Then Eqn. (12) can be rewritten as

𝐺𝑖 (𝑚) =
𝑛𝑖∑
𝑘=1

2(𝑚 − 𝑙𝑖
𝑘
) ·

𝑘∏
𝑗=1

𝑢𝑖
𝑗
−𝑚

𝑢𝑖
𝑗
− 𝑙𝑖

𝑗

(15)

Denote each item in Eqn. (15) as:

𝐻 𝑖
𝑘
(𝑚) = 2(𝑚 − 𝑙𝑖

𝑘
) ·

𝑘∏
𝑗=1

𝑢𝑖
𝑗
−𝑚

𝑢𝑖
𝑗
− 𝑙𝑖

𝑗

(16)

In Eqn. (13)∼(16), ∀𝑘 : 1 ≤ 𝑘 ≤ 𝑛𝑖 , if 𝑚 < 𝑙𝑖
𝑘
, 𝑚 − 𝑙𝑖

𝑘
= 0 and

𝑢𝑖
𝑘
−𝑚

𝑢𝑖
𝑘
−𝑙𝑖

𝑘

= 1. If𝑚 > 𝑢𝑖
𝑘
,𝑚 − 𝑙𝑖

𝑘
= 𝑢𝑖

𝑘
− 𝑙𝑖

𝑘
and

𝑢𝑖
𝑘
−𝑚

𝑢𝑖
𝑘
−𝑙𝑖

𝑘

= 0.

Remark 4. When𝑚 exceeds the maximum payment amount al-
lowed in one payment (denoted by 𝑧),𝑚 will be split into multiple
sub-payments: 𝑧, 𝑧, . . . ,𝑚 − ⌊𝑚𝑧 ⌋ · 𝑧. Then 𝐺

𝑖 (𝑚) will be calculated
by summing up the gain of each sub-payments. To avoid redundancy,
we only present the partial algorithm and algorithm analysis based
on Eqn. (12) in this section, while the evaluations in Sec. 4 are carried
based on the full version of our algorithm.

Denoting 𝑢𝑖
𝑘
= min{𝑢𝑖

𝑗
}, 1 ≤ 𝑗 ≤ 𝑘 , we have ∀𝑘 : 1 ≤ 𝑘 ≤ 𝑛𝑖 ,

𝐻 𝑖
𝑘
(𝑚)

{
> 0 𝑙𝑖

𝑘
< 𝑚 < 𝑢𝑖

𝑘

= 0 Otherwise

(17)

Due to Eqn. (17), we define the interval (𝑙𝑖
𝑘
, 𝑢𝑖

𝑘
) as the effective

interval, denoted by 𝐸𝐼𝑘 , of the function 𝐻 𝑖
𝑘
(𝑚).

Let 𝑙𝑖 = min
𝑛𝑖
𝑘=1

𝑙𝑖
𝑘
and 𝑢𝑖 = max

𝑛𝑖
𝑘=1

𝑢𝑖
𝑘
. Clearly the interval

(𝑙𝑖 , 𝑢𝑖 ) is the widest range where 𝐺𝑖 (𝑚) may be positive. Sort the

values {𝑙𝑖
1
, 𝑢𝑖

1
, 𝑙𝑖

2
, 𝑢𝑖

2
, · · · , 𝑙𝑖𝑛𝑖 , 𝑢

𝑖
𝑛𝑖
} in the ascending order. Then these

ordered values can divide (𝑙𝑖 , 𝑢𝑖 ) into at most 2×𝑛𝑖−1 sub-intervals,

which are denoted by 𝜆𝑖 = {𝜆𝑖
1
, 𝜆𝑖

2
, · · · , 𝜆𝑖

2×𝑛𝑖−1
}. Each sub-interval

𝜆𝑖
𝑗
falls in one of the following three (exclusive) cases:

(1) |𝜆𝑖
𝑗
| = 0, i.e., 𝜆𝑖

𝑗
is a point.

(2) |𝜆𝑖
𝑗
| > 0 and ∀𝑘,𝑚 : 1 ≤ 𝑘 ≤ 𝑛𝑖 ,𝑚 ∈ 𝜆𝑖𝑗 , 𝐻

𝑖
𝑘
(𝑚) = 0.

(3) |𝜆𝑖
𝑗
| > 0, there exist some non-empty set 𝐴𝑖

𝑗
⊆ {1, 2, · · · , 𝑛𝑖 },

such that ∀𝑘,𝑚 : 𝑘 ∈ 𝐴𝑖
𝑗
,𝑚 ∈ 𝜆𝑖

𝑗
, 𝐻 𝑖

𝑘
(𝑚) > 0. In other words,

some 𝐻 𝑖
𝑘
(𝑚) are positive in the sub-interval 𝜆𝑖

𝑗
.

Clearly, for the first and the second cases,𝐺𝑖 (𝑚) = ∑𝑛𝑖
𝑘=1

𝐻 𝑖
𝑘
(𝑚) =

0. For the third case, ∀𝑚 : 𝑚 ∈ 𝜆𝑖
𝑗
,𝐺𝑖 (𝑚) =

∑𝑛𝑖
𝑘=1

𝐻 𝑖
𝑘
(𝑚) =∑

𝑘∈𝐴𝑖
𝑗
𝐻 𝑖
𝑘
(𝑚) > 0. Hence, in the third case, we call 𝜆𝑖

𝑗
as a positive

interval of 𝐺𝑖 (𝑚).

Proposition 1. 𝐺𝑖 (𝑚) is a strictly concave function with only
one maxima on its positive intervals.

The proof of Proposition 1 can be found in Appendix.

By Proposition 1, for each path, we can find the optimal payment

amount 𝑚∗ by searching the maximas on each positive intervals
and selecting the maximum value among all these maximas. On

each positive interval 𝜆𝑖
𝑗
, we use binary search to find the max-

ima. This requires 𝑂 (log |𝜆𝑖
𝑗
|) iterations. We name this process

𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑝𝑡𝐴𝑚𝑜𝑢𝑛𝑡 and omit its pseudo-code to save space.

3.4 Iterative Payment and System Update
3.4.1 Main Idea. After obtaining the optimal payment amounts

on each path, we can form the optimal gain set

G∗ = {𝐺1 (𝑚∗1),𝐺2 (𝑚∗2), · · · ,𝐺𝑛 (𝑚∗𝑛)}. Then we conduct the

paymentwith amount𝑚∗𝑖 on path 𝑝𝑖∗, where 𝑖∗ = arg max
𝑛
𝑖=1

𝐺𝑖 (𝑚∗𝑖 ).
This process is fullfiled with two functions 𝑜𝑝𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 and

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 . After that, we wait for the payment result.

Once a payment result 𝑝𝑖 (𝑚) has been observed, we update the

ranges of balances related to the payment result as follows:

(1) If 𝑝𝑖 (𝑚) = 0,

𝑙𝑖
𝑘
= max{𝑚, 𝑙

′𝑖
𝑘
}, 1 ≤ 𝑘 ≤ 𝑛𝑖 (18)

where 𝑙
′𝑖
𝑘
is the original lower bound of 𝑏𝑖

𝑘
.

(2) If 𝑝𝑖 (𝑚) = ℎ,

𝑙𝑖
𝑘
= max{𝑚, 𝑙

′𝑖
𝑘
}, 1 ≤ 𝑘 < ℎ (19)

and

𝑢𝑖
ℎ
= min{𝑚,𝑢

′𝑖
ℎ
} (20)

where 𝑢
′𝑖
ℎ
is the original upper bound of 𝑏𝑖

ℎ
.

If some balance ranges have been reassigned, we recompute the

optimal payment amount of the paths which cover the updated

balances.

Alg. 1 shows the pseudo-code of our non-intrusive balance to-

mography algorithm. The algorithm receives the candidate paths

set P and capacities of covered channels C as inputs, and outputs

the intervals of all balances I. Alg. 1 first initializes the intervals
of balances with their capacities C (line 1), i.e., the lower bound as

0 and the upper bound as the channel capacity. This initialization

also indicates that the intervals have been updated. The number

of payments is initially set to 0 (line 2). Then the algorithm starts

to find out the optimal payment and updates the intervals by the

payment result round by round until there is no payment that can

obtain any gain or the number of payments 𝑛𝑝 exceeds its threshold

(line 3∼14).



Algorithm 1: Non-Intrusive Balance Tomography (NIBT)

Input: P, C
Output: I

1 I← 𝑖𝑛𝑖𝑡 (𝑃,𝐶)
2 𝑛𝑝 ← 0

3 while𝑚𝑎𝑥 (𝐺 (𝑚∗)) > 0& 𝑛𝑝 ≤ 𝜂 do
4 P𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑓 𝑖𝑛𝑑𝑈𝑝𝑑𝑎𝑡𝑒 (I)
5 for 𝑝𝑖 ∈ P𝑢𝑝𝑑𝑎𝑡𝑒 do
6 EI𝑖 ← 𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒𝐼𝑛𝑡𝑣𝑙 (I, 𝑝𝑖 )
7 𝜆𝑖 ← 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐼𝑛𝑡𝑣𝑙𝑠 (EI𝑖 )
8 for 𝜆𝑖

𝑗
∈ 𝜆𝑖 do

9 [𝐺𝑎𝑖𝑛∗𝑖
𝑗
,𝑚∗𝑖

𝑗
] ← 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑝𝑡𝐴𝑚𝑜𝑢𝑛𝑡 (𝜆𝑖

𝑗
, I, 𝑝𝑖 )

10 [𝐺𝑎𝑖𝑛∗𝑖 ,𝑚∗𝑖 ] ← max𝜆𝑖
𝑗
(𝐺𝑎𝑖𝑛∗𝑖

𝑗
,𝑚∗𝑖

𝑗
)

11 [𝑝𝑖∗,𝑚∗𝑖 ] ← 𝑜𝑝𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 (𝐺𝑎𝑖𝑛∗1, · · · ,𝐺𝑎𝑖𝑛∗𝑛)
12 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 (𝑝𝑖∗,𝑚∗𝑖 )
13 I← 𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝑎𝑛𝑔𝑒 (𝑝𝑖∗,𝑚∗𝑖 , 𝑅𝑒𝑠𝑢𝑙𝑡)
14 𝑛𝑝 + +
15 return I

In the while loop, it first detects the changes in I and determines

the paths that cover these changes (line 4). Then for each path in

P𝑢𝑝𝑑𝑎𝑡𝑒 , it computes the EIs for each balances on the path (line 6),

and determines the positive interval set 𝜆𝑖 (line 7). On each interval

in 𝜆𝑖 , it searches for the maximum point of the gain function and

the corresponding payment amount, then assigns the maximum

gain with its payment amount to the the optimal payment on the

path (line 10). After updating the optimal gains of paths in P𝑢𝑝𝑑𝑎𝑡𝑒 ,
it finds out the path with the maximum gain over other paths and

conducts the optimal payment amount on the path (line 11). Finally,

the algorithm obtains the result of payment (line 12) and updates

the intervals of balances I with the result (line 13).

3.5 Analysis of Algorithm
3.5.1 Time Complexity. The most time-consuming step in Alg. 1

is searching the optimal payment amount in each positive interval

(line 9). The time complexity for calculating the gain of payment

along path 𝑝𝑖 is O(|𝑝𝑖 |), where |𝑝𝑖 | is the number of balances on

path 𝑝𝑖 . By Proposition 1, the gain function is concave on each

positive interval, and we can use binary search to locate the optimal

payment amount. Therefore, the maximum number of iterations

on interval 𝜆𝑖
𝑗
is log |𝜆𝑖

𝑗
|. Therefore, the maximum complexity for

searching an optimal payment amount on 𝜆𝑖
𝑗
is O(|𝑝𝑖 | · log |𝜆𝑖

𝑗
|). The

time complexity for searching the optimal payment amount among

all positive intervals is O(|𝑝𝑖 | · |𝜆𝑖 | · log |𝜆𝑖𝑚 |), where |𝜆𝑖𝑚 | is the
average length of positive intervals in 𝜆𝑖 . Suppose the maximum

number of payments is 𝜂 and the averaged number of paths that

need to be updated in each round is 𝑛. The overall time complexity

of Alg. 1 is O(𝜂 ·𝑛 · |𝑝𝑚 | · |𝜆𝑖 | · log |𝜆𝑖𝑚 |), where |𝑝𝑚 | is the averaged
length of the paths in P.

As the LN limits the maximum funds in each channel to 1.67×10
7

satoshis and themaximum path length to 20 hops, we have∀𝑖, |𝑝𝑖 | ≤
20 and |𝜆𝑖 | ≤ 39. In the worst case, ∀𝑖, 𝑗, |𝜆𝑖

𝑗
| = 1.67×10

7

39
= 4.28×10

5
.

Therefore, the worst time complexity of Alg. 1 is O(𝜂 · |P| · 20 · 39 ·
log(4.28 × 10

5)), i.e. O(1.5 × 10
4 · 𝜂 · |P|).

Nevertheless, the time complexity of Alg. 1 is extremely low

in practice for the following reasons. First, according to Sec. 3.5.2,

long paths are unlikely to be selected as candidate paths; Secondly,

the majority of the channels have small capacities [2]; Finally, our

experimental results demonstrate that the number of paths that

need to be updated in each round only takes up less than 10% of all

candidate paths in P. Experimental results in Sec. 4.2 show that it

only requires 5 seconds to search 5300 optimal payments over 200

candidate paths.

Furthermore, numerical results show that the probability that the

optimal payment amount falls in intervals other than the interval

with themaximummidpoint gain is very small (less than 5%). Hence,

the time complexity of Alg. 1 can be further reduced if we do not

always require the optimal payment amount.

Remark 5. When 𝜂 value is set very big, Alg. 1 may not perform 𝜂

payments and pre-terminates when no payment can create any gain.

3.5.2 Accuracy. For a given path 𝑝𝑖 , which covers balances

{𝑏𝑖
1
, 𝑏𝑖

2
, · · · , 𝑏𝑖𝑛𝑖 }, we use a set of 𝑛𝑖 intervals 𝐼

𝑖
𝑘
, 1 ≤ 𝑘 ≤ 𝑛𝑖 to

denote the ranges of the balances (after our inference) as follows:

∀𝑘 : 1 ≤ 𝑘 ≤ 𝑛𝑖 , 𝑏
𝑖
𝑘
∈ 𝐼 𝑖

𝑘
. Let 𝑦𝑖

𝑘
denote the minimum balance of the

first 𝑘 balances covered by path 𝑝𝑖 , i.e., 𝑦
𝑖
𝑘
= min{𝑏𝑖

1
, 𝑏𝑖

2
, · · · , 𝑏𝑖

𝑘
}.

Proposition 2. Suppose the original range of 𝑏𝑖
𝑘
is [𝑙𝑖

𝑘
, 𝑢𝑖

𝑘
] before

inference. Then, the expected length of the range after inference |𝐼 𝑖
𝑘
|

is inversely proportional to 𝑦𝑖
𝑘−1

and proportional to 𝑘 .

The proof of the above proposition can be found in the Appendix.

By the above proposition, Alg. 1 can obtain a higher accuracy if

the balances on most paths are in a descending order. In addition,

shorter paths are more likely to improve the accuracy. These in-

sights are used as heuristics in constructing candidate paths in the

next section.

Remark 6. Since we have two LN accounts, payments can always
be conducted in two directions. Therefore, even in the worst case that
all balances are in monotonically increasing order on one path, we
can easily construct the candidate path in its opposite direction.

4 PERFORMANCE EVALUATION
4.1 Experimental Settings
4.1.1 Lightning Topology. We generate the LN topology based on

the snapshot of LN taken on July 05, 2020. The whole network

includes 6072 nodes and 30026 payment channels.

4.1.2 Capacities and Balances. We generate the capacities of chan-

nels based on the public LN statistics [2], where the upper bound

of the capacity is 0.167 BTC. Once the capacity 𝑐𝑖 𝑗 for channel 𝑒𝑖 𝑗
is generated, the balance of one side 𝑏𝑖 𝑗 is then drawn from [0, 𝑐𝑖 𝑗 ]
following uniform distribution. The balance on the other side is

then set to 𝑏 𝑗𝑖 = 𝑐𝑖 𝑗 − 𝑏𝑖 𝑗 .

4.1.3 Candidate Paths. We create two nodes as our two LN ac-

counts, and connect them to LN by two payment channels. In order

to verify performance of NIBT under different candidate path sets,

we use two methods to connect our accounts to the LN nodes (1)



Connecting method #1 (CM#1): connect our two accounts to the

top two nodes that have the highest node degree; (2) Connecting

method #2 (CM#2): connect our two accounts to the top two nodes

that have the largest total channel capacity. We use three methods

to construct the paths between our two accounts: (1) Path construct-

ing method #1 (PCM#1): construct the top 𝑛 shortest paths; (2) Path

constructing method #2 (PCM#2): construct 𝑛 paths whose capac-

ities are (roughly) in descending order and their hops are as few

as possible; (3) Path constructing method #3 (PCM#3): randomly

construct 𝑛 paths. Hence, we form 6 candidate path sets as shown

in Tab 1.

We do not consider more intelligent path construction in this

paper. Nevertheless, even with candidate paths built with simple

heuristics (such as Candidate-1 and Candidate-2), we can obtain

good inference results. More intelligent path construction methods

are left as our future work.

4.1.4 Payments. Payments are conducted sequentially after the

result of the last payment is obtained. According to LN specification,

the maximum amount in one transaction is 0.043 BTC. Therefore,

when the conducted payment amount exceeds this value, we need

to divide the payment into several sub-payments each of which

carries an amount within 0.043 BTC.

4.1.5 Estimation of Cost. We estimate the cost for opening and

closing one channel as 1.72×10
4
satoshis (≈ 1.53 USD) according to

the averaged transaction fee from Feb 25, 2020 to May 25, 2020 [1].

The routing fee charged by intermediate nodes includes two parts:

a constant base fee that nodes charge per transfer and a flexible

additional fee that is proportional to the transferred amount. For

LN nodes, the default values for base fee and additional fee are 1000

msat (10
−3

satoshi) and 1 msat (10
−6

satoshi) per transferred satoshi.

According to the statistics in [16], 98% and 65% of LN nodes define

their base and additional charges, respectively, equal to or smaller

than the default values. Hence, without a risk of underestimating

the cost, we assume that all channels use the default values as their

base and additional charges for transfers.

4.2 Results
Tab. 1 compares the performance of our method under the six can-

didate path sets. We did not limit the budget in Tab. 1. Instead, we

only stop the inference when there is no payment can cut more

balance ranges. We separate the balances into two groups: (1) small

balances that are smaller than 0.043 × 10
8
(≈ 382.6 USD), taking up

about 89.8% of all balances and (2) large balances that are larger

than 0.043 × 10
8
, taking up about 10.2% of all balances. We can

see from the table that as the number of paths in the candidate

set increases, the number of covered balances, the number of re-

quired payments, and the routing fees all grow. Nevertheless, the

percentage of balances that can be accurately inferred is relatively

stable.

Comparing the first three candidate sets, Candidate-1 and

Candidate-2 are much more accurate than Candidate-3 as they

have much shorter paths. This is consistent with Proposition 2.

However, they also require the higher number of payments and the

higher routing fees to reach their highest accuracies. Candidate-1
and Candidate-2 have similar performances. That also indicates

(a) Ranges of balances before infer-

ence.

(b) Ranges of balances after

inference.

Figure 5: Inferring the ranges of small balances: each slice
denote the proportion of the marked ranges. Small balances
mean the balances smaller than 0.043 × 10

8 satoshis (≈ 382.6

USD). They take up about 89.8% of all balances.

(a) Ranges of balances before in-

ference.

(b) Ranges of balances after in-

ference.

Figure 6: Inferring the ranges of large balances: each slice
denote the proportion of the marked ranges. Large balances
mean the balances larger than 0.043 × 10

8 satoshis (≈ 382.6

USD). They take up about 10.2% of all balances.

that when the length of a candidate path is quit short (such as 2

hops), considering the orders of capacities seems not have much

superiority.

Comparing the last three candidate sets, Candidate-5 is more

accurate than the other two candidates, which indicates when the

path length is greater than 2, the order of capacities begins to play

a role. The loss of accuracy of Candidate-6 is also due to the extra

length of the paths.

Comparing the first three candidates with the last three candi-

dates, Candidate-1, Candidate-2 and Candidate-3 generally performs

better than Candidate-4, Candidate-5 and Candidate-6, which indi-

cates that connecting with the nodes with higher degrees can make

a better inference.

In the following, we evaluate NIBT from different aspects under

candidate-1. As different number of paths in the candidate set did

not present much difference on accuracy, we only report the results

of candidate-1 with 200 paths in the set.

4.2.1 Ability to Cut off Balance Ranges. Fig. 5 and Fig. 6 plot the

distribution of the ranges of balances in the small and large groups,

respectively. Note that the range of a balance equals the upper

bound minus the lower bound of the balance. So the smaller the



Table 1: Performance of NIBT under Different Candidate Path Sets

Candidate Path Sets Number of

Covered Balances

Averaged

Path Length

Fraction of

Determined Balances

Number of

Required Payments

Routing

Fees (USD)

Total ≤ 4.3 × 10
6 > 4.3 × 10

6

Candidate-1
CM#1,PCM#1

100 398.0 1.99 91.51% 96.91% 46.35% 2843.8 0.2359

200 738.0 2.14 92.47% 97.34% 51.64% 5322.9 0.4760

300 942.0 2.43 93.52% 97.87% 57.70% 6866.1 0.6349

Candidate-2
CM#1,PCM#2

100 398.0 1.99 91.36% 97.02% 47.01% 2851.3 0.2679

200 688.2 2.27 91.78% 97.30% 54.08% 5062.5 0.5561

300 904.0 2.51 92.08% 97.21% 61.87% 6804.4 0.8857

Candidate-3
CM#1,PCM#3

100 408.4 9.09 62.40% 67.97% 16.70% 2114.2 0.0216

200 755.3 8.98 62.68% 68.05% 17.97% 3952.4 0.0535

300 1085.6 9.05 62.06% 67.11% 18.87% 5623.5 0.0743

Candidate-4
CM#2,PCM#1

100 388.7 2.85 82.44% 88.46% 36.87% 2573.7 0.1938

200 734.7 3.18 76.05% 82.00% 28.89% 4562.4 0.2645

300 1021.3 3.42 73.48% 79.33% 26.74% 6123.6 0.3442

Candidate-5
CM#2,PCM#2

100 332.9 2.98 91.16% 92.95% 59.09% 2314.2 0.1490

200 616.9 3.18 89.36% 91.01% 58.06% 4350.2 0.2427

300 863.1 3.37 88.79% 90.48% 57.05% 6101.5 0.2859

Candidate-6
CM#2,PCM#3

100 418.4 10.00 52.68% 56.99% 11.97% 1888.1 0.0236

200 760.7 9.93 51.46% 55.97% 11.01% 3407.2 0.0376

300 1083.5 9.94 50.31% 54.93% 9.90% 4892.4 0.0580
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Figure 7: Accuracy of NIBT under different budgets 𝜂.

range value, the more accurate the balance estimation. The number

(0, 10
3] (1%) in Fig. 5(a) means that 1% of balances range are in

the (0, 10
3]. From Fig. 5(a), 94% of the original balance ranges are

larger than 10
4
satoshis (≈ 0.8898 USD), and 72% are larger than 10

5

satoshis (≈ 8.898 USD) before we perform balance inference. After

inference, 97% of balances have the ranges smaller than 10 satoshis

(≈ 0.00089 USD). From Fig. 6(a), all balance ranges are larger than

4.3 ∗ 10
6
(≈ 382.6 USD), 62% of them are larger than 10

7
(≈ 889.82

USD). After inference, 52% of them have the ranges smaller than 10

satoshis (≈ 0.00089 USD) and only 11% of them are lager than 10
7

satoshis (≈ 889.82 USD).

Fig. 7 plots the performance of our method under different pay-

ment budgets. From the figure, our method requires less than 2000

payments to cut off the ranges of more than 92% balances to 0.89

USD, and requires about 5300 payments to cut off these ranges to

0.00089 USD. Searching for the optimal payments can be performed
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Figure 8: The number of skewed channels that were de-
tected.

extremely fast that the 5300 payments only require about 5 seconds

in total.

4.2.2 Ability to Detect Skewed Channels. Fig. 8 presents the number

of skewed channels covered by the end-to-end paths and the number

of skewed channels that can be detected during the inference. The

fraction of the abscissa means the degree of the skewness, defined
as the ratio between the smaller balance over the capacity of the

channel. For example, 0.1 means a balance on one side of this

channel only accounts for 10% of the channel capacity, while the

balance on the other side accounts for 90%. From the figure, the

majority of skewed channels can be detected during the balance

inference, especially for the seriously skewed channels (e.g., when

the degree of skewness is 0.05).



4.2.3 Summary. NIBT has both the ability of inferring balance -

accurately inferring more than 97% of small balances (smaller than

the maximum payment amount in one transaction) and nearly 52%

of large balances (larger than the maximum payment amount in one

transaction) and the ability of detecting skewed balances - detecting

98% seriously skewed balances and 94% slightly skewed balances.

4.3 Comparison with Direct Measurement
NIBT is in principle different from the method using direct mea-

surement (DM) [10]. Nevertheless, we can still compare these two

methods from different angles, from which readers can have a bet-

ter view on the cons/pros of both methods. We averaged the results

and compared the two methods in Tab. 2.

DM in average needs to conduct 14 fake payments to obtain an

accurate balance. Among them, about half of these payments cause

error messages “unknown payment hash”. The other half of the

payments fail due to the insufficient funds of the balance. NIBT cre-

ates no error payments. NIBT in average requires about 9 payments

to infer each balance, about 5 of them failed due to “insufficient

funds" and about 4 of them are successfully fulfilled
2
. For the bal-

ances that are smaller than the maximum payment amount allowed

in one payment, DM can accurately find out all of their balances

through multiple iterations. NIBT can accurately infer 97% of them

because the information of about 3% of the balances is lost due to

the smaller balances on the same path. For large balances that are

larger than the maximum balances allowed in each payment, DM

is not able to obtain their balances because the recipients will not

hold multiple fake payments. NIBT can infer about 52% of these bal-

ances because the recipients can hold multiple successful payments

and perform inference all together. 48% of the balances cannot be

inferred because the smaller balances on the same paths filter out

the information of large balances. As all payments in DM are fake

payments, its cost only contains the fees for opening/closing chan-

nels. However, as DM can only measure the balances of node that is

directly connected with the “attacker" node, it needs to open many

channels for network-wide balance inference. Since the average

transaction fee for channel opening/closing is about 1.53 USD per

channel, the total cost will be considerably higher when the number

of involved nodes is big. For NIBT, the total fees for opening/closing

channels is only 3.06 USD as we only need to open two channels in

total. The average routing cost for successful payments is 0.00064

USD per balance. Even if we infer all balances in the sampled LN

(30026 channels), the total routing cost is less than 20 USD.

5 CONCLUSION
We pioneered balance tomography for accurately inferring balances

of LN without any interference or fake payments. Our method

first opens two accounts each opening a channel in LN, and then

conducts multiple legal payments sequentially between the two ac-

counts. To optimize each payment, we calculate an optimal payment

amount on each path based on the current balance distribution, and

then update the distribution after we conduct an optimal payment

and observe the payment result. We evaluate our method using

an snapshot of the LN Network. Experimental results show that

2
The number of successful payments includes both the payments we use to infer the

balance and the payments we use to compensate the balances.

about 92% of all covered balances can be accurately inferred with

extremely low cost.

In this paper, we used heuristics for building the candidate paths

between the two accounts. As our future work, we plan to use rein-

forcement learning to find the best places for creating the channels

and intelligently constructing the candidate paths.
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APPENDIX
Proof of Proposition 1
Proof: A detailed proof is lengthy and tedious, so we only provide

the critical steps.

Suppose 𝜆𝑖
𝑗
= (𝜆𝑖

𝑗
, 𝜆𝑖

𝑗
) is a positive interval of𝐺𝑖 (𝑚). That is, there

exist some non-empty set 𝐴𝑖
𝑗
⊆ {1, 2, · · · , 𝑛𝑖 }, such that ∀𝑘,𝑚 : 𝑘 ∈

𝐴𝑖
𝑗
,𝑚 ∈ 𝜆𝑖

𝑗
, 𝐻 𝑖

𝑘
(𝑚) > 0. On 𝜆𝑖

𝑗
, the first derivative of 𝐺𝑖 (𝑚) with

respect to𝑚 is

d𝐺𝑖 (𝑚)
d𝑚

=
∑
𝑘∈𝐴𝑖

𝑗

𝑎𝑖
𝑘
· ( 1

𝑚 − 𝑙𝑖
𝑘

−
𝑘∑
𝑠=1

1

𝑢𝑖𝑠 −𝑚
) (21)

· (𝑚 − 𝑙𝑖
𝑘
) ·

𝑘∏
𝑗=1

(𝑢𝑖𝑗 −𝑚)

where 𝑎𝑖
𝑘
= 2∏𝑘

𝑗=1
(𝑢𝑖

𝑗
−𝑙𝑖

𝑗
)
. The second derivative of 𝐺𝑖 (𝑚) with the

respect to𝑚 is

d
2𝐺𝑖 (𝑚)
d𝑚2

=
∑
𝑘∈𝐴𝑖

𝑗

𝑎𝑖
𝑘
·
( 𝑘∑
𝑠=1

𝑚 − 𝑙𝑖
𝑘

𝑢𝑖𝑠 −𝑚
(22)

· (− 2

𝑚 − 𝑙𝑖
𝑘

+
∑

1≤𝑡 ≤𝑘,𝑡≠𝑠

1

𝑢𝑖𝑡 −𝑚
)

·
𝑘∏
𝑗=1

(𝑢𝑖𝑗 −𝑚)
)

To prove that 𝐺𝑖 (𝑚) is a strictly concave function, we need

to show that the second derivative of 𝐺𝑖 (𝑚) is negative. For this,
we only need to consider the items

∑
1≤𝑡 ≤𝑘,𝑡≠𝑠

1

𝑢𝑖
𝑡−𝑚

and
2

𝑚−𝑙𝑖
𝑘

in

Eqn. (22), because all other items in (22) are positive due to the fact

that 𝜆𝑖
𝑗
is a positive interval.

We expand 𝜆𝑖
𝑗
to (0,𝜆𝑖

𝑗
), then

∑
1≤𝑡 ≤𝑘,𝑡≠𝑠

1

𝑢𝑖
𝑡−𝑚

is an increasing

function of𝑚 from

∑
1≤𝑡 ≤𝑘,𝑡≠𝑠

1

𝑢𝑖
𝑡

to

∑
1≤𝑡 ≤𝑘,𝑡≠𝑠

1

𝑢𝑖
𝑡−𝜆𝑖𝑗

, while
2

𝑚−𝑙𝑖
𝑘

is a decreasing function
3
of𝑚 from +∞ to

2

𝜆𝑖
𝑗
−𝑙𝑖

𝑘

, there must be a

point𝑚𝑐 such that when𝑚 < 𝑚𝑐 ,
d

2𝐺𝑖 (𝑚)
d𝑚2

< 0.

Now we prove that, 𝑚𝑐 ≥ 𝜆𝑖
𝑗
. To ease notation, we define a

function 𝑓 (𝑥) on domain (𝑏,min
𝑛
𝑖=1

𝑎𝑖 ), where 𝑏 < min
𝑛
𝑖=1

𝑎𝑖 , as

𝑓 (𝑥) = − 2

𝑥 − 𝑏 +
𝑛∑
𝑖=1

1

𝑎𝑖 − 𝑥
(23)

It is easy to prove that there exits a point 𝑥𝑐 that 𝑓 (𝑥) < 0 when

𝑥 < 𝑥𝑐 , and 𝑓 (𝑥) > 0 when 𝑥 > 𝑥𝑐 , and 𝑥𝑐 will reach its minimum

value when both 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑛) and 𝑏 achieve their minimum values.

Based on the above analysis, for (22),𝑚𝑐 will reach its minimum

value when ∀𝑘 : 𝑘 ∈ 𝐴𝑖
𝑗
, 𝑢𝑖

𝑘
= 𝜆𝑖

𝑗
and 𝑙𝑖

𝑘
= 0. To compute the

3
In Eqn. (22), ∀𝑘 : 𝑘 ∈ 𝐴𝑖

𝑗
, if𝑚 < 𝑙𝑖

𝑘
,𝑚 − 𝑙𝑖

𝑘
= 0.



minimum value of𝑚𝑐 , we rewrite 𝐺
𝑖 (𝑚) by

�̃�𝑖 (𝑚) = 2 · (𝜆𝑖
𝑗
−𝑚) ·

(
1 −
(𝜆𝑖

𝑗
−𝑚) |𝐴

𝑖
𝑗
|

(𝜆𝑖
𝑗
) |𝐴

𝑖
𝑗
|

)
(24)

where |𝐴𝑖
𝑗
| is the size of 𝐴𝑖

𝑗
. Then the second derivative of �̃�𝑖 (𝑚)

with respect to𝑚 is

d
2�̃�𝑖 (𝑚)
d𝑚2

= −2 · |𝐴𝑖
𝑗 | · ( |𝐴

𝑖
𝑗 | + 1) ·

(𝜆𝑖
𝑗
−𝑚) |𝐴

𝑖
𝑗
|−1

(𝜆𝑖
𝑗
) |𝐴

𝑖
𝑗
|

(25)

According to (25), if𝑚 < 𝜆𝑖
𝑗
,

d
2�̃�𝑖 (𝑚)
d𝑚2

< 0. Therefore,𝑚𝑐 ≥ 𝜆𝑖
𝑗
.

2

Proof of Proposition 2
Proof: Case 1: 𝑏𝑖

𝑘
≤ 𝑦𝑖

𝑘−1
. If the 𝜂 value in Alg. 1 is sufficiently

large, the algorithm will keep probing until a payment reaches 𝑏𝑖
𝑘
.

In this case, the value of 𝑏𝑖
𝑘
can be inferred.

Case 2: 𝑏𝑖
𝑘

> 𝑦𝑖
𝑘−1

. In this case, 𝐼 𝑖
𝑘

= [𝑦𝑖
𝑘−1

, 𝑢𝑖
𝑘
] and |𝐼 𝑖

𝑘
| =

𝑢𝑖
𝑘
− 𝑦𝑖

𝑘−1
. Therefore, the expected length of interval |𝐼 𝑖

𝑘
| is

E( |𝐼 𝑖
𝑘
|) =𝑃𝑟𝑜𝑏 (𝑏𝑖

𝑘
> 𝑦𝑖

𝑘−1
) · (𝑢𝑖

𝑘
− 𝑦𝑖

𝑘−1
) (26)

=
(𝑢𝑖

𝑘
− 𝑦𝑖

𝑘−1
)2

𝑢𝑖
𝑘
− 𝑙𝑖

𝑘

According to Eqn. (26), E( |𝐼 𝑖
𝑘
|) is inversely proportional to 𝑦𝑖

𝑘−1
. As

𝑦𝑖
1
≥ 𝑦𝑖

2
≥ · · · ≥ 𝑦𝑖𝑛𝑖 , we have that E( |𝐼

𝑖
𝑘
|) is proportional to 𝑘 .2
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