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Abstract—Inferring the bandwidth of internal links from the
bandwidth of end-to-end paths, so-termed bandwidth tomogra-
phy, is a long-standing open problem in the network tomography
literature. The difficulty is due to the fact that no existing
mathematical tool is directly applicable to solve the inverse
problem with a set of min-equations. We systematically tackle
this challenge by designing a polynomial-time algorithm that
returns the exact bandwidth value for all identifiable links and
the tightest error bound for unidentifiable links for a given set of
measurement paths. When measurement paths are not given in
advance, we prove the hardness of building measurement paths
that can be used for deriving the global tightest error bounds
for unidentifiable links. Accordingly, we develop a reinforcement
learning (RL) approach for measurement path construction, that
utilizes the special knowledge in bandwidth tomography and
integrates both offline training and online prediction. Evaluation
results with real-world ISP as well as simulated networks
demonstrate that compared to other path construction methods,
Random and Diversity Preferred, our RL-based path construction
method can build measurement paths that result in much smaller
average error bound of link bandwidth.

Index Terms—Bandwidth Tomography, Measurement Path
Construction

I. INTRODUCTION

To guarantee the quality of service (QoS) and the smooth
operation of networks, any Internet service provider (ISP)
needs to closely monitor the network performance, including
delay, available bandwidth, network congestion, link losses,
and so on. In a large physical network, directly measuring
the performance of each link is infeasible due to the high
measurement overhead. In the new era of network virtual-
ization, ISPs can utilize network slices to dynamically form
different virtual networks for dedicated network applications.
Network virtualization, however, does not necessarily lead to
easy performance monitoring. In contrast, due to the dynamic
changes of network configuration, it becomes more critical
yet more challenging to directly measure the performance of
virtual links or virtual services. A well-known strategy is to
infer the performance/status of physical/virtual links via end-
to-end measurements. This method was first termed as network
tomography [1] in 1996 and has attracted substantial research
since then [2]–[6].

So far, most work on network tomography focuses on
additive metrics, e.g., delay, where the value of an end-to-
end path is the total value of all the links on the path.
An important performance metric, available bandwidth (or
bandwidth for short), has been largely avoided in the network

tomography literature. It is well known that many research
papers have investigated the method to estimate the end-to-
end bandwidth [7], and accordingly measurement tools have
been developed. For instance, pathchar, clink, pchar, and bfind
use ICMP “TTL exceeded” messages for bandwidth estima-
tion. Nevertheless, all the above research mainly targets at
estimating the end-to-end bandwidth1. A network tomography
approach to estimating the bandwidth of every individual link
in the whole network via a small number of monitoring nodes,
termed as bandwidth tomography, is surprisingly missing.

Boolean-based network tomography that identifies link fail-
ure or link congestion is loosely relevant but starkly different
to bandwidth tomography. The goal of Boolean-based network
tomography [10] is to infer whether or not a link/node is
congested or failed based on the congestion/failure status
of end-to-end paths. In other words, the input and output
of Boolean-based network tomography are both binary. In
contrast, bandwidth tomography is to infer the bandwidth
value of individual links from end-to-end path bandwidth.

A piece of work in the network calculus domain [11],
[12] has touched a similar problem as bandwidth tomography:
inferring the service curves of links based on the service curve
of end-to-end path, i.e., service curve decomposition. Service
curve denotes the cumulative service amount over time offered
to a given traffic flow. Nevertheless, only line topology and tree
topology were studied. The limited results in [11], the fact that
no significant progress has been found since 2008, and our own
investigation, all suggest that service curve decomposition is
a hard-to-achieve goal in general networks.

The bandwidth tomography research is missing in the litera-
ture for two main reasons. First, unlike additive metrics, band-
width is a metric that uses the minimum, i.e. the bandwidth of
a path equals the minimal bandwidth over all the links along
the path. No existing mathematical tool can be applied directly
to solve the inverse problem with a set of min-equations (refer
to Section II for details). The only analytical tool that might
help is max-plus [13] and min-plus [14] algebras. Our deep
investigation, however, concludes that these algebras cannot
be used to solve our problem since the min-equations do not

1Some tools such as Tailgating [8] and pathneck [9] use probe packets to
estimate the bandwidth of a link along the measurement path. Nevertheless,
these tools are inaccurate on paths longer than a few hops [8] or require
intermediate routers to support ICMP [9]. Actually, assuming the capability
of estimating the metric (e.g., bandwidth/delay) of links along a path just
from the end-to-end measurement of this path would invalidate most, if not
all, work in network tomography.



satisfy the algebraic properties of max-plus [13] and min-
plus [14]. Second, the minimum operation results in high
information loss, since we only know that the bandwidth of a
path is not higher than the bandwidth of the constituting links.
As an analogy to lossy compression, the minimum operation
on link bandwidth values is similar to a quantizer that replaces
all the values with the same (smallest) value. Without the
help of other side information, it is theoretically impossible
to recover the original values after this quantization step.

We, for the first time, formally formulate and systematically
study two core problems in bandwidth tomography:

1) Given a network, a set of end-to-end measurement paths,
and the measured end-to-end bandwidth, is a link in the
network identifiable2? If not, what are the lower and
upper bounds of its bandwidth?

2) How to construct measurement paths so that any link is
(a) either identifiable or (b) the error bound (i.e., the gap
between the upper and lower bounds) is the tightest if its
identifiability is impossible.

Our solutions to the above two problems lay a solid
foundation for future research in this important area. The
contributions of the paper include:
• For the first problem, we develop a polynomial-time

algorithm that returns the exact bandwidth value for
all identifiable links and the tightest error bounds for
unidentifiable links. We also present the necessary and
sufficient condition for a link to be identifiable.

• For the second problem, we prove that in the worst case
we must list all possible measurement paths (MPs) in
order to derive the global tightest error bounds3. In other
words, there is no polynomial-time algorithm to derive
the global tightest error bounds unless P=NP, since listing
all measurement paths is #P -complete [15]. Note that
#P -complete is at least as difficult as NP-complete [15].

• We then design a reinforcement learning (RL) based
path construction method, called Guided Sequential Path
Construction (GSPC). Quite different from traditional re-
inforcement learning methods, GSPC utilizes the special
knowledge from our analysis and integrates both offline
training over simulated networks and online prediction
over the target network. This RL structure can effectively
handle the difficulties of applying RL in the special
application context of bandwidth tomography.

• We perform extensive evaluation of GSPC over real-
world ISP topology as well as simulated networks.
Compared with two baseline path construction methods,
Random and Diversity Preferred (DP), GSPC improves
Random and DP in terms of average error bound by 238%
and 193%, respectively. GSPC also returns near-optimal
results in small-scale simulated networks where listing all
measurement paths for deriving the ground-truth global
optimum is possible.

2A link is identifiable if its bandwidth value can be uniquely determined.
3A link error bound is called globally tightest if it is the smallest among

all possible error bounds derived for the link with different sets of MPs.

Finally, the algorithms developed in this paper have signif-
icant practical meaning. Using the popular network measure-
ment tools such as pathchar, clink, and pchar as the basic
building block for measuring the end-to-end bandwidth, our
algorithms (1) guide the construction of measurement paths
and (2) return the network-wide, link-level bandwidth results.

II. SYSTEM MODEL

A network is modelled as a graph G = (V,L) that con-
sists of |V | vertices and |L| links. With a set of monitors
deployed in the network, we can use existing methods, such
as pathload [16], to measure the bandwidth of a measurement
path (defined below). We are interested in the bandwidth of all
links in the network. To facilitate bound analysis, we assume
that the maximum bandwidth over all links is bmax. This value
can be set based on the physical specification of the network.
Note that with minor changes, the analytical results of this
paper are applicable for the scenario where different links have
different maximum bandwidth values.

Following the convention in network performance tomog-
raphy [3], [17], we introduce basic assumptions and notations
as follows:
• G: A connected and undirected graph. Each link has

distinct end nodes (i.e., no self loop), and no two links
in G connect to the same pair of nodes.

• Measurement path (MP): A non-loop path that only
contains two monitors at its end nodes. For test purpose,
probing packets along an MP could be routed via source
routing. This assumption has been used in most existing
work [3], [5].

• The network under consideration is assumed to be
“static”, implying that either the bandwidth changes
slowly relative to the measurement process or it rep-
resents statistical characteristics (e.g., mean) that stay
constant over time. This assumption has been broadly
adopted in most network tomography work [3], [5], [17].

Fundamentally different from performance tomography with
additive metrics [3], [18], bandwidth tomography uses min-
operation, i.e., the bandwidth of an MP is the minimum
bandwidth of all links along the MP. In other words, traditional
linear algebra is not applicable for bandwidth tomography.

We use the example in Fig. 1 (a) to illustrate the con-
cept. The network has three monitors marked in red, and
there are three MPs among the monitors. Different MPs may
lead to different results of end-to-end bandwidth. We use
xp,q , which is unknown, to denote the bandwidth on link
lp,q(p, q = 1, 2, 3, 4, 5). If there is no link between node vp
and vq , xp,q = 0. bi denotes the end-to-end bandwidth on MP
Pi(i = 1, 2, 3). Like most network tomography work [3], [5],
we assume an undirected graph, i.e., xp,q = xq,p.

Due to the property of bandwidth, we have the following
system of min-equations, short-termed as min-system in the
rest of the paper: x1,5 ∧ x5,2 ∧ x2,3 = b1

x1,5 ∧ x5,2 ∧ x2,4 = b2
x3,2 ∧ x2,4 = b3

(1)
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Fig. 1: Example topology (a) and its simplified topology (b).

where ∧ means the min operation.
To simplify analysis, we can remove some non-monitor

node of degree 2 (e.g., node v5 in Fig. 1 (a)), and establish a
virtual link between this node’s two neighbors (e.g., nodes v1
and v2) if there is no link between them4. This is because we
have no way to distinguish the bandwidth value x1,5 and the
bandwidth value x5,2 based on end-to-end measurements. In
terms of bandwidth analysis, we can only infer the bandwidth
on the path segment v1 → v5 → v2. As such, we treat this path
segment as a virtual link l1,2. The simplified network after the
above pre-processing is shown in Fig. 1 (b). In addition, we
should ignore any non-monitor node of degree 1 since there is
no way to build an MP passing through this node. Therefore,
in the rest of the paper, the target network G is the simplified
network after the above pre-processing.

After the above pre-processing, the min-system for Fig. 1
(b) is  x1,2 ∧ x2,3 = b1

x1,2 ∧ x2,4 = b2
x2,3 ∧ x2,4 = b3

(2)

With a slight abuse of notation ∧, let’s denote the above
linear system into equivalent matrix form R ∧ x = b, where

R =

1 1 0
1 0 1
0 1 1

 (3)

x =
(
x1,2 x2,3 x2,4

)ᵀ
(4)

b =
(
b1 b2 b3

)ᵀ
(5)

The first problem in bandwidth tomography is: given R and
b, can we infer the values of x? We answer this question in
the next section.

III. BOUND ANALYSIS AND ALGORITHM FOR OBTAINING
THE TIGHTEST BOUND

Different from the linear system with additive metrics [3],
[5], the min-system cannot take advantage of existing results
in linear algebra. Nevertheless, each min-equation can help

4Note that if a link already exists between this node’s two neighbors, we
cannot remove this node and add the virtual link because otherwise the new
graph will have two links connecting the same pair of nodes.

to bound the bandwidth of related links. For instance, (2) can
be formulated as: b1 ≤ x1,2 ≤ bmax, b1 ≤ x2,3 ≤ bmax

b2 ≤ x1,2 ≤ bmax, b2 ≤ x2,4 ≤ bmax

b3 ≤ x2,3 ≤ bmax, b3 ≤ x2,4 ≤ bmax

(6)

Hence, we can obtain the lower and upper bounds of the
bandwidth for each link from the min-system. Define the error
bound as the gap between the upper bound and the lower
bound. Our goal is to shrink the above naı̈ve error bound as
much as possible. That is, if a link is identifiable, the error
bound of its bandwidth should be 0; otherwise, its error bound
should be the tightest. Note that the tightest error bound in this
section is conditional in the sense that it is the best bound that
we can derive from the given min-system.

To solve the problem, we have the following observation: a
min-equation of k variables ∧ki=1xi = b is equivalent to the
following two conditions:{

(1) b ≤ xi ≤ bmax, i = 1, . . . , k

(2) at least one of xi is equal to b.
(7)

Based on this observation, we can prove the following
lemma:

Lemma 1. Assume that a min-system has n variables and m
min-equations, R ∧ x = b, where R is an m × n Boolean
matrix, x =

(
x1 . . . xn

)ᵀ
, and b =

(
b1 . . . bm

)ᵀ
.

Assume that the number of distinct bi(i = 1, . . . ,m) is d.
W.L.O.G., assume that bi ≤ bj(i ≤ j) and the d distinct values
are b′1, . . . , b

′
d, respectively. We have:

1) The links corresponding to x can be divided into d
disjoint nonempty sets, denoted by Sb′k

(k = 1, . . . , d).
2) Furthermore, if |Sb′k

| = 1, then the link in Sb′k
is

identifiable (i.e., its error bound is zero), otherwise, b′k
is the greatest lower bound for the links in Sb′k

.

Proof. Base on the first condition in (7), we can build d
intervals [b′1, bmax], [b′2, bmax], . . ., [b′d, bmax].

To prove (1), we only need to show that based on the
min-system R ∧ x = b we can find a way to uniquely
assign any xi ∈ x to one of the d intervals. The method
to assign xi into an interval is as follows: If xi appears in
l min-equations, whose values are ordered in non-decreasing
order and are b′j1 , . . . , b

′
jl

, respectively, then we put xi into the
interval [b′jl , bmax]. Clearly, such an assignment is unique for
xi. Since based on the second condition of (7), each interval
must include at least one measurement value and hence (1)
is proved. Since any measurement value in [b′i, bmax] must
also fall in [b′j , bmax] (i > j), the above assignment implies
the greatest lower bound of xi that we can obtain from the
min-system.

Based on the second condition in (7), every interval must
include at least one measurement value (i.e., correspond-
ingly one link). If an interval [b′k, bmax] only includes one
measurement value, the link corresponding to this value is
hence identified. If the interval includes multiple measurement



Algorithm 1: Calculate the Tightest Bounds (CTB)
input : a min-system, R ∧ x = b, where R = [rij ]m×n

is a Boolean matrix, x =
(
x1 . . . xn

)ᵀ
, and

b =
(
b1 . . . bm

)ᵀ
output: the tightest error bound for every link

1 begin
2 Order the m min-equations in the non-increasing

order of their values;
/* Variable elimination (like

Gaussian elimination) */
3 for i = 1 to m− 1 do
4 for j = i+ 1 to m do
5 if bi == bj then
6 continue;
7 end
8 rjk = max{rjk − rik, 0}, k = 1, . . . , n;
9 end

10 end
/* Assigning interval and determine

bounds */
11 for i = 1 to m do
12 for j = 1 to n do
13 if rij == 1 then
14 Assign xj into interval [bi, bmax], i.e.,

xj’s error bound is bmax − bi;
15 end
16 end
17 end
18 for i = 1 to m do
19 if there is only one rij == 1(j = 1, . . . , n) then
20 xj = bi, i.e., xj’s error bound reduces to 0;
21 end
22 end
23 end

values, however, we cannot identify all the corresponding
links. In this case, b′k is the greatest lower bound for these
links. Hence, (2) is proved.

The proof of Lemma 1 is constructive (w.r.t the link-interval
assignment), based on which we can design an Algorithm,
called CTB, to find the tightest error bound for every link
in the given min-system. The pseudo-code is shown in Al-
gorithm 1. Algorithm 1 is correct due to Lemma 1 and the
fact that if a link is not identifiable, then the min-system
offers no information to reduce its upper bound. The worst-
case complexity of Algorithm 1 is O(mn + mlogm), since
the first step takes O(m logm) and the rest of code is mainly
two loops over m and n.

Lemma 1 and CTB are important to understand the rest
analysis in the paper. CTB works in a way similar to Gaussian
elimination. We give an example to illustrate the operations
in CTB so that readers can understand the intuition of the
lemmas and theorems in the rest of the paper, whose proofs

v1 v4

v2 v3

v5

v6 v7

Fig. 2: An example network to illustrate CTB.

are omitted due to space limit.

Example 1. (Example of CTB) An example network topology
is shown in Fig. 2, where two monitors are marked in red.
Assume that we have built four MPs and their corresponding
min-system is shown below:

P1 : x1,2 ∧ x2,3 ∧ x3,4 = 2
P2 : x1,6 ∧ x6,7 ∧ x7,4 = 1
P3 : x1,6 ∧ x6,5 ∧ x5,7 ∧ x7,4 = 2
P4 : x1,2 ∧ x2,6 ∧ x6,7 ∧ x7,4 = 1

(8)

This min-system only has two distinct end-to-end band-
width values and the maximum is 2. This means that the
greatest lower bound for covered links is at most 2. Therefore,
in order to find out the links with the greatest lower bound 2,
we sort the min-equations in the non-increasing order based
on their values.

R =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 0
1 0 0 0 0 0 1 1 1

 (9)

x =
(
x1,2 x2,3 x3,4 x1,6 x6,5 x5,7 x7,4 x6,7 x2,6

)ᵀ
(10)

b =
(
2 2 1 1

)ᵀ
(11)

Now, we consider the paths with the maximum end-to-end
bandwidth (i.e., P1 and P3). Obviously, the links on these
paths cannot be identified. Nevertheless, we can conclude that
all links covered by the two paths must have a bandwidth
no smaller than 2 and hence these links cannot appear in
other paths (i.e., P2 and P4) that have smaller end-to-end
bandwidth. We thus can set the lower bandwidth bound of
these links to 2, and in the meantime we do not need to
consider these links anymore. After removing these links, we
have the following new min-system.

Rnew =

(
1 0
1 1

)
(12)

xnew =
(
x6,7 x2,6

)ᵀ
(13)

bnew =
(
1 1

)ᵀ
(14)

The above process is equivalent to the variable elimination
part in CTB. In this new min-system, all the “paths” have



TABLE I: Dividing links into disjoint sets

Covered links
S2 l1,2, l2,3, l3,4, l1,6, l6,5, l5,7, l7,4
S1 l∗6,7, l2,6

Note: ∗ means identifiable.

the same end-to-end bandwidth 1. Because all the links with
higher lower bound on P2 (i.e., l1,6 and l7,4) have been
removed, it’s clear that l6,7 is identifiable and its value x6,7

is 1. This is the only link that can be identified by the original
min-system.

The last part of CTB (Line 11-Line 22) is to find out
all the identifiable links in the min-system and divide other
unidentifiable links into the disjoint sets according to their
greatest lower bound. In this example, all the covered links
can be divided into two disjoint nonempty sets S1 and S2.
The final result is shown in Table I.

Based on CTB, we can prove the necessary and sufficient
condition for a link to be identifiable. The sufficient condition
is straightforward. The necessary condition can be easily
proved with contradiction.

Lemma 2. Assume that a min-system has n variables and m
min-equations, R ∧ x = b, where R is an m × n Boolean
matrix, x =

(
x1 . . . xn

)ᵀ
, and b =

(
b1 . . . bm

)ᵀ
. A

link l is identifiable in this min-system iff there is a path
P containing link l with end-to-end bandwidth bP , such that
∀l′ ∈ P \ l, the greatest lower bandwidth bound of l′ derived
from CTB is bl′ where bl′ > bP .

IV. ON THE HARDNESS OF PATH CONSTRUCTION FOR THE
(GLOBAL) TIGHTEST BOUND

In the previous section, the tightest error bound of every
link is conditional on a given min-system. The tightest error
bound is called the global tightest error bound if it is the
smallest among all possible error bounds derived for the link
with different sets of MPs. Obviously, the error bound derived
with all possible MPs is the global tightest error bound.
Nevertheless, the total number of possible MPs may be huge,
and it is well known that listing MPs between two monitors is
#P -complete [15]. We hence need to answer two questions:
(1) Is it possible to find the error bound identical to the global
tightest error bound without listing all possible MPs? (2) Can
we design a method to reduce the number of MPs to achieve
the error bound close to the global tightest error bound? In the
rest of the paper, the tightest error bound by default means the
global tightest error bound unless stated otherwise.

First of all, we only need to study the bandwidth tomography
with two monitors. This is because if there are multiple moni-
tors, we can introduce two virtual monitors such that a virtual
monitor only has virtual links of bandwidth bmax to connect
each (physical) monitors. Then the multi-monitor bandwidth
tomography problem is reduced to bandwidth tomography
problem with the two virtual monitors. The concept of virtual
monitors was also used in [19] to simplify theoretical analysis.

In this section, we show the negative answer to the first
question. For this, we only need to construct a scenario and
prove in this scenario that we must list all possible MPs
between the two monitors in order to find the tightest error
bound for every link. The proof needs two preliminary results:
Lemma 3 and Theorem 1.

Lemma 3. For a given network G and two monitors, assume
that Pm is a set of MPs that covers all links in G. With
CTB, we can obtain d nonempty sets {Sb′j

}, j = 1, 2, . . . , d
and corresponding identifiable links from Pm. When a new
MP Pm+1 is added, we denote its end-to-end bandwidth as
bm+1 and the set of MPs as Pm+1. Let b′min, b

′
max denote

the minimum and maximum b′j(j = 1, 2, . . . , d) whose Sb′j
contains at least one link on Pm+1, respectively. Denote
Supdate = {l|l ∈ Pm+1, l is not identifiable within Pm}, i.e.,
a set of links whose tightest error bounds may be updated.

If |Supdate| > 0, we need to update the d nonempty sets
based on the value of bm+1:
• Case a: If bm+1 /∈ {b′j , j = 1, 2, . . . , d}:

� Case a1:If bm+1 > b′max, we move all the links in
Supdate from their original sets to a new nonempty
set Sbm+1

.
� Case a2:If bm+1 < b′max, let b′a2 denote the min-

imum b′j(j = 1, 2, ..., d) which is strictly larger
than bm+1. Denote Sremained =

⋃
b′j≥b′a2

Sb′j
. If

|Supdate \ Sremained| > 0, we move all the links in
Supdate \ Sremained from their original sets to a new
nonempty set Sbm+1

.
• Case b: If bm+1 ∈ {b′j , j = 1, 2, . . . , d}:

� Case b1: If |Supdate∩Sb′min
| = 1, the link in Supdate∩

Sb′min
is identifiable.

� Case b2: If |Supdate ∩ Sb′min
| > 1, we denote

Sremained =
⋃

b′j≥bm+1
Sb′j

. If |Supdate \Sremained| > 0,
we move all the links in Supdate \Sremained from their
original sets to Sbm+1 .

After the update, if any updated set only has one link, the link
in it is identifiable.

The updated nonempty sets and the new identifiable links
are the same as those obtained from Pm+1 with CTB.

Lemma 3 indicates that we can perform sequential update
on the (conditional) tightest error bounds when a new MP
is constructed. It is easy to see that Lemma 3 is essentially
a different way to perform “variable elimination” (Line 3-
Line 10 of CTB) on Pm+1.

Theorem 1. For a given network G and two monitors, assume
that Pm is a set of MPs. With CTB, we can obtain a group
of d nonempty sets {Sb′j

}, j = 1, 2, . . . , d and the identifiable
links from Pm.
Pm can obtain the greatest lower bound of each link in G

if and only if it satisfies the following three conditions:
1) Pm covers all links in G;
2) For any other d′ nonempty sets derived from a different

set of paths P ′m′ by CTB, d ≥ d′;



3) Any new MP Pm+1 will not cause the movement of link(s)
between two distinct nonempty sets by Lemma 3.

Adding one more condition, we can find all identifiable
links:

4) The number of identifiable links by Pm is maximum.

Theorem 1 gives us criteria to determine whether a set of
paths Pm can obtain the tightest error bound of each link
in the network G. Nevertheless, in the context of bandwidth
tomography, the bandwidth of each link is unknown before
hand. As such, the criteria only serves as a guideline. It does
not warrant a polynomial-time solution to the first question
raised in this section. With construction (using the concept of
graph cut in particular), we can show that there is a class of
special cases in which we have to probe all possible paths to
obtain the tightest error bounds.

Theorem 2. In the worst case, it is impossible to derive
the error bound identical to the global tightest error bound
without listing all possible MPs.

Theorem 2 means that finding global tightest error bound for
links is #P -complete [15]. To tackle the challenge, we adopt
a reinforcement learning approach that utilizes the special
knowledge in bandwidth tomography for effective learning.

V. A REINFORCEMENT LEARNING APPROACH FOR PATH
CONSTRUCTION

In this section, we investigate how to build MPs step by
step, based on which we can derive error bounds close to the
global tightest error bounds. Constructing MPs sequentially in
our context is similar to playing a chess game: once an MP is
built and its end-to-end bandwidth is probed, we cannot regret
if the MP is not able to help reduce the error bounds, since
the cost involved in the measurement has occurred. Therefore,
we borrow the similar idea in developing a chess game and
use the special knowledge in bandwidth tomography as well
as off-policy5 reinforcement learning for constructing MPs.

Note that in Section IV, to ease theoretical analysis, we
showed that we only need to analyze the case of two (virtual)
monitors. This section does not need the concept of virtual
monitors and all monitors are referred as physical monitors.

A. Special Knowledge in Bandwidth Tomography for Action
Design

Based on Lemma 3 and Theorem 1, it is easy to have the
following proposition:

Proposition 1. For a set of MPs P , the sufficient and neces-
sary conditions for it to give the global tightest error bounds
are:

i) For every link in the network G, it must be contained in
at least one MP in P , i.e., P covers the whole network.

ii) For any link lI that is identifiable, lI must be identified
by the min-based system formed by P .

5Off-policy means that learning is from data “off” the target policy, i.e.,
the policy being learned about [20].

iii) For any link lU that is unidentifiable, if there exists an
MP P such that 1) lU is contained in it and 2) every
other link on it has bandwidth no smaller than that of
lU , P must be included in P .

Proposition 1 gives insights on how to take proper actions
in a reinforcement learning-based MP construction method.

Analysis for identifiable links: Based on Proposition 1, we
can see that in the effort of obtaining the global tightest error
bounds, if a link l is identifiable, we wish the set of MPs can
identify it. We first give a sufficient condition for identifying
identifiable links in the following lemma.

Lemma 4. For an identifiable link lI , a sufficient condition to
identify it is that there are at least one pair of MPs (P1, P2)
satisfying the following conditions:

i) (I-structure): for every link l in P1 except lI , l ∈ P2 (as
illustrated in Fig. 3).

ii) The measurement value of P1 is smaller than that of P2.

v1 v5
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v4

(a)

v1 v5
v2

v3

v4

(b)

Fig. 3: Illustration of I-structure: P1 and P2 are marked in red
and cyan, respectively; every link of P1 except l2,4 is also a
link of P2.

Note that knowing the sufficient condition for identifiability
is not equivalent to having a polynomial-solution to determine
whether a given link is identifiable or not. For a given link l,
we do not know in advance which MPs will satisfy conditions
in Lemma 4, since the measurement value of an MP can
only be revealed after a trail (sending probes along the MP).
However, we are able to select MPs that satisfy the topological
requirement (i), i.e., when we select a new MP Pnew into the
measurement path set P , we could try to select a Pnew that
forms an I-Structure with an MP in P . This knowledge helps
to (gradually) build the appropriate P . More details on the
action designed based on the above analysis are described in
Section V-B.

Analysis for unidentifiable links: For an unidentifiable link
lU , even if we include all possible MPs in G, lU still cannot
be identified, and the possible tightest error bound of lU is
given by the following lemma.

Lemma 5. For an unidentifiable link lU , the possible tightest
bound is [blU , bmax], where blU is the bandwidth value of lU
and bmax is the maximum bandwidth over all links in the
network.

Based on Lemma 5, to achieve the best error bound for an
unidentifiable link lU , we need to find an MP P that satisfies 1)
P includes lU , and 2) every other link on P has bandwidth no
smaller than that of lU . In other words, we wish the bandwidth



of every other link along the path to be as large as possible, so
that blU may become the smallest and thus the measurement
value of P . In this way, lU can achieve its best error bound.
Based on this analysis, we design the corresponding actions
in Section V-B.

B. Guided Sequential Path Construction (GSPC)

In reinforcement learning (RL), an agent takes actions and
interacts with the environment, which gives the agent feedback
for the action in form of reward [20]. The goal of the agent
is to maximize the cumulative total reward in the long run.
An RL problem is usually cast in the framework of Markov
Decision Process (MDP) [20], where the agent can make
action decisions round-by-round based on the current state
of the environment. In the context of constructing MPs for
bandwidth tomography, the core RL elements are:
• Environment: The environment consists of the network

topology G and its (hidden) bandwidth value bi on each
link li.

• Agent: It is a controller that decides which MP to traverse
at each state.

• Action: An action at of the agent means constructing an
MP and measuring the bandwidth of the MP.

• Policy: It is a mapping from the agent’s perceived states
of the environment to the actions to be taken when in
those states.

• State: A state is defined as st = Pt, where Pt denotes
the set of constructed MPs up to round t.

• Reward: The reward for taking action at at state st is
the negative total error bound computed with CTB over
Pt+1.

We adopt a model-free off-policy RL approach, a variant
of Q-learning, and use Guided Sequential Path Construction
(GSPC), to guide the agent to make better decisions. Off-
policy means that the agent is trained with offline simulated
networks at each step. The simulated networks have the same
topology of the target network, i.e., the network for which
we need to construct MPs. As time rolls out, we can either
identify or derive the bounds of links in the target network
with existing MPs built so far. For each identified link in
the target network, we set the same bandwidth value for
the corresponding link in each simulated network; for each
link where we only know the bounds in the target network,
we set a random number uniformly distributed within the
lower and upper bounds for the corresponding link in each
simulated network. The rationale of this offline training is
that if the policy is learned from many simulated networks of
the same topology, the policy should (statistically) work well
for the target network as well. After this offline training, the
agent updates the policy, i.e., action-value function Q(st, at),
iteratively to quantify the predicated quality of taking action
at at state st. The process repeats until the designated number
of MPs is reached.

One special difficulty is to control the dimension of the
action space, because the general term of action “generating
a new path” would result in exponential number of actions.

Fortunately, the special knowledge introduced in the previous
section can help us design the appropriate action space.

Action Space Design: The actions are divided into 2 phases.
Phase 1: before the network G is covered by the selected MPs
(i.e., not every link of G is included in at least one MP):
• Action-Random-b (ARb): randomly select an MP between

2 random monitors, and guarantee that at least 1 uncov-
ered link is contained in this MP.

• Action-I-b (AIb): utilize the smallest MP Psmp, i.e., MP
with the smallest measurement value in Pt, and select a
new MP Pnew which contains at least 1 uncovered link
and forms an I-Structure with Psmp.

• Action-U-b (AUb): utilize the biggest MP Pbmp, i.e., MP
with the largest measurement value in Pt, and take a
random inner vertex of Pbmp vr such that Pbmp = M1 →
vr →M2, Pnew = M1 → vr →M3, where M3 is a third
monitor, and the segment vr →M3 is node-disjoint with
Pbmp. In addition, Pnew contains at least 1 uncovered
link.

Phase 2: after G is covered by selected MPs:
• Action-Random-a (ARa): randomly select an MP be-

tween 2 random monitors.
• Action-I-a (AIa): utilize the smallest MP Psmp, and select

a new MP Pnew that forms an I-Structure with Psmp.
• Action-U-a (AUa): utilize the biggest MP Pbmp, and take

a random inner vertex of Pbmp vr such that Pbmp =
M1 → vr → M2, Pnew = M1 → vr → M3, where M3

is a third monitor, and the segment vr → M3 is node-
disjoint with Pbmp.

Remark 1. The actions utilize the knowledge of bandwidth
tomography. In particular, the actions of AIb and AIa target
at covering identifiable links (based on Lemma 4), and the
actions of AUb and AUa target at covering unidentifiable links
(based on Lemma 5). The random actions (ARb and ARa)
give the agent a chance of exploring other possibilities besides
guided searches. In the first phase, each action needs to cover
at least a new link as the basic requirement. This guarantees
that MPs will eventually cover G, instead of hovering over
covered links for a long time. Once all links are covered, we
do not need to consider this requirement in the second phase.

The pseudo code of the offline training and GSPC is shown
in Algorithm 2 and Algorithm 3, respectively.

VI. PERFORMANCE EVALUATION

Since there is no existing work to address the path construc-
tion problem for bandwidth tomography, we compare GSPC
with two naı̈ve methods:
• Random: Randomly generate an MP at each round.
• Diversity Preferred (DP): Before the graph is covered,

select an MP that consists of at least one uncovered links;
after the graph is covered, use Random for generating new
MPs.

We use the metric total error bound (TEB), defined as the
sum of error bounds of all links in the network, to show



Algorithm 2: OffineTrainer
input : current state in target network st, training rounds

N , target network G
output: action at suggested by offline trainer

1 get each covered link’s bound with Algorithm CTB;
2 determine phase 1 or phase 2, and according to the phase

initialize reward Ri = 0 (i = 1, 2, 3) for the actions
ai(i = 1, 2, 3), respectively, in the action space;

3 for round j ← 1 to N do
4 initialize a simulated network SN j that has the same

topology as G but has no bandwidth value assigned
to each link;

5 foreach link l in SN j do
6 if l in st then select a random number r between

l’s bound interval (calculated with CTB)
[llower bound, lupper bound];
/* llower_bound and lupper_bound for an

identified link are the same */
7 else choose a random number r ∈ [0, bmax];
8 assign r as l’s bandwidth value in SN j ;
9 end

10 foreach ai(i = 1, 2, 3) do
11 build a new MP Pnew by performing action ai on

simulated network SN j ;
12 s′t = st + Pnew; /* add the new MP to

the set st */
13 get the total error bound teb under s′t with CTB;
14 Ri = Ri + teb;
15 end
16 end
17 return ai =argmaxi(-Ri);

the advantages of GSPC over the above two methods. We
evaluate their performance with real-world ISP networks (Sec-
tion VI-A). While we do not exclude the possibility that other
better path construction methods might be found in the future,
our evaluation results in small-scale simulated networks, where
the ground-truth global optimal solutions can be numerically
calculated (Section VI-B), suggest that the room for further
improving GSPC may be marginal.

A. Experiment on Real-World ISP Networks

We select four real-world autonomous system (AS) net-
works collected by the Rocketfuel project [21]. The networks
have different sizes, whose parameters are listed in Table II.
On each network, the ground-truth bandwidth of each link is
set to a random number in [2, 300] for Ebone and Tiscali, and
a random number in [2, 500] for Exoduc and Sprintlink.

In order to make sure that the graph can be covered by
simple MPs, every dangling points (i.e., node with degree
1) has to be a monitor and each bi-connected components
must have at least 2 monitors inside. Besides the above two
necessary premises for covering the whole network, a small
random number of monitors are deployed based on the size of

Algorithm 3: Guided Sequential Path Construction
(GSPC)
input : G, total number of MPs T , offline training

rounds N
output: T measurement paths

1 Initialize state s = Null;
2 for episode t← 1 to T do
3 observe state s;
4 at = OfflineTrainer(s,N);
5 get an MP P by performing action at on the target

network G;
6 s = s+ P ; /* add the new MP to set s */
7 end
8 return s;
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Fig. 4: Performance of random, diversity preferred and GSPC.

each network. For each of the ISP network, we conduct the
experiment for 3 different methods until designated number of
MPs is exhausted (250 for Ebone, 300 for Exodus and Tiscali,
1500 for Sprintlink). These numbers of MPs are chosen based
on the observation that the numbers are high enough to cover
all the links in the network with both DP and GSPC.

We perform multiple runs, which all show similar perfor-
mance trends. To save space, we show the performance result
of one sample run in Fig. 4. We can see that with the growth in
number of MPs, the advantage of GSPC becomes significant.
Compared to Random and DP, the TEB of GSPC is decreased
with the fastest speed, regardless of the topology. DP outper-

TABLE II: Network parameters

ISP name |L| |V | Average node degree

Ebone (AS1755) 381 172 4.43
Exodus (AS3967) 434 201 4.31
Tiscali (AS3257) 404 240 3.36

Sprintlink (AS1239) 2268 604 7.51



forms Random except in the beginning phase. Computing with
the MP set at the first round and at the last round, the average
TEB reductions of Random, DP and GSPC are 82827, 102077,
197639, respectively. GSPC bears a 238% improvement over
Random and 193% improvement over DP.

B. Performance of GSPC v.s. Theoretical Smallest TEB (TS-
TEB)

From the previous experiment results, GSPC has signif-
icantly better performance than the two baseline methods.
Nevertheless, due to the large network size, we cannot afford
finding the theoretical smallest TEB (TS-TEB), i.e., TEB
calculated with the set of all possible MPs, and thus we still
do not know how close the performance of GSPC is to TS-
TEB. For this study, we adopt 4 randomly-generated small
networks where we can practically list all MPs. For each
network, we assign each link’s bandwidth value a random
value in [2, 100] and randomly select 2 nodes as monitors.
We generate all simple paths between the monitors, based on
which the TS-TEB is computed. We then conduct GSPC and
compare its performance with TS-TEB. We can see that in two
networks (Figs. 5 (b) and (c)) GSPC achieves TS-TEB with a
much smaller number of MPs (the total number of all possible
MPs listed in the captions). In addition, the gap between the
TEB with GSPC and TS-TEB is very small in the other two
networks (Figs. 5 (a) and (d)).
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Fig. 5: Compare the performance of GSPC with theoretical
smallest TEB (TS-TEB).

VII. RELATED WORK

Since Vardi introduced the concept of network tomography
in 1996, extensive research has been done in this domain [2]–
[5], [17], [22]–[28]. Most work on network tomography fo-
cuses on additive metrics. Regarding bandwidth tomography

which involves a min-system, very few can be found in the
literature due to the difficulties introduced in Section I.

Extensive research can be found on end-to-end bandwidth
estimation [7], and many measurement tools have been de-
veloped for this purpose, e.g., pathchar, clink, pchar, and
bfind. This category of research mainly focuses on one end-to-
end bandwidth measurement. They serve as the basic building
block (w.r.t. end-to-end path bandwidth) for bandwidth tomog-
raphy but have a large gap towards bandwidth tomography.

Boolean-based network tomography [10] that identifies link
failure or link congestion is loosely relevant. Boolean-based
tomography, however, is quite different from bandwidth to-
mography, since bandwidth tomography is to infer the band-
width value rather than the binary status of individual links.

The only work similar to bandwidth tomography is service
curve decomposition in the deterministic network calculus
domain [11], [12]. Service curve, in a nutshell, denotes the
cumulative service amount provided to a given traffic flow.
Due to the cumulative nature in its definition, time plays a
critical role, making the problem of service curve decomposi-
tion orthogonal to the bandwidth tomography problem studied
herein. So far, only line topology and tree topology were
studied for service curve decomposition.

VIII. CONCLUSION

Solving the open problem of bandwidth tomography, this
paper has made two novel contributions in the field of network
tomography. First, it presented a systematic theoretical investi-
gation on the inverse problem of min-system. Unlike additive
metrics [1], [18], [19], bandwidth uses the min operation,
which only records the minimum bandwidth along a path and
thus results in a great loss of link-level bandwidth information.
No existing mathematical tool has been found effective to
recover the link-level bandwidth from the measurements of a
given set of end-to-end paths. We, for the first time, designed
a variable elimination algorithm, that calculates the tightest
bounds for bandwidth of links in polynomial time by listing
all possible intervals and assigning variables into their corre-
sponding intervals. Second, to tackle the hardness of construct-
ing measurement paths for deriving the global tightest error
bounds, we proposed an off-policy RL-based framework that
utilizes the special knowledge in bandwidth tomography and
integrates offline training and online prediction for building
measurement paths in the target network. Evaluation results
over real-world ISP as well as simulated networks demonstrate
the superior performance of this method over other baseline
path construction methods. As our future research, we plan to
use this RL-based framework to solve the measurement path
construction problem in other network tomography contexts.
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