6Hit: A Reinforcement Learning-based Approach to Target Generation for Internet-wide IPv6 Scanning

Bingnan Hou*, Zhiping Cai*, Kui Wu†, Jinshu Su* and Yinqiao Xiong*‡

*School of Computer Science, National University of Defense Technology, China
†Department of Computer Science, University of Victoria, Canada
‡Department of Electronic Information and Electrical Engineering, Changsha University, China
E-mails: {houbingnan19, zpcai, sjs}@nudt.edu.cn, wkui@uvic.ca, yq.xiong@ccsu.edu.cn

Abstract—Fast Internet-wide network measurement plays an important role in cybersecurity analysis and network asset detection. The vast address space of IPv6, however, makes it infeasible to apply a brute-force approach for scanning the entire network. Even worse, the extremely uneven distribution of IPv6 active addresses results in a low hit rate for active scanning. To address the problem, we propose 6Hit, a reinforcement learning-based target generation method for active address discovery in the IPv6 address space. It first divides the IPv6 address space into different regions according to the structural information of a set of known seed addresses. Then, it allocates exploration resources according to the reward of the scanning on each region. Based on the evaluative feedback from existing scanning results, 6Hit optimizes the subsequent search direction to regions that have a higher density of activity addresses. Compared with other state-of-the-art target generation methods, 6Hit achieves better performance on hit rate. Our experiments over real-world networks show that 6Hit achieves 3.5% - 11.5% hit rate for the eight candidate datasets, which is 7.7% - 630% improvement over the state-of-the-art methods.

Index Terms—IPv6, Internet-wide scanning, Network measurement.

I. INTRODUCTION

The Internet is moving unavoidably towards IPv6, as the Internet Assigned Numbers Authority (IANA) allocated the last blocks of IPv4 address space to the Regional Internet Registries (RIRs) in early 2011 [1]. IPv6, the next generation Internet Protocol, has a huge address space, and it is widely implemented and rapidly adopted in recent years. In October 2019, nearly 30% of Google users accessed their services via IPv6 [2]. In the meantime, the number of active IPv6 BGP entries in routing table is also increasing rapidly [3].

IPv6, however, poses a new challenge in Internet measurement, which is critical to all ISPs. In the past, Internet measurement has greatly benefited from the advances of modern hardware and computational power that facilitate effective Internet-wide scanning. Asynchronous scanning tools like ZMap [4] and Masscan [5] have drastically enhanced our capability of conducting Internet-wide network surveys, e.g., topology discovery [6], [7], IP address analysis [8], [9], and geolocation [10]. As to cybersecurity, network device search engines like Shodan [11] and Censys [12] can acquire Internet-wide asset data for evaluating network security, discovering vulnerabilities, and tracking remediations [13]. Nevertheless, these tools are not effective when applied for IPv6-based Internet, because the huge address space of IPv6 renders comprehensive scans nearly impossible.

This raises the question for ISPs on how to quickly evaluate their network assets and the status quo of customer usage. This also presents a challenge for measurement researchers on how to obtain worldwide network measurements for IPv6. Efficient address discovery in IPv6 address space is the key to answering the above challenges and also the foundation for many IPv6-based network services such as neighbor discovery [14] and security analysis [15]. We are thus motivated to develop an efficient and effective approach for Internet-wide IPv6 scanning.

We propose 6Hit, a reinforcement learning-based target generation method which uses a set of known active addresses, also called seeds, to efficiently discover active addresses in the IPv6 address space. Instead of randomly generating addresses, 6Hit utilizes the information provided by the seeds and learns the better search directions according to the feedback during the scanning process. To be more specific, it utilizes the seeds to partition the address space and takes the scanning result of each step as a reward to determine better search directions on the next step. Meanwhile, to manage the huge scale of the IPv6 address space, 6Hit incorporates the key notion of a probe budget that specifies the constraint on the number of total probe packets. Note that the performance of address discovery algorithms is generally evaluated by the hit rate, defined as the ratio of the total number of discovered active addresses over the total number of probe packets. Clearly, a high hit rate is needed for an effective solution to Internet-wide IPv6 scanning. In this context, our experiments show that the state-of-the-art can only achieve about 6% hit rate at most. 6Hit aims to push this limit.

In a nutshell, 6Hit considers IPv6 addresses as high-dimensional vectors in the address space and adopts a reinforcement learning approach. It first performs divisive hierarchical clustering on the seeds to construct a tree structure named a space tree, which represents a partition of the address space. Each region in the address space is associated with a prior of the scanning reward according to the distribution of seeds. Then, 6Hit distributes the number of probe packets proportional to the expected reward of each region. 6Hit adopts a sequential search strategy, and in each iteration, the expected reward of each region is modified based on the the evaluative
feedback from existing scanning results, to obtain the better
directions for subsequent probes. This reinforcement learning
approach makes 6Hit resilient to the initial seeds, while the
performance of other state-of-the-art target generation methods
are highly subjective to the initial seeds [16], [17].

Like all model-free reinforcement learning approaches, 6Hit
also needs to make a balance between exploration and ex-
ploration. In particular, the probability of generating the target
addresses in the high density region (of active addresses) may
become higher and higher and the algorithm may lose the
capability of exploring other high density regions. To avoid
this, 6Hit adopts a variety of methods, e.g., stopping exploring
some high density regions and regenerating the space tree.

The main contributions of the paper are as follows:

- We present a dynamic target generation method, 6Hit, for
 Internet-wide IPv6 scanning space. With a small number
 of seeds, it can quickly generate a large number of active
 addresses. This capability lays a foundation for other
 follow-on research such as topology discovery, security
 scanning in the IPv6 Internet.

- To the best of our knowledge, 6Hit is the first to apply
 reinforcement learning approach to IPv6 active scanning.
 By taking advantage of the real-time feedback from the
 historical scanning results (i.e., reward from the envi-
 ronment), it dynamically adjusts the search directions
 towards regions that contain more active addresses.

- Real network experimental results show that 6Hit
 achieves the highest hit rate compared with state-of-the-
 art target generation methods. In particular, 6Hit fulfills
 this achievement with very little knowledge on the net-
 work under detection.

II. RELATED WORK

IPv6 target generation using seeds were first studied by
Barnes et al. [18] in 2012. They assumed that the known
active addresses provide information on the use of addressing
schemes. Subsequent researches on target generation are all
based on this hypothesis, that is, the seed information is
helpful in discovering more new addresses. So far, related
research has exploited both the structural information and the
statistical information in the seeds. Accordingly, we group
related research into two classes: structural information-based
and statistical information-based.

In the first class, the structural information of seeds is
mainly used to determine the scanning area [17]–[20]. Mur-
dock et al. [17] proposed 6Gen, which assumes that the
address space with high density seeds is more likely to have
undiscovered active addresses. 6Gen greedily expands each
seed as a center of each cluster to generate the target addresses
by maintaining the maximal seed density and the minimal
scale. Liu et al. [20] proposed 6Tree, which takes advantage
of a space tree formed from seeds’ structure to divide the IPv6
address space. 6Tree calculates the density of active nodes on
the space tree according to the known active addresses that are
loaded on the node. It then generates target addresses based on
the density of active nodes. In the second class, the statistical
information extracted from seeds is exploited to guide the
target address generation [16], [21], [22]. Foremski et al. [16]
introduced Entropy/IP, an algorithm for learning patterns from
seeds, which utilizes empirical entropy to group adjacent
nybbles of IPv6 addresses into segments and uses Bayesian
network to model the statistical dependencies between values
of different segments. This learned statistical model is used to
generate target addresses for scanning.

Considering that the statistical model usually needs a large
number of seeds to achieve a better performance, we adopt
the strategy of utilizing the structural information of seeds to
generate the targets. A main drawback of this type of method
is that the initial seeds usually have a large impact on the
performance (i.e., hit rate). 6Hit successfully solves this prob-
lem with several novel ideas, e.g., adjusting search directions
based on existing scanning feedback, and introducing several
new ideas in the scanning to strike a good balance between
exploration and exploitation.

III. BACKGROUND ON IPv6 TARGET GENERATION

A. Problem Statement

Each network device has at least one allocated IP address
and opens certain ports to the Internet for communication.
These ports correspond to certain protocols. If a scanner sends
packets following a certain protocol to a target address and the
target responds, we consider the target address to be active
under this protocol. Without loss of generality, we assume
that the scanner sends probing packets following the same
protocol type and assume that the set of all active addresses
under this protocol in the address space X is A. Assume that
we already know seeds C, i.e., a subset of active addresses
in A. Assume that we are given a fixed budget on the total
number of probing packets. The problem of target generation
is to find the active addresses in A as many as possible within
the budget constraint.

B. Structural Information and Space Partition

An IPv6 address can be represented as a hexadecimal
string with 32 nybbles. Alternatively, we can consider an IPv6
address as a vector, called address vector, in a 32-dimensional
space (i.e., address space). The value in each dimension of the
vector is an integer in [0, 15] (i.e., the value range of a nybble).
Following the convention, we use the wildcard symbol “*”
to denote a nybble which can be any value in [0, 15].

Structural information-based approaches partition the ad-
dress space X into regions. In the following we use re-
regions and subspaces interchangeably. Since the density of
active addresses in each region is initially unknown, structural
information-based approaches should find a way to learn the
address density in each region and generate targets in high-
density regions to increase the hit rate. To this end, they
assume that the seeds are random samples from the set of
all active addresses A (in the address space X) and explore
the hidden information in the seeds to facilitate the partitioning
of X.
splitting method may result in a loss of address space. As shown in Fig. 1 (b), address space 2003::00** is split into subspaces 2003::001* and 2003::002*, which results in the loss of subspace 2003::00[0, 3-15]*, where the dimension with value \([0, 3 – 15]\) indicates the value in this dimension can be any value except 1 and 2.

6Hit also uses the DHC algorithm, but we enhance it to avoid space loss during cluster splitting. In addition, the generated regions do not overlap with each other and thus allow us to explore each region efficiently with few probes. Space partition with 6Hit will be disclosed in Sec. IV-B.

C. Seed Density and Activity Density

A structural information-based approach treats the seeds as independently and identically distributed (iid) random samples from the set of active addresses \(A\) in the address space \(X\). As such, the regions of address space with the highest density of active addresses will likely have the highest density in seeds. In other words, target generation based on the structural information in seeds is density-driven, and the activity density (i.e., the number of active addresses) in each region is estimated by the seed density in this region. For example, 6Gen determines the sequence of regions to be scanned according to the seed density in the regions.

One main pitfall of the above method is that the seed density in a region may not align well with the activity density in the region. In practice, samples may have noise and may be biased. If we take the fitting degree between the distribution of seeds and the distribution of real active addresses as the only basis for target generation, the density-driven method would depend too much on the quality of seeds. The critical issue is to avoid over-reliance on seeds and find the real high-density regions within the probing budget.

6Hit tackles the above problem with a bandit algorithm [25], a reinforcement learning method. It introduces the action-reward mechanism into the scanning process, and treats the allocation of probe packets in each region as an action and calculates the reward based on the number of active addresses detected in each region. On the initial allocation of exploration resources, 6Hit utilizes regional seed density to allocate probing resources. The evaluation of the return at each region determines the subsequent scanning direction. Thus, 6Hit constantly uses the discounted cumulative reinforcement reward to obtain more and more accurate activity density information. More details will be disclosed in the next section.

IV. 6Hit DESIGN

We first present the system overview of 6Hit and then describe the details of its three key technical components: space partition, target generation, and avoidance of premature convergence.

A. System Overview

Fig. 2 illustrates the main workflow of 6Hit. It first divides the entire IPv6 address space \(X\) using an enhanced DHC algorithm. Taking advantage of the existing knowledge (i.e., regional seed density), it iteratively explores the active addresses.
Meanwhile, 6Hit defines a regional scanning expectation reward (i.e., $R(i), i \in [1,n]$) to estimate the return of active addresses in each region. After each iteration of scanning, 6Hit updates the expected regional reward according to the probing result so far, and adjusts the future probing packets in each region accordingly. This dynamic scan-update-adjust process cycle continues until the total number of probing packets reaches the budget limit.

B. Space Partition

The partition of the address space X is realized by utilizing the DHC algorithm to construct a tree structure named the “space tree”. The tree is built from the root to leaf by hierarchically dividing the 32-dimensional space X. Meanwhile, in order to overcome the problem of space loss during cluster splitting (as per Sec. III-B), we added a new type of leaf node called “R-node” in the construction of space tree. The purpose of adding an “R-node” for each non-leaf node as its child node is to record the space loss during its splitting process. In this way, 6Hit can ensure that the exploration scope covers the entire address space X.

The pseudocode is shown in Alg. 1. At the beginning of the space tree construction, the root node contains all address vectors in X, i.e., the 32 dimensions of the root are all marked with “*”. A dimension marked with “*” is also called variable dimension. Since the space tree is constructed according to the structural information embedded in the seed addresses, each node on the tree contains two attributes: (1) the assigned dimension ($assignedDimension$) which is used to represent the address space allocated to the node, and (2) the assigned seed ($assignedSeed$) which is used to calculate the regional seed density associated with the node. In the process of cluster splitting, DHC performs seeds segmentation according to whether the leftmost variable dimension has the same value, that is, the addresses associated with the same child node have the same value on their assigned dimensions. Finally, we add an R-node ($AddRnodes()$) for each non-leaf node as its child node, which records all the residual addresses not covered by its other child nodes.

Fig. 3 shows an example of building a space tree with 500 seed addresses. The final tree contains 147 nodes in total, but we only draw some of the nodes for clear illustration. The blue nodes represent non-leaf nodes and the red nodes are leaf nodes. It can be seen that 6Hit applies a top-down clustering method. Advancing from the root to leaf nodes, the number of variable dimensions is gradually reduced. Meanwhile, each non-leaf node has an R-node as its child, which covers the address space not covered by its other child nodes. As shown in the figure, the root node d_0 has two child nodes.

Algorithm 1 Space Partition

Input: The set of seed addresses C;

Output: The root node of the space tree d_0;

1: $d_0 = InitializeRoot();$ \hspace{1em} \triangleright Initializes the root node, specifying that its child is d_1. The address space of root is the full space.
2: $d_1 = CreateNode(C);$
3: $DHC(d_1);$
4: $AddRnodes();$ \hspace{1em} \triangleright Adds an R-node as a child node for each non-leaf node.
5: $return d_0$
6: $function CreateNode(c)$
7: \hspace{1em} \triangleright Creates a node and assigns the seeds c and dimension to it.
8: \hspace{1em} $return newNode$
9: $end function$
10: $function DHC(node)$
11: \hspace{1em} if $|node.assignedDimension| \geq 31$ then
12: \hspace{2em} $return$
13: \hspace{1em} end if
14: \hspace{1em} for $\delta = 1$ to 32 do
15: \hspace{2em} if $\forall c_i, c_j, \ c_i, c_j \in node.assignedSeed, c_i[\delta] == c_j[\delta]$ then
16: \hspace{3em} $node.assignedDimension.Append(\delta);$
17: \hspace{2em} end if
18: \hspace{1em} end for
19: \hspace{1em} for $i = 1$ to 32 do
20: \hspace{2em} if $i \notin node.assignedDimension$ then
21: \hspace{3em} $\delta^* = i;$
22: \hspace{3em} Break;
23: \hspace{2em} end if
24: \hspace{1em} end for
25: \hspace{1em} $subsequences = Partition(node.assignedSeed, \delta^*);$ \hspace{1em} \triangleright Splits out subsequences of the assigned seeds on node where the seed vectors have the same value in dimension δ^*.
26: \hspace{1em} for $\sigma \in subsequences$ do
27: \hspace{2em} $newNode = CreateNode(\sigma);$ \hspace{1em} \triangleright Creates a node and assigns the seeds σ and dimension to it.
28: \hspace{2em} $node.childNodes.Append(newNode);$ \hspace{1em} \triangleright Adds a new node to the child node list.
29: \hspace{2em} end for
30: \hspace{1em} for $child \in node.childNodes$ do
31: \hspace{2em} $DHC(child);$ \hspace{1em} \triangleright Recursively performs the DHC algorithm on the child node.
32: \hspace{1em} end for
33: $end function$

The seed density may largely differ from the activity
eration that evaluates the feedback from existing probes to
networks. This condition, however, might not be true in many real-world
cases close to the distribution of real active addresses in the regions.
can achieve a good result only when the distribution of seeds is
$\tau\times X_{\beta}$ vector once per dimension, and at most δ the space partition by finding the leftmost variable dimension
worst-case time complexity of $O(m \log m)$. The algorithm first sorts the
$\sum_{i=1}^{m} A$, and the worst-case time complexity of this step
is $O(32m)$. In summary, the worst-case time complexity of space partition is in the order of $O(m \log m)$.

Remark 1: The number of regions generated by Alg. 1 is
no larger than twice the number of seed addresses. This is
because each seed belongs to only one region and each seed
can not be split off at most one region associated with an R-node.

C. Reinforcement Learning-based Target Generation

After space partition, the critical issue is appropriate allo-
cation of the probes to achieve a high hit rate within the
given budget. To be formal, we can re-state the problem as a
combinatorial optimization problem. Assume that the total probing budget is β. A model $P = (S, f, \Omega)$ of a combinatorial
optimization problem consists of:

- S: the set of candidate solutions which define over a finite
 set of discrete decision variables $X_i^j, i \in [1, n], j \in [0, \beta]$
 where X_i^j indicates that there are j different addresses
 generated in the i_{th} region and n is the total number of
 regions.
- $f(s)$: the objective function that returns $|s \cap A|$, where
 s denotes the set of generated target addresses and thus
 $|s \cap A|$ indicates the number of hit active addresses. Our
 goal is to maximize this objective function.
- Ω: the constraint, i.e., $|s| \leq \beta$.

A feasible solution $s \in S$ is a complete assignment of values
to variables that satisfy the constraint Ω. A solution $s^* \in S$ is
called a global optimum if and only if: $f(s^*) \geq f(s), \forall s \in S$.

Obviously, there are various allocation strategies for the
probes sent to different regions $X_i^j, i \in [1, n], j \in [0, \beta]$. For
example, 6Gen sends all the probes to the region with the
maximum seed density $X_i^j, \tau_j = \max(\tau_i), i \in [1, n]$ where
τ_i indicates the seed density of the i_{th} region. This strategy
can achieve a good result only when the distribution of seeds is
close to the distribution of real active addresses in the regions.
This condition, however, might not be true in many real-world
networks.

We adopt a reinforcement-learning approach for target gen-
eration that evaluates the feedback from existing probes to
adjust probing directions. This is based on two considerations:

First, the seed density may largely differ from the activity
density in a region. Hence we should not rely on seed density
too much but instead only use seed density as a prior for the
allocation of probes in the initial scan. The expected reward
from each region should be gradually revised according to the
evaluative feedback. Second, the activity density of a region
changes over time. This is because when some addresses in a
region are detected to be active, these addresses should be
recorded and removed from the region to keep them from
being probed again. To this end, 6Hit utilizes a penalty return
when it generates duplicate target addresses to reduce over-
exploration of some regions.

The target generation algorithm is shown in Alg. 2. The
algorithm takes as input a partitioned address space $X = \{X_1, \ldots, X_n\}$ and a specified number of targets generated
per iteration b. In fact, every X_i has a bijective relationship
with every leaf node on the space tree. The size of X_i
can be calculated by the $|\text{unassignedDimension}|$ attribute
of its corresponding leaf node, and the seed density in the
region can be measured by $|\text{assignedSeed}|$. Then, the al-
gorithm iterates over three main steps: (1) allocate b target
addresses according to the weight of regional expected reward
($\text{TargetGen}()$); (2) determine whether these targets are active
(through $\text{ATest}()$); (3) update the expected regional reward
(in procedure $\text{UpdateReward}()$). The following is a more
detailed description of the three main steps.

Algorithm 2 Target Generation

Input: A partitioned address space X. The number of targets
generated per iteration b;
Output: Active address set A;

1: $\text{ConsumedBudget} = 0$;
2: $A = \emptyset$;
3: while $\text{ConsumedBudget} \leq \beta$ do
4: $A^* = \emptyset$;
5: $\{t_1, \ldots, t_b\} = \text{TargetGen}(X, b)$;
6: for $i = 1$ to b do
7: if $t_i \notin A$ & $t_i \in A$ then $\triangleright \text{ATest}()$
8: $A^*.\text{add}(t_i)$;
9: end if
10: end for
11: $A = A \cup A^*$
12: $\text{UpdateReward}(A^*)$;
13: $\text{ConsumedBudget} = \text{ConsumedBudget} + b$;
14: end while
15: return A

Step 1 (TargetGen): As mentioned earlier, the information
about the environment (i.e., activity density in each region),
may not be accurate. 6Hit must explore its environment in
order to see which probe allocation strategy achieves a better
hit rate. 6Hit uses the soft-max action selection algorithm to
increase opportunities of exploring unknown regions. This al-
gorithm selects the explorative action according to Boltzmann
distribution as shown in the follows:

$$P(i) = \frac{e^{R(i)}}{\sum_{j=1}^{m} e^{R(j)}}$$
where \(R(i) \) indicates the expected reward of region \(i \) and \(P(i) \) indicates the probability of generating target addresses in region \(i \). Thus, there will be \(b \cdot P(i) \) target addresses randomly generated in the \(i \)th region in this iteration.

Step 2 (A Test): Once the targets have been generated, we need to detect whether or not the generated target addresses are active. We record the detected active addresses and the regions where the addresses are located, so that we can use this information to update the regional reward.

Step 3 (UpdateReward): We update the expected regional reward to give high-hit regions a better chance for next-round probes. To be more specific, the (initial) prior expected regional reward \(R(i)^1 \) is calculated based on the seed density:

\[
R(i)^1 = \frac{|X_i,\text{assignedSeed}|}{|X_i,\text{unassignedDimension}|},
\]

where \(|X_i,\text{assignedSeed}| \) and \(|X_i,\text{unassignedDimension}| \) represent the number of seeds and the number of variable dimensions on the leaf node corresponding to the region \(X_i \), respectively. After each iteration, the expected regional reward \(R(i)^t \) is updated as follows:

\[
R(i)^{t+1} = (1 - \alpha) \cdot R(i)^t + \alpha \cdot r(i)^t \quad (t \geq 1),
\]

where \(\alpha (0 < \alpha \leq 1) \) is the learning rate, and \(r(i)^t \) is the reward associated with region \(X_i \) from the scanning results. Note that \(\alpha \) is a constant step-size parameter that determines the update speed of \(R(i) \). \(r(i)^t \) is calculated as follows:

\[
r(i)^t = \frac{\mathcal{I}_{X_i}(A^t) - \mathcal{I}_{X_i}(D^t)}{|X_i,\text{unassignedDimension}|},
\]

where \(A^t \) denotes the set of active addresses probed during time step \(t \) and \(D^t \) is the duplicate targets during the probing process thus far in time steps 0 through \(t \). \(\mathcal{I}_{X_i}(\cdot) \) is the indicator function returning the number of (active or duplicate) addresses in region \(X_i \). It can be seen from the reward function that 6Hit not only rewards the active addresses \(\mathcal{I}_{X_i}(A^t) \) generated in the region \(X_i \) but also penalises the duplicate addresses \(\mathcal{I}_{X_i}(D^t) \) to avoid the waste of budget. Furthermore, 6Hit utilizes \(|X_i,\text{unassignedDimension}| \) to normalize the rewards because different regions may have quite different size (i.e., the range of addresses).

Remark 2: It is easy to see that the time complexity of Alg. 2 is \(O(\frac{\beta}{\epsilon} \cdot n) \), where \(n \) is the number of regions. Regarding the number of targets generated per iteration, we can set \(b = \gamma \cdot m \), where \(m \) is the total number of seed addresses and \(\gamma (\geq 2) \) is a constant. Based on Remark 1, the time complexity of target generation is thus in the order of \(O(\beta) \).

D. Avoidance of Premature Convergence

With the iterations of the algorithm, the expected reward of high-hit regions will become higher and higher, resulting in more targets generated in these regions. This will eventually lead to the algorithm’s convergence. Nevertheless, it is possible that some high-density regions initially may not be given enough chance for probing, and the algorithm may miss these high-density regions if it converges too early on other regions. This is the typical exploration-exploitation dilemma, and the problem of early convergence into local maximum is called premature convergence. In addition to the penalty policy for duplicate address generation, 6Hit adopts two other mecha-
nisms to avoid premature convergence: (1) nodes chipping and (2) space repartition. The two mechanisms occur at different stages of the algorithm. Nodes chipping is performed as soon as the address space is partitioned and space repartition is applied only when the risk of premature convergence appears.

1) Nodes Chipping: In essence, the target generation algorithm dynamically adjusts the generated region of targets according to the expected reward of the region. Probes are always attracted to regions with high activity density. To prevent the algorithm from getting caught into local minimum at the beginning of execution, 6Hit calculates the seed density of each region as soon as the address space is divided. If the seed density of a region exceeds a certain threshold, the chipping operation will be carried out, that is, all the addresses in the region will be scanned and the leaf node corresponding to this region will be removed from the space tree.

In our experiments (Section V), we set the upper limit of prior expected regional reward $R(i)^{1}$ as:

$$\frac{16\cdot |X_{i}\text{-unassignedDimension}|^{-1}}{|X_{i}\text{-unassignedDimension}|}.$$

When the regional seed density exceeds this value, the whole address space on this node will be scanned and then the node will be removed. For example, the initial expected reward on node d_{146} in Fig. 3 is 2 which exceeds the upper limit of seed density 1 in regions with one dimension. 6Hit will scan the d_{146}’s address space 2001:1278:1::2e* and then cut d_{146} off.

2) Space Repartition: This mechanism was proposed as an exploration enhancement, applied every time when the premature convergence is “detected”, i.e., at the current iteration the number of regions that generate targets is smaller than a threshold. Empirically, we set this threshold to $\frac{1}{20}n$ where n is the total number of regions.

The space repartition process utilizes addresses chosen randomly from the detected active addresses to rebuild the space tree and then makes a follow-up scanning. Meanwhile, it adopts heuristic operations to make a wider exploration of the search space. Alg. 3 shows the basic three steps of space repartition: (1) selection, (2) crossover, and (3) mutation. The selection step is to form a new-generation seeds from all the available active addresses known so far. The random selection from a larger range of active addresses ensures the new-generation seeds embed more structural information. The crossover and mutation operations are carried out with probability and both aim at changing the search interval to encourage more exploration. Crossover focuses on manipulating the lower dimensional interval of the address vector (i.e., more towards re-dividing the regions), while mutation focuses on manipulating the higher dimensional interval of the address vector (i.e., more towards exploring unknown regions).

Selection: This process randomly selects m active addresses from all the known active addresses so far, where m is set to the same number of initial input seeds. Note that we do not increase m in order to control the running time as well as the probing budget in each iteration.

Crossover: This operation is a probabilistic process that exchanges information between two “parent” addresses for generating two “child” seeds. As to IPv6 addresses, the representation of the address vector (i.e., 32 dimensions) facilitates the crossover and mutation steps. 6Hit utilizes a single-point crossover with a fixed probability p_c. For the “parent” addresses, a random integer, called the crossover point, is generated in the lower dimensional interval of $[17, 32]$. The portions lying to the right of the crossover point are switched to produce two offspring. Fig. 4 shows an example of the crossover operation on two addresses.

Mutation: Each selected address undergoes mutation with a probability $p_m(\ll p_c)$. Like crossover, the mutation point is randomly generated in the higher dimensional interval of $[1, 16]$. As to IPv6 addresses, nybbles (dimensions) are representation of chromosomes, a nybble (or gene) is mutated by randomly selecting a value in the range $[0, 15]$.

Algorithm 3 Space Repartition

Input: The detected active address set A. The number of the initial input seeds m;

Output: The root node of the rebuilt space tree $d_{0\text{new}}$;

1: $N = \emptyset$;
2: while $|N| \leq m$ do
3: $a_i, a_j = \text{Selection}(A)$; \hspace{1cm} \triangleright Randomly selects two addresses in A.
4: $a'^{c}_{ij} = \text{Crossover}(a_i, a_j, p_c)$; \hspace{1cm} \triangleright Performs crossover with probability p_c.
5: $a'^{m}_{ij} = \text{Mutation}(a'^{c}_{ij}, p_m)$; \hspace{1cm} \triangleright Performs mutation with probability p_m.
6: $N.add(a'^{m}_{ij})$;
7: $N.add(a'^{m}_{ij})$;
8: $N.add(a'^{m}_{ij})$;
9: end while
10: $d_{0\text{new}} = \text{SpacePartition}(N)$; \hspace{1cm} \triangleright Alg. 1.
11: return $d_{0\text{new}}$.

V. PERFORMANCE EVALUATION

We compare the performance of 6Hit and other state-of-the-art target generation methods, including 6Tree [20], 6Gen [17] and Entropy/IP [16], with real-world test.

A. Dataset Description

Gasser et al. [26] have collected active IPv6 addresses from multiple sources, as shown in Tab. I. We used the data published on Oct. 5th, 2019 as the active address set C, which has $\approx 3.4M$ detected IPv6 addresses.

To investigate the impact of initial seed on the performance of different methods in real-world test, we adopt two strategies to form seed sets from C: down sampling and biased sampling. In down sampling, we randomly sample a certain number of addresses from C as seed set C_x, $x \in \{1, 2, 3, 4\}$. In biased sampling, we order the addresses in C and then extract a certain number of adjacent addresses as seed set C_y, $y \in \{5, 6, 7, 8\}$. More details of these seed sets are shown...
We did a single-threaded address scanning on the China Education and Research Network version as suggested by Partridge and Allman [35].

Real-world Test Results

We evaluated the performance of 6Hit and other target generation methods in a real IPv6 network environment, where we were careful to ensure good Internet citizenship as suggested by Partridge and Allman [35]. Internet-wide scanning experiments were performed at Changsha University through the China Education and Research Network version 2 (CERNET2). We did a single-threaded address scanning on a Linux platform with an AMD OPTERON X3216 (3.0GHz) and 16 GB memory. The probing rate was limited to 10 million bps (in AS 23910). Such amount of probing traffic would not cause any problem on the scanned devices. We only used the ICMPv6 packets to perform address scanning. The Internet-wide scanning experiments were performed in October 2019.

We compared the hit rate using the different seed set \(C_1, i \in [1, 8] \) introduced above. With each seed set, we used 10 million ICMPv6 packets to discover active addresses. The results are shown in Fig. 5. We can see that the hit rate of methods that use the structural information (6Hit, 6Tree and 6Gen) is much higher than that of methods that use statistics information (Entropy/IP). In addition, 6Hit and 6Tree have a higher hit rate than 6Gen. During the scanning process, we set the number of addresses generated per iteration \(b(= \gamma \cdot m_i) \), where \(\gamma = 3 \) and \(m_i \) denotes the number of addresses in seed set \(C_i \). It is worth highlighting that 6Hit has a much higher hit rate than other methods when the quality of initial seeds is poor (6Gen, 6Hit and 6Tree). This demonstrates the advantage of 6Hit being able to explore new regions and adjusting its probing direction based on the feedback. However, with the increase number of seeds \(m_i \), the number of iterations in 6Hit decreases, resulting in a drop in hit rate. 6Hit and 6Tree tend to yield the same number of iterations using seed set \(C_4 \), which results in a similar hit rate in this setting. The number of targets generated on region \(X_j \) in \((t + 1)_{th}\) iteration is \(3m_i \cdot P^t(j) \).

The expected reward of region \(X_j \) is estimated by this number of addresses rather than the entire node space.

Fig. 6 shows the hit rate performance of 6Hit per iteration. We can see that in general the hit rate of 6Hit is maintained at a higher level after the initial oscillation. The blue circles in Fig. 6 indicate when space repartition has been performed by 6Hit to avoid premature convergence. This process expands the scope of exploration and allows 6Hit to quickly discover new regions with high activity density. This is particularly important when the initial seed sets do not really reflect the actual activity density. Compared Fig. 5 and Fig. 6 (under seed sets \(C_y, y \in [5, 6, 7, 8] \)), we can see that space repartition indeed makes 6Hit significantly better than other methods.

In summary, discovery on the IPv6 Internet shows that 6Hit achieved 3.5% - 11.5% hit rate for the eight candidate datasets, which is 7.7% - 630% improvement over the state-of-the-art methods. Especially in seed sets with poor seed quality, e.g., seed set \(C_5 \), 6Hit achieved 630% improvement compared to 6Tree which is the second best. This is due to the fact that 6Hit has more direction adjustments and more aggressive mechanisms for exploration, i.e., the space repartition. This exploration enhancement mechanism increases the exploration efforts, helps to quickly find new high-density regions, which greatly improves the hit rate.

Conclusion

In this work, we proposed 6Hit, an efficient target generation method for discovering active IPv6 addresses. 6Hit adopts a

TABLE I

Main Sources of Active Address Set \(C \).

<table>
<thead>
<tr>
<th>Main Sources</th>
<th>Nature</th>
<th>Public</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa top website list [27]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>Stattoo website list [28]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>Cisco Umbrella website list [29]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>Zone files for several top-level domains [30]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>CAIDA IPv6 DNS names dataset [31]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>TLS certificates in certificate transparency logs</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>Rapid7 FDNS ANY dataset [32]</td>
<td>Servers</td>
<td>Yes</td>
</tr>
<tr>
<td>RIPE Atlas dataset [33]</td>
<td>Routers</td>
<td>Yes</td>
</tr>
<tr>
<td>Scanmap [34]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Address range: 2001::1208::1

Total number of addresses \(\approx 16^{30} \times 898 \)

Total number of active addresses \(\approx 3.4M \)

TABLE II

Characteristics of the Seed Sets.

<table>
<thead>
<tr>
<th>Seed set</th>
<th>Seed number</th>
<th>Selection strategy</th>
<th>Address range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_1)</td>
<td>1k</td>
<td>Down sampling</td>
<td>2001:1388/1 = 1 - 2f0c:fe80/1</td>
</tr>
<tr>
<td>(C_2)</td>
<td>5k</td>
<td>Down sampling</td>
<td>2001:1284/1 = 1 - 2f0c:fe70/1</td>
</tr>
<tr>
<td>(C_3)</td>
<td>30k</td>
<td>Down sampling</td>
<td>2001:1218/1 = 1 - 2f0c:fe68/1</td>
</tr>
<tr>
<td>(C_4)</td>
<td>0.1M</td>
<td>Down sampling</td>
<td>2001:1218/1 = 1 - 2f0c:fe60/1</td>
</tr>
<tr>
<td>(C_5)</td>
<td>1k</td>
<td>Biased sampling</td>
<td>2001:1208/1 = 1 - 2001:1291/1</td>
</tr>
<tr>
<td>(C_6)</td>
<td>5k</td>
<td>Biased sampling</td>
<td>2001:1208/1 = 1 - 2001:1328/1</td>
</tr>
<tr>
<td>(C_7)</td>
<td>30k</td>
<td>Biased sampling</td>
<td>2001:1208/1 = 1 - 2001:1328/1</td>
</tr>
<tr>
<td>(C_8)</td>
<td>0.1M</td>
<td>Biased sampling</td>
<td>2001:1208/1 = 1 - 2001:1328/1</td>
</tr>
</tbody>
</table>

in Tab. II. Intuitively, the “quality” of \(C_2 \) should be better than that of \(C_1 \) in the sense that poor “quality” means poor fitting degree between the distribution of seeds and the distribution of active addresses.

Default System Parameters

6Hit includes several parameters (introduced in Sec. IV) that need to be set empirically: the learning rate is \(\alpha = 0.1 \), the probability of crossover is \(p_c = 0.6 \) and the the probability of mutation is \(p_m = 0.01 \).

Real-world Test Results

We evaluated the performance of 6Hit and other target generation methods in a real IPv6 network environment, where we were careful to ensure good Internet citizenship as suggested by Partridge and Allman [35]. Internet-wide scanning experiments were performed at Changsha University through the China Education and Research Network version 2 (CERNET2). We did a single-threaded address scanning on a Linux platform with an AMD OPTERON X3216 (3.0GHz) and 16 GB memory. The probing rate was limited to 10 million bps (in AS 23910). Such amount of probing traffic would not cause any problem on the scanned devices. We only used the ICMPv6 packets to perform address scanning. The Internet-wide scanning experiments were performed in October 2019.

We compared the hit rate using the different seed set \(C_1, i \in [1, 8] \) introduced above. With each seed set, we used 10 million ICMPv6 packets to discover active addresses. The results are shown in Fig. 5. We can see that the hit rate of methods that use the structural information (6Hit, 6Tree and 6Gen) is much higher than that of methods that use statistics information (Entropy/IP). In addition, 6Hit and 6Tree have a higher hit rate than 6Gen. During the scanning process, we set the number of addresses generated per iteration \(b(= \gamma \cdot m_i) \), where \(\gamma = 3 \) and \(m_i \) denotes the number of addresses in seed set \(C_i \). It is worth highlighting that 6Hit has a much higher hit rate than other methods when the quality of initial seeds is poor (6Gen, 6Hit and 6Tree). This demonstrates the advantage of 6Hit being able to explore new regions and adjusting its probing direction based on the feedback. However, with the increase number of seeds \(m_i \), the number of iterations in 6Hit decreases, resulting in a drop in hit rate. 6Hit and 6Tree tend to yield the same number of iterations using seed set \(C_4 \), which results in a similar hit rate in this setting. The number of targets generated on region \(X_j \) in \((t + 1)_{th}\) iteration is \(3m_i \cdot P^t(j) \).

The expected reward of region \(X_j \) is estimated by this number of addresses rather than the entire node space.

Fig. 6 shows the hit rate performance of 6Hit per iteration. We can see that in general the hit rate of 6Hit is maintained at a higher level after the initial oscillation. The blue circles in Fig. 6 indicate when space repartition has been performed by 6Hit to avoid premature convergence. This process expands the scope of exploration and allows 6Hit to quickly discover new regions with high activity density. This is particularly important when the initial seed sets do not really reflect the actual activity density. Compared Fig. 5 and Fig. 6 (under seed sets \(C_y, y \in [5, 6, 7, 8] \)), we can see that space repartition indeed makes 6Hit significantly better than other methods.

In summary, discovery on the IPv6 Internet shows that 6Hit achieved 3.5% - 11.5% hit rate for the eight candidate datasets, which is 7.7% - 630% improvement over the state-of-the-art methods. Especially in seed sets with poor seed quality, e.g., seed set \(C_5 \), 6Hit achieved 630% improvement compared to 6Tree which is the second best. This is due to the fact that 6Hit has more direction adjustments and more aggressive mechanisms for exploration, i.e., the space repartition. This exploration enhancement mechanism increases the exploration efforts, helps to quickly find new high-density regions, which greatly improves the hit rate.

Conclusion

In this work, we proposed 6Hit, an efficient target generation method for discovering active IPv6 addresses. 6Hit adopts a
novel reinforcement learning-based approach to automatically learn the address space structure from the feedback of historical probes, based on which it dynamically adjusts subsequent address search direction towards the regions that have high activity density. This unique feature makes it more efficient and effective in target generation and more resilient to the quality of initial seed addresses. With real-world test, 6Hit has achieved much better performance on hit rate than the state-of-the-art solutions, 6Gen, 6Tree, and Entropy/IP.

ACKNOWLEDGMENT

We would like to thank Zhizhu Liu for his kind help to our work. This work is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1800202, The NSF-HN under Grant No. 2020JJ5621 and the Outstanding Youth Research Project of Provincial Education Department of Hunan under Grant No. 20B064. The corresponding author is Zhiping Cai.
REFERENCES

