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Abstract—Fast Internet-wide network measurement plays an
important role in cybersecurity analysis and network asset
detection. The vast address space of IPv6, however, makes it
infeasible to apply a brute-force approach for scanning the entire
network. Even worse, the extremely uneven distribution of IPv6
active addresses results in a low hit rate for active scanning. To
address the problem, we propose 6Hit, a reinforcement learning-
based target generation method for active address discovery in
the IPv6 address space. It first divides the IPv6 address space
into different regions according to the structural information
of a set of known seed addresses. Then, it allocates exploration
resources according to the reward of the scanning on each region.
Based on the evaluative feedback from existing scanning results,
6Hit optimizes the subsequent search direction to regions that
have a higher density of activity addresses. Compared with
other state-of-the-art target generation methods, 6Hit achieves
better performance on hit rate. Our experiments over real-world
networks show that 6Hit achieves 3.5% - 11.5% hit rate for the
eight candidate datasets, which is 7.7% - 630% improvement
over the state-of-the-art methods.

Index Terms—IPv6, Internet-wide scanning, Network mea-
surement.

I. INTRODUCTION

The Internet is moving unavoidably towards IPv6, as the
Internet Assigned Numbers Authority (IANA) allocated the
last blocks of IPv4 address space to the Regional Internet
Registries (RIRs) in early 2011 [1]. IPv6, the next generation
Internet Protocol, has a huge address space, and it is widely
implemented and rapidly adopted in recent years. In October
2019, nearly 30% of Google users accessed their services via
IPv6 [2]. In the meantime, the number of active IPv6 BGP
entries in routing table is also increasing rapidly [3].

IPv6, however, poses a new challenge in Internet mea-
surement, which is critical to all ISPs. In the past, Inter-
net measurement has greatly benefited from the advances
of modern hardware and computational power that facilitate
effective Internet-wide scanning. Asynchronous scanning tools
like ZMap [4] and Masscan [5] have drastically enhanced our
capability of conducting Internet-wide network surveys, e.g.,
topology discovery [6], [7], IP address analysis [8], [9], and
geolocation [10]. As to cybersecurity, network device search
engines like Shodan [11] and Censys [12] can acquire Internet-
wide asset data for evaluating network security, discovering
vulnerabilities, and tracking remediations [13]. Nevertheless,
these tools are not effective when applied for IPv6-based

Internet, because the huge address space of IPv6 renders
comprehensive scans nearly impossible.

This raises the question for ISPs on how to quickly evaluate
their network assets and the status quo of customer usage.
This also presents a challenge for measurement researchers
on how to obtain worldwide network measurements for IPv6.
Efficient address discovery in IPv6 address space is the key
to answering the above challenges and also the foundation for
many IPv6-based network services such as neighbor discov-
ery [14] and security analysis [15]. We are thus motivated to
develop an efficient and effective approach for Internet-wide
IPv6 scanning.

We propose 6Hit, a reinforcement learning-based target
generation method which uses a set of known active addresses,
also called seeds, to efficiently discover active addresses in the
IPv6 address space. Instead of randomly generating addresses,
6Hit utilizes the information provided by the seeds and learns
the better search directions according to the feedback during
the scanning process. To be more specific, it utilizes the seeds
to partition the address space and takes the scanning result
of each step as a reward to determine better search directions
on the next step. Meanwhile, to manage the huge scale of
the IPv6 address space, 6Hit incorporates the key notion of
a probe budget that specifies the constraint on the number
of total probe packets. Note that the performance of address
discovery algorithms is generally evaluated by the hit rate,
defined as the ratio of the total number of discovered active
addresses over the total number of probe packets. Clearly, a
high hit rate is needed for an effective solution to Internet-wide
IPv6 scanning. In this context, our experiments show that the
state-of-the-art can only achieve about 6% hit rate at most.
6Hit aims to push this limit.

In a nutshell, 6Hit considers IPv6 addresses as high-
dimensional vectors in the address space and adopts a rein-
forcement learning approach. It first performs divisive hier-
archical clustering on the seeds to construct a tree structure
named a space tree, which represents a partition of the address
space. Each region in the address space is associated with
a prior of the scanning reward according to the distribution
of seeds. Then, 6Hit distributes the number of probe packets
proportional to the expected reward of each region. 6Hit adopts
a sequential search strategy, and in each iteration, the expected
reward of each region is modified based on the the evaluative



feedback from existing scanning results, to obtain the better
directions for subsequent probes. This reinforcement learning
approach makes 6Hit resilient to the initial seeds, while the
performance of other state-of-the-art target generation methods
are highly subjective to the initial seeds [16], [17].

Like all model-free reinforcement learning approaches, 6Hit
also needs to make a balance between exploration and ex-
ploitation. In particular, the probability of generating the target
addresses in the high density region (of active addresses) may
become higher and higher and the algorithm may lose the
capability of exploring other high density regions. To avoid
this, 6Hit adopts a variety of methods, e.g., stopping exploring
some high density regions and regenerating the space tree.

The main contributions of the paper are as follows:
• We present a dynamic target generation method, 6Hit, for

Internet-wide IPv6 scanning space. With a small number
of seeds, it can quickly generate a large number of active
addresses. This capability lays a foundation for other
follow-on research such as topology discovery, security
scanning in the IPv6 Internet.

• To the best of our knowledge, 6Hit is the first to apply
reinforcement learning approach to IPv6 active scanning.
By taking advantage of the real-time feedback from the
historical scanning results (i.e., reward from the envi-
ronment), it dynamically adjusts the search directions
towards regions that contain more active addresses.

• Real network experimental results show that 6Hit
achieves the highest hit rate compared with state-of-the-
art target generation methods. In particular, 6Hit fulfills
this achievement with very little knowledge on the net-
work under detection.

II. RELATED WORK

IPv6 target generation using seeds were first studied by
Barnes et al. [18] in 2012. They assumed that the known
active addresses provide information on the use of addressing
schemes. Subsequent researches on target generation are all
based on this hypothesis, that is, the seed information is
helpful in discovering more new addresses. So far, related
research has exploited both the structural information and the
statistical information in the seeds. Accordingly, we group
related research into two classes: structural information-based
and statistical information-based.

In the first class, the structural information of seeds is
mainly used to determine the scanning area [17]–[20]. Mur-
dock et al. [17] proposed 6Gen, which assumes that the
address space with high density seeds is more likely to have
undiscovered active addresses. 6Gen greedily expands each
seed as a center of each cluster to generate the target addresses
by maintaining the maximal seed density and the minimal
scale. Liu et al. [20] proposed 6Tree, which takes advantage
of a space tree formed from seeds’ structure to divide the IPv6
address space. 6Tree calculates the density of active nodes on
the space tree according to the known active addresses that are
loaded on the node. It then generates target addresses based on
the density of active nodes. In the second class, the statistical

information extracted from seeds is exploited to guide the
target address generation [16], [21], [22]. Foremski et al. [16]
introduced Entropy/IP, an algorithm for learning patterns from
seeds, which utilizes empirical entropy to group adjacent
nybbles of IPv6 addresses into segments and uses Bayesian
network to model the statistical dependencies between values
of different segments. This learned statistical model is used to
generate target addresses for scanning.

Considering that the statistical model usually needs a large
number of seeds to achieve a better performance, we adopt
the strategy of utilizing the structural information of seeds to
generate the targets. A main drawback of this type of method
is that the initial seeds usually have a large impact on the
performance (i.e., hit rate). 6Hit successfully solves this prob-
lem with several novel ideas, e.g., adjusting search directions
based on existing scanning feedback, and introducing several
new ideas in the scanning to strike a good balance between
exploration and exploitation.

III. BACKGROUND ON IPV6 TARGET GENERATION

A. Problem Statement

Each network device has at least one allocated IP address
and opens certain ports to the Internet for communication.
These ports correspond to certain protocols. If a scanner sends
packets following a certain protocol to a target address and the
target responds, we consider the target address to be active
under this protocol. Without loss of generality, we assume
that the scanner sends probing packets following the same
protocol type and assume that the set of all active addresses
under this protocol in the address space X is A. Assume that
we already know seeds C, i.e., a subset of active addresses
in A. Assume that we are given a fixed budget on the total
number of probing packets. The problem of target generation
is to find the active addresses in A as many as possible within
the budget constraint.

B. Structural Information and Space Partition

An IPv6 address can be represented as a hexadecimal
string with 32 nybbles. Alternatively, we can consider an IPv6
address as a vector, called address vector, in a 32-dimensional
space (i.e., address space). The value in each dimension of the
vector is an integer in [0, 15] (i.e., the value range of a nybble).
Following the convention, we use the wildcard symbol “*” to
denote a nybble which can be any value in [0, 15].

Structural information-based approaches partition the ad-
dress space X into regions. In the following we use re-
gions and subspaces interchangeably. Since the density of
active addresses in each region is initially unknown, structural
information-based approaches should find a way to learn the
address density in each region and generate targets in high-
density regions to increase the hit rate. To this end, they
assume that the seeds are random samples from the set of
all active addresses A (in the address space X) and explore
the hidden information in the seeds to facilitate the partitioning
of X .
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Fig. 1. Examples of space partition using hierarchical clustering.

Existing research mainly adopts a hierarchical clustering
algorithm to group seeds into a hierarchy of “tree” of clusters,
each cluster representing a region in the address space X .
This clustering algorithm can use either agglomerative or
divisive clustering, depending on whether the hierarchical
decomposition is formed in a bottom-up (merging) or top-
down (splitting) approach [23].

Examples of agglomerative and divisive clustering of seeds
are shown in Fig. 1 (a) and (b), respectively. As shown in
Fig. 1 (a), the agglomerative hierarchical clustering (AHC)
algorithm starts by instantiating with a cluster for each seed
(ci, i ∈ [1, 5]). In each iteration, it calculates the Hamming
distance [24] between clusters and merges two clusters with
the minimum distance. One representative method using AHC
algorithm is 6Gen [17]. It is worth noting that different from
the general AHC algorithm, 6Gen does not explicitly merge
similar clusters. Instead, each cluster grows independently and
it allows a seed address to belong to multiple clusters. This
may result in some overlapped subspaces. For example, two
clusters (200*::000* and 2003::00*0) formed at t = 2 in Fig. 1
(a) contain the same IPv6 address 2003::0000.

The divisive hierarchical clustering (DHC) algorithm adopts
a top-down clustering approach, as shown in Fig. 1 (b). One
example is 6Tree [20]. It starts with a single cluster containing
all seeds. After each iteration, it splits the clusters from the
left-most variable dimension (i.e., dimension with value of
“*”). It stops when each seed is in its own singleton cluster
or the cluster can no longer split (i.e. only one variable
dimension left). Note that subspaces generated by this cluster

splitting method may result in a loss of address space. As
shown in Fig. 1 (b), address space 2003::00** is split into
subspaces 2003::001* and 2003::002*, which results in the
loss of subspace 2003::00[0, 3-15]*, where the dimension with
value [0, 3− 15] indicates the value in this dimension can be
any value except 1 and 2.

6Hit also uses the DHC algorithm, but we enhance it
to avoid space loss during cluster splitting. In addition, the
generated regions do not overlap with each other and thus
allow us to explore each region efficiently with few probes.
Space partition with 6Hit will be disclosed in Sec. IV-B.

C. Seed Density and Activity Density
A structural information-based approach treats the seeds as

independently and identically distributed (iid) random samples
from the set of active addresses A in the address space X . As
such, the regions of address space with the highest density of
active addresses will likely have the highest density in seeds.
In other words, target generation based on the structural infor-
mation in seeds is density-driven, and the activity density (i.e.,
the number of active addresses) in each region is estimated by
the seed density in this region. For example, 6Gen determines
the sequence of regions to be scanned according to the seed
density in the regions.

One main pitfall of the above method is that the seed density
in a region may not align well with the activity density in the
region. In practice, samples may have noise and may be biased.
If we take the fitting degree between the distribution of seeds
and the distribution of real active addresses as the only basis
for target generation, the density-driven method would depend
too much on the quality of seeds. The critical issue is to avoid
over-reliance on seeds and find the real high-density regions
within the probing budget.

6Hit tackles the above problem with a bandit algorithm [25],
a reinforcement learning method. It introduces the action-
reward mechanism into the scanning process, and treats the
allocation of probe packets in each region as an action
and calculates the reward based on the number of active
addresses detected in each region. On the initial allocation
of exploration resources, 6Hit utilizes regional seed density to
allocate probing resources. The evaluation of the return at each
region determines the subsequent scanning direction. Thus,
6Hit constantly uses the discounted cumulative reinforcement
reward to obtain more and more accurate activity density
information. More details will be disclosed in the next section.

IV. 6HIT DESIGN

We first present the system overview of 6Hit and then
describe the details of its three key technical components:
space partition, target generation, and avoidance of premature
convergence.

A. System Overview
Fig. 2 illustrates the main workflow of 6Hit. It first divides

the entire IPv6 address space X using an enhanced DHC al-
gorithm. Taking advantage of the existing knowledge (i.e., re-
gional seed density), it iteratively explores the active addresses.



Fig. 2. The workflow of 6Hit.

Meanwhile, 6Hit defines a regional scanning expectation re-
ward (i.e., R(i), i ∈ [1, n]) to estimate the return of active
addresses in each region. After each iteration of scanning,
6Hit updates the expected regional reward according to the
probing result so far, and adjusts the future probing packets
in each region accordingly. This dynamic scan-update-adjust
process cycle continues until the total number of probing
packets reaches the budget limit.

B. Space Partition

The partition of the address space X is realized by utilizing
the DHC algorithm to construct a tree structure named the
“space tree”. The tree is built from the root to leaf by hier-
archically dividing the 32-dimensional space X . Meanwhile,
in order to overcome the problem of space loss during cluster
splitting (as per Sec. III-B), we added a new type of leaf node
called “R-node” in the construction of space tree. The purpose
of adding an “R-node” for each non-leaf node as its child node
is to record the space loss during its splitting process. In this
way, 6Hit can ensure that the exploration scope covers the
entire address space X .

The pseudocode is shown in Alg. 1. At the beginning of
the space tree construction, the root node contains all address
vectors in X , i.e., the 32 dimensions of the root are all marked
with “*”. A dimension marked with “*” is also called variable
dimension. Since the space tree is constructed according to
the structural information embedded in the seed addresses,
each node on the tree contains two attributes: (1) the assigned
dimension (assignedDimension) which is used to represent
the address space allocated to the node, and (2) the assigned
seed (assignedSeed) which is used to calculate the regional
seed density associated with the node. In the process of
cluster splitting, DHC performs seeds segmentation according
to whether the leftmost variable dimension has the same value,
that is, the addresses associated with the same child node have
the same value on their assigned dimensions. Finally, we add
an R-node (AddRnodes()) for each non-leaf node as its child
node, which records all the residual addresses not covered by
its other child nodes.

Algorithm 1 Space Partition
Input: The set of seed addresses C;
Output: The root node of the space tree d0;

1: d0 = InitializeRoot(); . Initializes
the root node, specifying that its child is d1. The address
space of root is the full space.

2: d1 = CreateNode(C);
3: DHC(d1);
4: AddRnodes(); . Adds an R-node as a child node for

each non-leaf node.
5: return d0
6: function CreateNode(c)
7: . Creates a node and assigns the seeds c and dimension

to it.
8: return newNode
9: end function

10: function DHC(node)
11: if |node.assignedDimension| ≥ 31 then
12: return
13: end if
14: for δ = 1 to 32 do
15: if ∀ci, cj , ci, cj ∈ node.assignedSeed, ci[δ] ==

cj [δ] then
16: node.assignedDimension.Append(δ);
17: end if
18: end for
19: for i = 1 to 32 do
20: if i /∈ node.assignedDimension then
21: δ∗ = i;
22: Break;
23: end if
24: end for
25: subsequences = Parition(node.assignedSeed, δ∗);

. Splits out subsequences of the assigned seeds on node
where the seed vectors have the same value in dimension
δ∗.

26: for σ ∈ subsequences do
27: newNode = CreateNode(σ);
28: node.childNodes.Append(newNode);
29: end for
30: for child ∈ node.childNodes do
31: DHC(child);
32: end for
33: end function

Fig. 3 shows an example of building a space tree with 500
seed addresses. The final tree contains 147 nodes in total, but
we only draw some of the nodes for clear illustration. The
blue nodes represent non-leaf nodes and the red nodes are leaf
nodes. It can be seen that 6Hit applies a top-down clustering
method. Advancing from the root to leaf nodes, the number
of variable dimensions is gradually reduced. Meanwhile, each
non-leaf node has an R-node as its child, which covers
the address space not covered by its other child nodes. As
shown in the figure, the root node d0 has two child nodes



d1 and dR0. The assignedDimension of d1 represents the
address subspace whose first 6 dimensions are 200112 and
the remaining dimensions are variable dimensions (marked
with “*”). The assignedDimension of dR0 represents the
address subspace whose first 6 dimensions are !200112 and the
remaining dimensions are variable dimensions (marked with
“*”). Note that !200112 denotes any value not equal to 200112.
In other words, the union of the child nodes’ address spaces
is equal to the parent node’s address space.

Complexity analysis: Let m be the number of input seed
addresses. The algorithm first sorts the m seeds, which has the
worst-case time complexity of O(m logm). Then it performs
the space partition by finding the leftmost variable dimension
δ∗. The partition can be finished by traversing each address
vector once per dimension, and at most 32 dimensions need
to be traversed. So the worst-case time complexity of this step
is O(32m). In summary, the worst-case time complexity of
space partition is in the order of O(m logm).

Remark 1: The number of regions generated by Alg. 1 is
no larger than twice the number of seed addresses. This is
because each seed belongs to only one region and each seed
may split off at most one region associated with an R-node.

C. Reinforcement Learning-based Target Generation

After space partition, the critical issue is appropriate al-
location of the probes to achieve a high hit rate within the
given budget. To be formal, we can re-state the problem as
a combinatorial optimization problem. Assume that the total
probing budget is β. A model P = (S, f,Ω) of a combinatorial
optimization problem consists of:
• S: the set of candidate solutions which define over a finite

set of discrete decision variables Xj
i , i ∈ [1, n], j ∈ [0, β]

where Xj
i indicates that there are j different addresses

generated in the ith region and n is the total number of
regions.

• f(s) : the objective function that returns |s ∩ A|, where
s denotes the set of generated target addresses and thus
|s∩A| indicates the number of hit active addresses. Our
goal is to maximize this objective function.

• Ω: the constraint, i.e., |s| ≤ β.
A feasible solution s ∈ S is a complete assignment of values

to variables that satisfy the constraint Ω. A solution s∗ ∈ S is
called a global optimum if and only if: f(s∗) ≥ f(s),∀s ∈ S.

Obviously, there are various allocation strategies for the
probes sent to different regions Xj

i , i ∈ [1, n], j ∈ [0, β]. For
example, 6Gen sends all the probes to the region with the
maximum seed density Xβ

i∗ , τi∗ = max(τi), i ∈ [1, n] where
τi indicates the seed density of the ith region. This strategy
can achieve a good result only when the distribution of seeds is
close to the distribution of real active addresses in the regions.
This condition, however, might not be true in many real-world
networks.

We adopt a reinforcement-learning approach for target gen-
eration that evaluates the feedback from existing probes to
adjust probing directions. This is based on two considerations:
First, the seed density may largely differ from the activity

density in a region. Hence we should not rely on seed density
too much but instead only use seed density as a prior for the
allocation of probes in the initial scan. The expected reward
from each region should be gradually revised according to the
evaluative feedback. Second, the activity density of a region
changes over time. This is because when some addresses in a
region are detected to be active, these active addresses should
be recorded and removed from the region to keep them from
being probed again. To this end, 6Hit utilizes a penalty return
when it generates duplicate target addresses to reduce over-
exploration of some regions.

The target generation algorithm is shown in Alg. 2. The
algorithm takes as input a partitioned address space X =
{X1, . . . , Xn} and a specified number of targets generated
per iteration b. In fact, every Xi has a bijective relationship
with every leaf node on the space tree. The size of Xi

can be calculated by the |unassignedDimension| attribute
of its corresponding leaf node, and the seed density in the
region can be measured by |assignedSeed|. Then, the al-
gorithm iterates over three main steps: (1) allocate b target
addresses according to the weight of regional expected reward
(TargenGen()); (2) determine whether these targets are active
(through ATest); (3) update the expected regional reward
(in procedure UpdateReward()). The following is a more
detailed description of the three main steps.

Algorithm 2 Target Generation
Input: A partitioned address space X . The number of targets

generated per iteration b;
Output: Active address set A;

1: ConsumedBudget = 0;
2: A = ∅;
3: while ConsumedBudget ≤ β do
4: A∗ = ∅;
5: {t1, . . . , tb} = TargetGen(X, b);
6: for i = 1 to b do
7: if ti /∈ A & ti ∈ A then . Atest()
8: A∗.add(ti);
9: end if

10: end for
11: A = A ∪A∗
12: UpdateReward(A∗);
13: ConsumedBudget + = b;
14: end while
15: return A

Step 1 (TargetGen): As mentioned earlier, the information
about the environment (i.e., activity density in each region),
may not be accurate. 6Hit must explore its environment in
order to see which probe allocation strategy achieves a better
hit rate. 6Hit uses the soft-max action selection algorithm to
increase opportunities of exploring unknown regions. This al-
gorithm selects the explorative action according to Boltzmann
distribution as shown in the follows:

P (i) =
eR(i)∑n
j=1 e

R(j)
,
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where R(i) indicates the expected reward of region i and
P (i) indicates the probability of generating target addresses in
region i. Thus, there will be b ·P (i) target addresses randomly
generated in the ith region in this iteration.

Step 2 (ATest): Once the targets have been generated, we
need to detect whether or not the generated target addresses
are active. We record the detected active addresses and the
regions where the addresses are located, so that we can use
this information to update the regional reward.

Step 3 (UpdateReward): We update the expected regional
reward to give high-hit regions a better chance for next-
round probes. To be more specific, the (initial) prior expected
regional reward R(i)1 is calculated based on the seed density:

R(i)1 =
|Xi.assignedSeed|

|Xi.unassignedDimension|
,

where |Xi.assignedSeed| and |Xi.unassignedDimension|
represent the number of seeds and the number of variable
dimensions on the leaf node corresponding to the region Xi,
respectively. After each iteration, the expected regional reward
R(i)

t is updated as follows:

R(i)
t+1

= (1− α) ·R(i)
t

+ α · r(i)t (t ≥ 1),

where α(0 < α ≤ 1) is the learning rate, and r(i)t is the
reward associated with region Xi from the scanning results.
Note that α is a constant step-size parameter that determines
the update speed of R(i). r(i)t is calculated as follows:

r(i)t =
IXi(A

t)− IXi(D
t)

|Xi.unassignedDimension|
,

where At denotes the set of active addresses probed during
time step t and Dt is the duplicate targets during the probing
process thus far in time steps 0 through t. IXi

is the indi-
cator function returning the number of (active or duplicate)
addresses in region Xi. It can be seen from the reward function
that 6Hit not only rewards the active addresses IXi(A

t)
generated in the region Xi but also penalises the duplicate
addresses IXi

(Dt) to avoid the waste of budget. Furthermore,
6Hit utilizes |Xi.unassignedDimension| to normalize the
rewards because different regions may have quite different size
(i.e., the range of addresses).

Remark 2: It is easy to see that the time complexity of Alg. 2
is O(βb · n), where n is the number of regions. Regarding the
number of targets generated per iteration, we can set b = γ ·m,
where m is the total number of seed addresses and γ(≥ 2) is
a constant. Based on Remark 1, the time complexity of target
generation is thus in the order of O(β).

D. Avoidance of Premature Convergence

With the iterations of the algorithm, the expected reward of
high-hit regions will become higher and higher, resulting in
more targets generated in these regions. This will eventually
lead to the algorithm’s convergence. Nevertheless, it is possible
that some high-density regions initially may not be given
enough chance for probing, and the algorithm may miss these
high-density regions if it converges too early on other regions.
This is the typical exploration-exploitation dilemma, and the
problem of early convergence into local maximum is called
premature convergence. In addition to the penalty policy for
duplicate address generation, 6Hit adopts two other mecha-



nisms to avoid premature convergence: (1) nodes chipping and
(2) space repartition. The two mechanisms occur at different
stages of the algorithm. Nodes chipping is performed as soon
as the address space is partitioned and space repartition is
applied only when the risk of premature convergence appears.

1) Nodes Chipping: In essence, the target generation al-
gorithm dynamically adjusts the generated region of targets
according to the expected reward of the region. Probes are
always attracted to regions with high activity density. To
prevent the algorithm from getting caught into local minimum
at the beginning of execution, 6Hit calculates the seed density
of each region as soon as the address space is divided. If
the seed density of a region exceeds a certain threshold, the
chipping operation will be carried out, that is, all the addresses
in the region will be scanned and the leaf node corresponding
to this region will be removed from the space tree.

In our experiments (Section V), we set the upper limit of
prior expected regional reward R(i)1 as:

16|Xi.unassignedDimension|−1

|Xi.unassignedDimension|
.

When the regional seed density exceeds this value, the whole
address space on this node will be scanned and then the node
will be removed. For example, the initial expected reward on
node d146 in Fig. 3 is 2 which exceeds the upper limit of seed
density 1 in regions with one dimension. 6Hit will scan the
d146’s address space 2001:1278:1::2c* and then cut d146 off.

2) Space Repartition: This mechanism was proposed as an
exploration enhancement, applied every time when the pre-
mature convergence is “detected”, i.e., at the current iteration
the number of regions that generate targets is smaller than a
threshold. Empirically, we set this threshold to 1

20n where n
is the total number of regions.

The space repartition process utilizes addresses chosen
randomly from the detected active addresses to rebuild the
space tree and then makes a follow-up scanning. Meanwhile,
it adopts heuristic operations to make a wider exploration
of the search space. Alg. 3 shows the basic three steps of
space repartition: (1) selection, (2) crossover, and (3) mutation.
The selection step is to form a new-generation seeds from
all the available active addresses known so far. The random
selection from a larger range of active addresses ensures
the new-generation seeds embed more structural information.
The crossover and mutation operations are carried out with
probability and both aim at changing the search interval to
encourage more exploration. Crossover focuses on manipulat-
ing the lower dimensional interval of the address vector (i.e.,
more towards re-dividing the regions), while mutation focuses
on manipulating the higher dimensional interval of the address
vector (i.e., more towards exploring unknown regions).
Selection: This process randomly selects m active ad-

dresses from all the known active addresses so far, where m
is set to the same number of initial input seeds. Note that we
do not increase m in order to control the running time as well
as the probing budget in each iteration.

Crossover: This operation is a probabilistic process that
exchanges information between two “parent” addresses for
generating two “child” seeds. As to IPv6 addresses, the
representation of the address vector (i.e., 32 dimensions)
facilitates the crossover and mutation steps. 6Hit utilizes a
single-point crossover with a fixed probability pc. For the
“parent” addresses, a random integer, called the crossover
point, is generated in the lower dimensional interval of [17, 32].
The portions lying to the right of the crossover point are
switched to produce two offspring. Fig. 4 shows an example
of the crossover operation on two addresses.
Mutation: Each selected address undergoes mutation with

a probability pu(� pc). Like crossover, the mutation point
is randomly generated in the higher dimensional interval
of [1, 16]. As to IPv6 addresses, nybbles (dimensions) are
representation of chromosomes, a nybble (or gene) is mutated
by randomly selecting a value in the range [0, 15].

Algorithm 3 Space Repartition
Input: The detected active address set A, The number of the

initial input seeds m;
Output: The root node of the rebuilt space tree dnew0 ;

1: N = ∅;
2: while |N | ≤ m do
3: ai, aj = Selection(A); . Randomly selects two

addresses in A.
4: aci , a

c
j = Crossover(ai, aj , pc); . Performs crossover

with probability pc .
5: acmi = Mutation(aci , pu); . Performs mutation with

probability pu.
6: acmj = Mutation(acj , pu);
7: N.add(acmi );
8: N.add(acmj );
9: end while

10: dnew0 = SpacePartition(N); . Alg. 1.
11: return dnew0

V. PERFORMANCE EVALUATION

We compare the performance of 6Hit and other state-of-the-
art target generation methods, including 6Tree [20], 6Gen [17]
and Entropy/IP [16], with real-world test.

A. Dataset Description

Gasser et al. [26] have collected active IPv6 addresses
from multiple sources, as shown in Tab. I. We used the data
published on Oct. 5th, 2019 as the active address set C, which
has ≈ 3.4M detected IPv6 addresses.

To investigate the impact of initial seed on the performance
of different methods in real-world test, we adopt two strate-
gies to form seed sets from C: down sampling and biased
sampling. In down sampling, we randomly sample a certain
number of addresses from C as seed set Cx, x ∈ [1, 2, 3, 4].
In biased sampling, we order the addresses in C and then
extract a certain number of adjacent addresses as seed set
Cy, y ∈ [5, 6, 7, 8]. More details of these seed sets are shown



Fig. 4. An example of the crossover operation on two addresses.

TABLE I
MAIN SOURCES OF ACTIVE ADDRESS SET C .

Main sources Nature Public

Alexa top website list [27] Servers Yes

Statvoo website list [28] Servers Yes

Cisco Umbrella website list [29] Servers Yes

Zone files for several top-level domains [30] Servers Yes

CAIDA IPv6 DNS names dataset [31] Servers Yes

TLS certificates in certificate transparency logs Servers Yes

Rapid7 FDNS ANY dataset [32] Servers Yes

RIPE Atlas dataset [33] Routers Yes

Scamper [34] Routers –

Address range: 2001 : 200 : 0 : 1 :: 1 ∼ 2c0f : ffc8 : 4001 : 1 :: 2

Total number of addresses ≈ 1630.898

Total number of active addresses ≈ 3.4M

TABLE II
CHARACTERISTICS OF THE SEED SETS.

Seed set Seed number Selection strategy Address range

C1 1k Down sampling 2001 : 1388 :: 1 − 2c0f : feb0 :: 1

C2 5k Down sampling 2001 : 1284 :: 1 − 2c0f : f470 :: 1

C3 30k Down sampling 2001 : 1218 :: 1 − 2c0f : fed8 :: 1

C4 0.1M Down sampling 2001 : 1218 :: 1 − 2f0c : ff00 :: 1

C5 1k Biased sampling 2001 : 1208 :: 1 − 2001 : 1291 :: 1

C6 5k Biased sampling 2001 : 1208 :: 1 − 2001 : 1328 :: 1

C7 30k Biased sampling 2001 : 1208 :: 1 − 2001 : 1460 :: 1

C8 0.1M Biased sampling 2001 : 200 :: 1 − 2001 : 2003 :: 1

in Tab. II. Intuitively, the “quality” of Cx should be better than
that of Cy in the sense that poor “quality” means poor fitting
degree between the distribution of seeds and the distribution
of active addresses.

B. Default System Parameters

6Hit includes several parameters (introduced in Sec. IV) that
need to be set empirically: the learning rate is α = 0.1, the
probability of crossover is pc = 0.6 and the the probability of
mutation is pu = 0.01.

C. Real-world Test Results

We evaluated the performance of 6Hit and other target
generation methods in a real IPv6 network environment,
where we were careful to ensure good Internet citizenship
as suggested by Partridge and Allman [35]. Internet-wide
scanning experiments were performed at Changsha University
through the China Education and Research Network version
2 (CERNET2). We did a single-threaded address scanning on
a Linux platform with an AMD OPTERON X3216 (3.0GHz)
and 16 GB memory. The probing rate was limited to 10 million
bps (in AS 23910). Such amount of probing traffic would not
cause any problem on the scanned devices. We only used the

ICMPv6 packets to perform address scanning. The Internet-
wide scanning experiments were performed in October 2019.

We compared the hit rate using the different seed set
Ci, i ∈ [1, 8] introduced above. With each seed set, we used
10 million ICMPv6 packets to discover active addresses. The
results are shown in Fig. 5. We can see that the hit rate of
methods that use the structural information (6Hit, 6Tree and
6Gen) is much higher than that of methods that use statistics
information (Entropy/IP). In addition, 6Hit and 6Tree have a
higher hit rate than 6Gen. During the scanning process, we set
the number of addresses generated per iteration b(= γ ·mi),
where γ = 3 and mi denotes the number of addresses in seed
set Ci. It is worth highlighting that 6Hit has a much higher
hit rate than other methods when the quality of initial seeds
is poor (C5, C6 and C7). This demonstrates the advantage
of 6Hit being able to exploring new regions and adjusting its
probing direction based on the feedback. However, with the
increase number of seeds mi, the number of iterations in 6Hit
decreases, resulting in a drop in hit rate. 6Hit and 6Tree tend to
yield the same number of iterations using seed set C4, which
results in a similar hit rate in this setting. The number of targets
generated on region Xj in (t + 1)th iteration is 3mi · P t(j).
The expected reward of region Xj is estimated by this number
of addresses rather than the entire node space.

Fig. 6 shows the hit rate performance of 6Hit per iteration.
We can see that in general the hit rate of 6Hit is maintained
at a higher level after the initial oscillation. The blue circles
in Fig. 6 indicate when space repartition has been performed
by 6Hit to avoid premature convergence. This process expands
the scope of exploration and allows 6Hit to quickly discover
new regions with high activity density. This is particularly
important when the initial seed sets do not really reflect the
actual activity density. Compared Fig. 5 and Fig. 6 (under
seed sets Cy, y ∈ [5, 6, 7, 8]), we can see that space repartition
indeed makes 6Hit significantly better than other methods.

In summary, discovery on the IPv6 Internet shows that 6Hit
achieved 3.5% - 11.5% hit rate for the eight candidate datasets,
which is 7.7% - 630% improvement over the state-of-the-
art mthods. Especially in seed sets with poor seed quality,
e.g., seed set C5, 6Hit achieved 630% improvement compared
to 6Tree which is the second best. This is due to the fact
that 6Hit has more direction adjustments and more aggressive
mechanisms for exploration, i.e., the space repartition. This
exploration enhancement mechanism increases the exploration
efforts, helps to quickly find new high-density regions, which
greatly improves the hit rate.

VI. CONCLUSION

In this work, we proposed 6Hit, an efficient target generation
method for discovering active IPv6 addresses. 6Hit adopts a
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Fig. 5. Discovery of active addresses with a budget of 10M on each seed set. 6Hit discovered more active addresses. In particular, in the scenarios where
small and biased sampling seed sets are used, 6Hit found much more active addresses than other methods.
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Fig. 6. Hit rate of 6Hit per iteration with a total budget of 10M . The small blue circles indicate when space repartition occurred.

novel reinforcement learning-based approach to automatically
learn the address space structure from the feedback of histori-
cal probes, based on which it dynamically adjusts subsequent
address search direction towards the regions that have high
activity density. This unique feature makes it more efficient
and effective in target generation and more resilient to the
quality of initial seed addresses. With real-world test, 6Hit
has achieved much better performance on hit rate than the
state-of-the-art solutions, 6Gen, 6Tree, and Entropy/IP.
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