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Abstract. Mobile crowdsensing (MCS) depends on mobile users to
collect sensing data, whose quality highly depends on the exper-
tise/experience of the users. It is critical for MCS to identify right persons
for a given sensing task. A commonly-used strategy is to “teach-before-
use”, i.e., training users with a set of questions and selecting a subset of
users who have answered the questions correctly the most of times. This
method has large room for improvement if we consider users’ learning
curve during the training process. As such, we propose an interactive
learning pattern recognition framework, Goldilocks, that can filter users
based on their learning patterns. Goldilocks uses an adaptive teaching
method tailored for each user to maximize her learning performance. At
the same time, the teaching process is also the selecting process. A user
can thus be safely excluded as early as possible from the MCS tasks later
on if her performance still does not match the desired learning pattern
after the training period. Experiments on real-world datasets show that
compared to the baseline methods, Goldilocks can identify suitable users
to obtain more accurate and more stable results for multi-categories clas-
sification problems.

Keywords: Mobile crowdsensing · Learning pattern recognition · Task
assignment

1 Introduction

Mobile crowdsensing relies on the sensing capacity of mobile devices and the
intelligence of mobile users to create innovative solutions to many real-world
problems [1]. One example is environmental monitoring, where the participants
are required to take photos of specific objects (e.g. some endangered species or
poisonous mushrooms). Such MCS tasks normally involve both mobile users’
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spatial-temporal information as well as their capability of securing correct, high-
quality sensing data.

There is always a cost in the MCS applications of the above kind. This is
because the participants (aka, crowd workers) may need to be rewarded, and
even if they are purely volunteers, it would require substantial efforts for the
decision maker to clean incorrect data if the crowd workers are not competent
for the given tasks. As a result, “finding right people for right tasks” has become
one of the most fundamental principles in MCS.

Indeed, many approaches [5,16] have been proposed to identify the qualifica-
tion of crowd workers. A widely-used method is (randomly) inserting some ques-
tions with known answers during their participation. The samples with known
ground truth are gold instances [2], which are used to evaluate a crowd worker’s
domain knowledge and accordingly take proper actions on their answers. This
approach, however, has a well-known pitfall: embedding gold instances in every
worker’s annotation process may incur a high and sometimes unnecessary cost.

Another type of broadly-used method is teaching the crowd workers before
assigning them a give MCS task [15,17]. This type of methods overcome the
problem of embedding gold instances in the whole annotation process of crowd
workers because a crowd worker without enough domain knowledge can get
trained and crowd workers not performing well after the training can be excluded
earlier. Nevertheless, in most existing solutions in this category, a fixed teaching
set is used to train the crowd workers and the final selection of the crowd workers
is mainly based on the number of questions they correctly answer in the teaching
phase [15]. We, via the following illustrative example, argue that we can do much
better if we consider each individual user’s learning pattern.

Motivating Example. Butterflies have been widely used by ecologists as model
organisms to study the impact of habitat loss and fragmentation, and climate
change. To understand the ecological changes in a certain area, ecologists need
to monitor different butterfly species at several specific times in a day. This is
clearly too demanding if the monitored area is large. MCS fits this application
perfectly but needs to solve the problem that most people do not have the expert
knowledge of butterfly species. If we use the teaching-before-using method, the
number of correctly answered questions during the teaching process may not be
a good indicator for our final selection of crowd workers.

Consider three different learning patterns in the teaching phase, as shown in
Fig. 1. The horizontal axis represents the time (or rounds of teaching), while the
vertical axis denotes the capability estimation on the basis of user’s correctly-
answered questions over time. The three users have identical performance w.r.t.
the total number of correctly-answered questions during the teaching phase (e.g.
5 in the example) and they should be treated equally in the final selection of
crowd workers. 1 Nevertheless, they exhibit sharply different learning patterns:
The first user correctly labels five questions in the beginning, but then makes
mistakes in the follow-up questions; the performance of the second user varies all
the time during the teaching process; for the third user, the number of correctly-
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labelled questions begins to increase after she learns a few examples and then
her capability remains stable at a good level.

The reasons for different patterns could be many. For example, the first user
may get confused or get tired quickly with more teaching instances; the second
user may not learn effectively at all and consistently makes mistakes over time;
the third user can quickly learn new knowledge and remain stable at a good
capability level. Anyway, the hard-to-validate conjecture is irrelevant, since we
are only interested in the observed learning patterns during the teaching phase.
The point here is that the learning pattern can comprehensively reflect a user’s
capability of accepting, memorizing and applying new knowledge, which cannot
be captured by the oversimplified metric – the total number of correctly answered
questions. Clearly, users whose learning pattern in the teaching stage conforms
to the third type in Fig. 1 should be a better choice than users whose learning
pattern follows the other two curves, particularly when we only have limited
teaching samples and cannot afford training the users for a long time.
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Fig. 1. Example learning patterns in the teaching phase

Motivated by the above observation, we propose Goldilocks1, an interactive
capability assessment framework for MCS, which adopts judicious user selection
strategy to eliminates unsuitable users from the current MCS job at the early
stage. Our goal is to select the participants whose performance follows the desired
learning pattern to maximize the overall performance in an MCS task. Goldilocks
adopts an adaptive teaching model to identify the users with stronger ability of
generalizing new learned knowledge in the given task. The adaptive teaching
strategy is tailored for each individual and is designed to exert the greatest

1 The term is meant to emphasize that our ultimate goal is identifying the right people
for right tasks rather than evaluating people’s general learning capability.
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learning potential of the user. Our philosophy is that if the “ultimate” capability
of one user is still not satisfactory after the tailored teaching, we have enough
evidence to believe that the user would not be a good candidate for the task and
thus should be excluded from task assignment at the early stage.

This paper makes the following contributions:

1. We propose a new framework, Goldilocks, for adaptive learning pattern recog-
nition in participatory MCS. This framework is largely different from previous
work that uses either gold instance in the whole process or simplified criteria
(e.g. the total number of correct answers) in the participant selection.

2. Goldilocks integrates the teaching and selection phases in a unified framework,
and selects the qualified users as early as possible without assigning all the
questions to each user. In this way, it significantly saves time and cost for a
given MCS task.

3. Based on the work in [9], we develop a new web service over Amazon Web Ser-
vices (AWS), which obtains the model parameters and automatically adjusts
questions to maximize individual participants’ learning performance. The
web service also collects data to profile the participants’ learning pattern,
which can be used for task assignment over MCS. Experiments on real-world
datasets show that Goldilocks outperforms the baseline methods in both user
profiling and the final participant selection.

2 Related Work and Background

Based on the degree of human participation, MCS can be roughly classified
into two categories: participatory sensing and opportunistic sensing, as shown
in Fig. 2.
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Fig. 2. Classification of MCS
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2.1 Opportunistic Sensing

The user involvement is low in opportunistic sensing tasks. For example, asking
for the continuous location information without the explicit action of the user is
one type of opportunistic sensing [6].

Opportunistic sensing can be classified into three groups: space-time based,
mobility pattern based, and others. In the first group, Karaliopoulos et al. [11]
proposed a recruitment strategy in opportunistic networking to generate the
required space-time paths across the network for collecting data from a set of
fixed locations. Li et al. [12] presented a temporal-spatial model for participant
recruitment in scenarios where the tasks arrive in real time and have different
temporal-spatial requirements. In the second group, Guo et al. [8] selected crowd
workers based on their movement patterns and the task’s sensitivity to time.
The recruitment strategy proposed in [20] is based on the user’s probability of
moving to a destination. In the third group, Liu et al. [13] considered the energy
needed to complete tasks and used a participant sampling behavior model in the
participant selection. Yang et al. [22] presented a personalized task recommend
system which recommends tasks to users based on their preference and reliability
to different tasks.

2.2 Participatory Sensing

Unlike opportunistic sensing, participatory sensing requires the active involve-
ment of crowd workers. Active learning and machine teaching are frequently used
to interact with users in their labeling process, so the performance of users can
be observed in real time.

The authors in [25] introduced a method to automatically identify the most
valuable unlabeled instances as well as the samples that might benefit from rela-
beling. Zhang et al. [24] combined both labeled and unlabeled instances in the
interaction with users, and proposed a bidirectional active learning algorithm
by querying users with both the informative unlabeled samples and the unreli-
able labeled instances simultaneously. The distributed active learning framework
in [21] takes the upload and query cost into consideration when interacting with
different users, with the goal of minimizing the prediction errors. In addition to
the above active learning frameworks, various studies in machine teaching also
provide methods to deal with the user interaction problem in the labeling pro-
cess. Du et al. [3] presented a teaching strategy to achieve more effective learning,
which interacts with users by using a probabilistic model based on their answers
in each round. Zhu [26] employed Bayesian models to find the optimal teaching
set for individuals. Johns et al. [9] developed an interactive machine teaching
algorithm that enables a computer to teach users challenging visual concepts by
probabilistically modeling the users’ ability based on their correct and incorrect
answers.

Among the machine teaching methods, adaptive teaching is directly related
to our work, and hence we introduce more background in adaptive teaching in
the next section.
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2.3 Adaptive Teaching

Since many MCS tasks require specific domain knowledge, users usually need
training before they are assigned tasks. In order to select right people for a given
task, we should consider two problems: (a) how to teach people so that they can
generalize the learned knowledge as soon as possible? (b) how to profile users’
learning pattern so that better candidates for the MCS task can be determined?

To address the first problem, adaptive teaching [10] is a proper way to help
people learn more effectively by posing training questions that are adaptively
chosen based on their existing performance. In [3], the next teaching image for
a user is the one that the user’s answer is predicted to be the farthest from the
ground truth. An offline Bayesian model is applied to select adaptive teaching
samples in [17]. The teaching strategy presented in [9] chooses a teaching sample
that has the greatest reduction on the future error over the rest of unlabeled
samples. The goal of adaptive teaching is to stimulate a user’s learning potential
as much as possible. We hence have a very good reason to eliminate the users
who still perform poorly for a given MCS task even after adaptive teaching.

Regarding the second problem, we need to extract users’ learning styles
through their training processes. Although learning pattern recognition algo-
rithms are studied before [7], they normally assume that abundant labeling data
in a given domain are available and then apply different machine learning classi-
fication models on the historical learning data to extract learning patterns. This
does not match our scenario where learning profile should be built on the fly as
a new question is asked and answered. In addition, the learning pattern recog-
nition methods in existing work are more focused on predicting the accuracy
of new labels only based on whether or not a user’s past questions are labeled
correctly.

In this paper, we consider the above two problems and propose an interactive
user selection framework for participatory MCS platforms. Note that we build
on the existing solution [9] for adaptive teaching but develop a new method for
profiling users’ learning patterns. Unlike other work, our work focuses on the
selection of users by doing adaptive capability acquisition round by round2 for
each worker. To match the right user to right task, we firstly select the most
appropriate teaching samples for each user to ensure that they can learn as
much as possible according to their own learning patterns. And then we select the
users for the job by fitting their learning pattern to the non-linear (sigmoid) [23]
curves.

3 Overview of Goldilocks

The role of Goldilocks in the workflow of MCS is illustrated in Fig. 3: an organi-
zation or individual requests sensing data from the cloud platform (Step 1), then
an adaptive teaching interface is called to teach crowd workers according to their

2 A round means that the user answers a question and then is told whether her answer
is correct or not as well as what the ground truth is.
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Fig. 3. The role of Goldilocks in the MCS platform; solid lines denote the sensing data
requesting procedure; dash lines denote the intermediate results obtained by Goldilocks;
the grey box denotes the main functions of Goldilocks.

performances (Steps 2, 3, 4). Adaptive teaching will select the questions that can
maximize the user’s probability of correctly answering the questions in the future
round by round. After each round, we compare the user’s estimated performance
based on her learning performance so far with her actual performance in labeling
the new question (Step 5). Steps 3, 4, and 5 will repeat until the specified number
of teaching samples are taught to each user. Then we adopt a two-stage candi-
date selection strategy based on the acquired performance indicators returned
by Step 5, to select the best user subset for the formal tasks (Step 6). For the
users who are not selected, we will not continue to teach or hire them. Finally,
the formal questions without ground truths will be completed by the selected
users, and the sensing data from this user subset will be returned to the cloud
platform, which will then be provided to the original requester (Steps 7 and 8).
The above procedure is denoted by the solid lines in Fig. 3.

The core component of Goldilocks is the design of Step 5 and Step 6, denoted
in the grey box in Fig. 3. They describe the learning pattern of each user by
adjusting a user’s estimated capability on the basis of her true performance
on the teaching sample in each new round. The dash lines refer to the data
stored in the “Round-by round performance indicator” database, and the high-
level indicators of user’s learning pattern calculated by the “Round-by round
performance indicator” database.

The two core steps are denoted by the grey box in Fig. 3: “capability adjust-
ment” and “candidate selection”, which will be introduced in Sects. 4 and 5,
respectively. The notations used in this paper are listed in Table 1.

4 Capability Adjustment in Goldilocks

We adjust the estimation of user’s capability round by round. If we measure the
user’s capability with a performance indicator, its value should be adjusted over
time, based on the questions that the user have answered and the current ques-
tion at the current round. Using Mk

j to indicate user k’s capability estimated
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Table 1. Summary of main notations

Notation Description

i The question number of labeled questions (0 < i < j)

j The question number of the current question

m The number of extracted keypoint feature vector of a question

n The number of questions in the teaching set

xk
iw The wth (0 < w < m) keypoint feature vector of the ith

question labeled by user k

Ak
i The vector set consists of the m keypoint feature vectors of

the question i labeled by user k

dk
ij The value of j − i of user k

skij The similarity between question i and question j answered by
user k

ak
i Binary value, ak

i = 1 if the ith question is correctly labeled by
user k, else ak

i = 0

tki The time of labeling the ith question by user k

Ik
i The ID of the ith question labeled by user k

δkj The offset on user k’s capability after the jth question is
labeled

αk
ij The impact of the user k’s previously answered question i on

her current to be answered question j

φk
j The value of

∑

i

αk
ij

Mk
j The accumulated capability of user k after the jth question is

labeled

after she answers the j-th question, we need to design an algorithm that calcu-
lates {Mk

1 ,Mk
2 , · · · ,Mk

n}, where n is the total number of training questions for
the user. We use superscript k to denote user k to emphasize that the sequences
of teaching questions for different users are different.

Intuitively, when a user is trained with a question i, the knowledge learned
from this question may have an impact on the probability that the user correctly
answers a later question. This impact comes from various reasons, e.g., (1) the
questions may be similar, and (2) adaptive teaching [10] raises the next question
based on the user’s historical answers to previous questions. In addition, the
impact may become smaller as time goes. As such, we need a method to estimate
the impact of all previous questions on the user’s performance of answering
current question (Sect. 4.1) and consider this impact when we adjust the user’s
performance indicator value (Sect. 4.2).
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Fig. 4. The impacts of the previous questions on a user’s capability of answering the
current question. The shaded parts are samples that have been taught to the user

4.1 Impact of Previous Questions

We describe the teaching set for user k in the teaching phase as

Dk = {(1,Ak
1, tk1 , a

k
1), . . . , (n,Ak

n, tkn, ak
n)},

where Ak
i is an extracted high-dimensional vector set to describe the features

of ith question. Note that the similarity between different teaching samples and
their order should be used in our model. tki denotes the time that user k spends
on labeling question i and ak

i is a binary variable to record whether her answer
is correct (ak

i = 1 if the question is correctly labeled, otherwise ak
i = 0).

As shown in Fig. 4, for each user in the teaching phase, each previously
learned question has an impact on the user’s ability of answering the current
question j. We denote this influence value as αk

ij . To estimate this influence, we
need to consider parameters ak

i and tki on each previously learned question i.
If question i is correctly labeled, a shorter time spent on the question implies
a better skill on such type of questions, and thus user k is more likely to use
the knowledge related to question i when answering the current question j. If
question i is given a wrong label, the larger tki implies that user k has worked
harder on this question. While the reasons could vary, it is reasonable to assume
that a larger tki would have a more positive impact on the user’s later perfor-
mance compared to the situation that she spends a little time on question i
with a wrong answer returned. Based on the above consideration, we suggest
the following equation to calculate αk

ij :

αk
ij =

1

1 + e
−

[(
sk

ij

dk
ij

)(
1+

(−1)
ak

i
+1

tk
i

)] , (1)

where dk
ij = j − i is the distance between questions i and j, sk

ij is the similarity
between question i and question j. The calculation of sk

ij depends on specific
applications (e.g. image, audio, and text should use different algorithms to cal-
culate similarity). Following the human memory curve [4], a larger dij implies a
smaller likelihood that the user correctly labels question j.
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When we estimate the capability of a user before she answers a current
question j, we should consider the impact of all previous questions. As such, we
calculate

∑

i

αk
ij , which is denoted as φk

j for simplicity:

φk
j =

j∑

i=0

αk
ij . (2)

φk
j could be considered as a quantitative measure of the impact of previous

questions on the ability that the user can correctly answer the current question,
since φk

j encodes all the impact of previous questions before j. φk
j also implicitly

reflects the knowledge that the user has gained so far and thus is useful for later
adjustment of her capability estimation after we see her true answer.

Equation (2) has two advantageous properties: (a) It considers the relation-
ship of different teaching questions. And in such context, it utilizes the user’s
time and correctness on those questions. (b) As the number of samples learned
by the user increases, the φk

j is increased by a number in (0, 1) each time. Com-
pared to other user profiling methods, this process enables us to focus on the
user’s capability of applying the new knowledge she just learned, rather than
simply counting the number of correctly answered questions.

Remark 1. Equation (2) is just one way, among potentially many others, of esti-
mating φk

j . While there is no theoretical guarantee on its accuracy, it can be
empirically shown to be effective in our later experimental studies.

4.2 Adjusting Capability Estimation

After the user answers the current question j, we then use φk
j and her answer

to adjust the estimation of her capability. As mentioned before, we use Mk
j to

indicate user k’s capability estimated after she answers the j-th question, and
we record Mk

1 ,Mk
2 , · · · . Essentially, we need to find the adjustment value δk

j to
calculate Mk

j = Mk
j−1 + δk

j .

When the User Answers the Current Question Correctly. We propose
the following formula to calculate δk

j when a user answers the current question
j correctly (i.e., ak

j = 1):

δk
j =

1
σ

√
2π

e
−(φk

j −μ)2

2σ2

tkj
(3)

The above formula is proposed due to the following considerations: (1) Assuming
that φk

j (i.e., the knowledge gained by a user) follows normal distribution, the
numerator is the normal distribution’s probability density function (pdf) with
mean μ and variance σ2, where μ and σ are empirical values (from our later
experimental results, μ = 2.69, σ = 1). (2) Assuming that the longer the time
that the user spends on the question, the lower the increments on her capability
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estimation, we divide the probability value by tkj . It is worth noting that in our
method it is the shape (i.e., the bell shape when tkj is fixed) rather than the
absolute values that matter, and as such we believe other possible functions of
the similar shape would also work well.

When the User Answers the Current Question Incorrectly. In this case,
the higher the chance that she should answer the question correctly based on her
historical records, the higher the reduction that should be posed to adjust her
capability estimation. Due to this reason, we use a monotone decreasing function
w.r.t. φk

j and tkj to obtain δk
j :

δk
j =

−ν
(
φk

j

)2 + c

tkj
(4)

where ν and c are parameters set with experimental results3. The 3-D functional
image of ak

j , tkj , φk
j and δk

j is shown in Fig. 5. From this Figure, we can also see
that when a certain threshold of labeling time (e.g., 6 s) is exceeded, the longer
labeling time will not lead to a significantly smaller subtraction on the alignment
offset δk

j . This reflects a fact that there should be no much difference in the user’s
capability if she takes a long time and gives a wrong answer.
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Fig. 5. The 3-D functional image of ak
j , tkj , φk

j and δkj , where the upper half repre-
sents the relationship of tkj , φk

j and δkj when ak
j = 1, and the other part denotes the

relationship of them when ak
j = 0.

4.3 Pseudocode

To summarize, the main idea of user’s capability estimation includes: (a) esti-
mating the impact of previous learned questions and (b) based on the estimation
3 In our later experiments, to make Eqs. (4) and (3) have the same range values, we

ν = 0.011 and c = −0.018.
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Algorithm 1. Capability Adjustment Workflow
Input: The number of question n, and the first teaching sample labeled by the kth

user T k = {(1, Ik
1 , tk1 , ak

1)}, where Ik
1 is the ID of the first question labeled by the

kth user. tk1 is the time the kth user spends on the first question. ak
1 = 1 if the first

question is correctly labeled by user k, else ak
1 = 0

Output: The user’s performance indicator after each round and the final accumulated
capability indicator of the user Mk = {Mk

1 , Mk
2 , · · · , Mk

n}
1: Mk

1 ← 0
2: for j = 2 → n do
3: (j, Ik

j , tkj , ak
j ) ← EER(j − 1, Ik

j−1, a
k
j−1)

4: T k ← T k ∪ (j, Ik
j , tkj , ak

j )
5: αk

ij ← 0
6: for i = 1 → j − 1 do
7: skij ← Ψ(Ik

i , Ik
j )

8: dk
ij ← j − i

9: αk
ij ← αk

ij + U(skij , d
k
ij , a

k
i , tki )

10: end for
11: δkj ← 0
12: if ak

j = 0 then
13: δkj ← ∏

0(α
k
ij , t

k
j )

14: else
15: δkj ← ∏

1(α
k
ij , t

k
j )

16: end if
17: Mk

j ← Mk
j−1 + δkj

18: end for
19: return Mk = {Mk

1 , Mk
2 , · · · , Mk

n}
and the latest user performance to adjust the current capability estimation. The
pseudocode is outlined in Algorithm 1.

In this workflow, EER(·) (i.e., Expected Error Reduction) denotes the inter-
active teaching algorithm [9] that we adopt to determine the next sample which
can stimulate user’s learning potential in the greatest extend. To be more spe-
cific, the next teaching sample is the one that, if labeled correctly, can reduce the
probability of total error in the greatest level over the samples that are still not
selected into the teaching set. This selection problem is formulated based on the
conditional probability function and solved by a graph-based semi-supervised
method named Gaussian Random Field (GRF) [27]. Ψ(·) represents the feature
detection algorithm to obtain the similarity between any two questions. U(·) is
the impact measure function of how the previous learning questions act on user
k, which has been introduced in Sect. 4.1.

∏
0(·) and

∏
1(·) stand for the different

capability adjustments when the user gives a correct or wrong answer to a new
question j, respectively, as discussed in Sect. 4.2.

5 Candidate Selection in Goldilocks

To accurately select the high-quality users, we divide the selection process into
two stages based on the learning curve (drawn by Mk returned by Algorithm1)
of each candidate.
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– Firstly, we keep the a percentage (p%) of candidates according to their final
capability (i.e., Mk

n) and exclude the others, where p is a tunable parameter.
We adopt this step because the final capability is a reflection of a user’s final
learning result, and thus we need filter out the ones whose final capability is
below a certain threshold.

– Next, we fit the learning curve of each remaining candidate with our desired
curve. We order these candidates according to the degree of match and elim-
inate the bottom candidates until the desired number of candidates are left.

Regarding the calculation of degree of match, after the first step, we only care
about the shape of each remaining candidate’s learning curve. For this reason,
we avoid using a static, fixed curve as the benchmark. Instead, we use the shape
of logistic regression (sigmoid) curve4 y = b

1+ ae−kx (where a, b, k are positive
parameters) as the desired shape, and evaluate different measures on the degree
of match in Sect. 6.

6 Experimental Evaluation

6.1 Implementation

To evaluate the performance of Goldilocks, we need real-world data that reflect
people’s learning patterns. For this, we deploy a Python-based Django website
over Amazon Elastic Compute Cloud (Amazon EC2), which interacts with var-
ious users and collects the corresponding real-time data. Based on the work [9],
we modify its database structure to collect more information such as a user’s
time spent on each question and the user’s exact annotation for each question
in teaching and testing phases, respectively.

Table 2. Summary of the experiment datasets

Information Dataset

Butterfly Oriole

#Teaching samples 20 16

#Testing samples 10 8

#Classes 5 4

#Samples per class 300 60

In our experiment, the user will firstly be presented a fixed number of teaching
samples one by one. In the teaching phase, the user will be provided the ground
truth after she submits the answer of each question, and then our website chooses
the next teaching sample to her using the adaptive learning algorithm introduced
4 This function is just one possible candidate, and people can adopt other desired

shape here.
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in [9]. In the testing phase (i.e., formal task), no ground truth will be provided
for each question and the questions are selected randomly to each user. The
setups of our two experiment datasets are shown in Table 2.

It is worth mentioning that in our experiments, we found that users often
answered questions quickly, basically around 2 s. Small time values can lead to
a steep increase in the function defined in (1) and quick fluctuations on user’s
capability estimated with Eq. (2). This problem can be easily avoided by using
a “virtual” time system, e.g., using 2000 ms instead of 2 s or increasing the real
response time by a constant. The purpose of using virtual time is to smooth the
fluctuation in a way that we can easily identify a user’s learning pattern. Since
too-large virtual times (e.g. thousands) will take a heavy toll on using Eq. (2)
to distinguish different learning patterns, in our experiment the virtual time is
determined by adding a small constant (2 s) to real response time.

6.2 Data

– Question sets: We select two scientific image sets to evaluate the perfor-
mance of Goldilocks. The first dataset, called Butterfly dataset, consists of
a total number of 1500 butterfly images in five categories from a museum
collection [9]. The second image set, called Oriole dataset, includes 240 oriole
images in four different species from a public dataset [19]. Correctly labeling
these images requires domain knowledge, which normal users might not have
in advance.

– Data processing: The scale-invariant feature transform (SIFT) algo-
rithm [14] is an effective algorithm for image feature detection. We apply
SIFT to calculate the keypoint feature vectors of each teaching sample, and
then acquire the similarity between any two teaching samples with the fol-
lowing function:

f(ρ) =
m∑

i=1

1l{ρi>θ} (5)

where 1l{ρi>θ} is an indicator function:

1l{ρi>θ} =

{
0 if ρi > θ

1 otherwise
. (6)

Here function ρi =
∥
∥
∥xk

jw − xk
j′w

∥
∥
∥
2

2
is the Euclidean distance between the w-th

(0 < w < m) keypoint feature vectors of teaching images j and j′, and θ
is a self-defined similarity threshold between two different keypoint feature
vectors.
We implement the SIFT algorithm in C++. To make the labeling task non-
trivial, we set the image blur-adjustment parameter λ of the Gaussian pyra-
mid to 1.1, which introduces some difference to intra-category images and
some similarity to inter-category images [14].
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– Data collection: We share the Python-based Django website with 100 par-
ticipants, we collect their performance data in the teaching phase and the
testing phase, respectively, for both the Butterfly and Oriole image sets.
While we have collected the data for the participants in both the teaching and
testing phases, to compare Goldilocks and other baseline methods in terms
of the quality of final returned sensing data, we can pretend that after the
teaching phase, only X number of qualified users out of the 100 participants
are selected in the testing phase, where X is a variable determined by the
participant selection criteria. In this way, we have the ground truth regarding
the data quality with and without those filtered users in the testing phase.

6.3 Baseline Algorithms

We compare our method with the following baseline methods:

– Sacc: This method filters the candidates based on their accuracy in the teach-
ing phase. The candidates with more correctly-labeled questions are chosen
to participate in the formal tasks.

– Surp: This method [22] does not have an explicit teaching phase but it esti-
mates users’ reliability using the following equivalent method: After a user
labels all the questions, we randomly select a small number of questions,
and estimate the user’s reliability based on whether or not she has correctly
answered the chosen questions. In our experiment, we ask the users to label
the 30 images from Butterfly dataset and randomly select 5 images to esti-
mate the users’ reliability. For the Oriole dataset, we ask the users to label
the 20 images and randomly select 4 images to estimate the users’ reliability.
Users are then ranked based on their reliability from high to low, and we
select candidates based on their reliability. We repeat this experiments 10
times and take the average over the 10 runs.

– Sstr: STRICT [18] is an optimized algorithm that selects all the teaching
samples for a user before the training, based on the use’s prior. In other
words, the order of teaching samples is computed offline and fixed in the user’s
training process. It finally selects the users who have the best performances
on the fixed teaching set.

– Srnd: It randomly selects the required number of candidates without any
teaching. We take the average result over 50 random selections in all of our
following experiments.

6.4 Evaluation Results and Analysis

Accuracy and F-Measure. Figure 6 shows the average labeling accuracy by
users selected with different participant selection methods in the testing phase.
For comparison, we set the number of selected users (i.e., ε), after the teaching
phase, from 20 to 35 with the increment of 5. From the figure, we can see that
on both datasets, all the methods perform better than the random selection. It
is notable that when ε = 20, the performance of random selected users is even
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worse than that of all the users. This is because the random selection might
choose more unqualified users than qualified ones. We also observe that there is
no fixed “second-best” across different methods and among different datasets.
However, Goldilocks achieves the highest accuracy among all the five methods
in all the ε settings on both datasets.
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(d) ε = 35.

Fig. 6. Accuracy of different methods on different datasets when the number of selected
users for the testing phase is different. S denotes the performance that all users are
selected for the testing phase.

F-measure is a harmonic mean of precise and recall that ranges from 0 to
1. In addition to accuracy, this metric also reflects the stability of a model.
Figure 7 shows the f-measure value of different methods under different number
of the selected users on the two experiment datasets. On both image sets, Srnd

has the worst f-measure performance among all the methods. Meanwhile, Sgol

outperforms all the baselines across different numbers of selected users. The
maximum f-measure value of Goldilocks can reach 0.83 when ε = 20 on the
Butterfly dataset. Also, no baseline works consistently the second best w.r.t.
f-measure. From Fig. 7, we can also observe that the f-measure performance
is generally poorer on the Oriole dataset than on the Butterfly dataset. This
may be because image samples of orioles are more difficult to classify due to
distracting environmental background.

Response Time. If a user can answer questions quickly with a high accuracy,
the user must have gained good knowledge for the task. We therefore analyze
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Fig. 7. F-measure of different methods on different datasets when the number of
selected users for the testing phase is different. S denotes the performance that all
users are selected for the testing phase.

the response time of those users who are chosen for the testing phase. Here the
response time is defined as from the time when a selected user is shown the first
image to the time when she submits the answer of the last image during the
testing phase. Table 3 summarizes the average response time of users selected
by different methods on two different datasets. We can observe that the users
selected by Goldilocks tend to respond more quickly compared to other baselines.
Considering Goldilocks’ good performance in accuracy and F-measure, we have
enough confidence to conclude that the users selected by Goldilocks have a better
grasp of the knowledge. Although it can be seen that Srnd and Surp also perform
well on the average response time in some ε settings, users’ poorer performance
on the accuracy and f-measure implies that the selected users may not be reliable.

Table 3. Average response time in the testing phase

ε = 20 ε = 25 ε = 30 ε = 35

Butterfly Oriole Butterfly Oriole Butterfly Oriole Butterfly Oriole

Method Srnd 41.35 28.05 44.32 28.18 47.50 27.96 47.00 28.41

Sacc 47.60 34.90 46.60 35.44 45.00 34.13 47.26 33.60

Surp 46.80 28.60 46.36 27.48 43.50 26.80 45.26 26.66

Sstr 49.45 25.69 54.35 27.88 52.30 30.65 48.37 31.89

Sgol 42.96 21.25 45.30 23.12 42.53 27.40 45.08 28.03

Note: ε denotes the number of selected users for test
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(a) Butterfly dataset.
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(b) Oriole dataset.

Fig. 8. Fitted logistic regression curves of the top 5 user.

Fitting Degree of Learning Curve. Goldilocks uses the logistic function
introduced in Sect. 5 to benchmark a user’s learning curve. Note that a user’s
learning curve is obtained from the round-by-round capability adjustment (Algo-
rithm1). To ease illustration, we normalize the capability values with the max-
imum possible value. The learning curves of the selected top five users on the
two datasets are shown in Fig. 8(a) and (b), respectively. We can see that all the
learning curves have a similar shape of the logistic regression function, indicating
the suitability of logistic regression.

Table 4. Fitting performance of Top 5 learning curves and the corresponding accuracy
in the testing phase on the Butterfly dataset

User Metrics Accuracy

SSE RMSE Adj-rsquare

13 0.0244 0.0379 0.9638 90%

54 0.0621 0.0605 0.9702 90%

55 0.0399 0.0485 0.9837 100%

62 0.0226 0.0364 0.9721 90%

98 0.0304 0.0423 0.9715 90%

Table 5. Fitting performance of Top 5 learning curves and the corresponding accuracy
in the testing phase on the Oriole dataset

User Metrics Accuracy

SSE RMSE Adj-rsquare

48 0.0113 0.0354 0.9869 87.5%

59 0.0146 0.0403 0.9805 87.5%

62 0.0052 0.0240 0.9904 100%

72 0.0143 0.0399 0.9776 87.5%

108 0.0080 0.0299 0.9887 87.5%
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We, however, need a quantitative evaluation on the fitting degree of a learning
curve towards the logistic function. Note that we only care about the shape (i.e.,
the trend) and thus we do not suggest a fixed logistic function. Instead, with
logistic regression, different learning curves may fit to different logistic functions
(i.e., the parameters in the fitted logistic functions may be different). To evaluate
the fitting degree, we test the following metrics:

– SSE : The sum of squared errors (SSE) between the learning curve and the
fitted logistic function (at discrete range values). The smaller the SSE, the
better the fitting.

– RMSE : Root Mean Square Error. The smaller the RMSE, the better the
fitting.

– Adj-rsquare: The adjusted R-square value according to the freedom degree
of errors, where R-square is the square of the correlation coefficient between
the measured data and the data obtained by the fitting curve. The higher the
Adj-rsquare, the better the fitting.

Table 4 shows that in the Butterfly dataset, both SSE and RMSE are less
than 6.5% for all the 5 users’ learning curves. And the values of their Adj-
rsquare are all beyond 96%. Considering the high accuracy of these 5 users, we
can conclude that the users whose learning curve well follow our proposed model
have high-quality answers in the testing phase. This is further validated by the
fact that the user who has the highest Adj-rsquare (i.e., the 55th user) answers
all the questions correctly. Table 5 shows the similar phenomena as in Table 4.
For the Oriole dataset, the values of SSE are less than 1.5% and the values of
RMSE are less than 4.1% for all the top five users’ learning curves. The 62th

user has the best Adj-rsquare (99.04%) and the highest accuracy (100%).

7 Conclusions

Participant selection has always been a critical problem in MCS. To “select right
people for right job”, existing methods usually use the number of questions
that a user answered correctly during the training phase to judge the user’s
qualification. We proposed an enhancement method, called Goldilocks, which
(1) estimates users’ learning patterns using adaptive teaching and (2) selects
users based on the desired learning patterns. Experiments with real-world data
disclose that Goldilocks outperforms existing baselines in terms of efficiency,
accuracy, and stability.
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