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Abstract—Network performance tomography infers perfor-
mance metrics on internal network links with end-to-end mea-
surements. Existing results in this domain are mainly Boolean-
based, i.e., they check whether or not a link is identifiable, and
return the exact value on identifiable links. If a link is not
identifiable, Boolean-based solution gives no performance result
for the link. In this paper, we extend Boolean-based network
tomography to bound-based network tomography where the
lower and upper bounds are derived for unidentifiable links. We
develop an efficient algorithm to obtain the tightest total error
bound, and present a solution that can significantly reduce the
total number of measurement paths required for deriving the
tightest total error bound. Furthermore, we propose a method to
deploy a new monitor over existing ones such that the total error
bound could be maximally reduced. Compared to the random
monitor deployment and the monitor deployment that maximizes
the total number of identifiable links, our monitor deployment
method can lead to up to 15 and 2.4 times more reduction on
total error bound, respectively.

I. INTRODUCTION

Network performance monitoring has been a critical yet
tedious task for any Internet service provider (ISP) to guar-
antee the smooth operation of its network. Due to the large
size of a network, it is generally prohibitive to monitor all
links. Recent technical development on network slices allows
ISPs to dynamically form different virtual networks, each for
a dedicated network application. Monitoring and validating
the performance of a virtual network are basic requirements
for the providers of virtual networks. Due to the dynamic
changes of network configuration, it is extremely challenging
to directly measure the performance of virtual links. A well-
known strategy is to infer the performance of physical/virtual
links via end-to-end measurements. This solution is termed as
network performance tomography [1]–[4].

Existing solutions for network performance tomography are
mostly Boolean based: they determine whether or not a given
set of links/paths are identifiable1 (i.e., Boolean), and if yes,
the inferred values on the link/paths of interest are returned. If
a link/path is not identifiable, no useful information about the
performance on that link/path is provided in Boolean-based
network tomography.

Given a set of measurements, a link/path may not be identifi-
able. However, the performance upper bound and lower bound
on that link/path can be derived, which is also important to

1Identifiable means the value on a link/path can be uniquely determined.

the ISPs. After all, what an ISP cares is whether the SLA with
the customers is violated or not, i.e., whether the performance
metric is within the performance bound specified in the SLA.
We thus shift our focus towards performance bounds: what are
the tightest upper and lower bounds of the performance metric
on the links/paths of interest? We call this shift of focus as
bound-based network performance tomography.

Clearly, bound-based network tomography is more general
and extends Boolean-based network tomography, because in
bound-based network tomography the upper and lower bounds
are the same for identifiable links/paths. Whenever a link/path
is not identifiable, bound-based network tomography tells the
upper and lower values on the link/path. In practice, bound-
based network tomography offers more information to ISPs
to diagnose performance problems and manage its network
resources with less measurement overhead.

We study bound-based network tomography with addi-
tive (e.g., delay) metrics for links, where the metric of an
end-to-end path is the sum of metric of all the links on the path.
Bound-based network tomography, while extending Boolean-
based network tomography only slightly in concept, drastically
changes the landscape of solution space as illustrated in the
following example.

Motivating Example: Fig. 1 shows an example network
with 6 nodes and 10 links. Assume that the link metrics
are {x1,2 = 7, x2,3 = 3, x3,4 = 10, x4,5 = 13, x5,6 =
8, x1,6 = 1, x1,3 = 5, x2,6 = 4, x3,6 = 6, x3,5 = 3}, which
are unknown in advance and should be inferred through end-
to-end measurements with monitors. Assume that initially two
monitors are placed at nodes v5 and v6 (in red color), as shown
in Fig 1 (a).

With the Boolean-based network tomography introduced
in [2], only links l5,6 and l1,2 are identifiable. The metrics
on other links remain unknown. In contrast, we can derive the
bounds on unidentifiable links, using the bound-based network
tomography disclosed later in Section III, as B(x3,5) = [0, 7],
B(x3,4) = [0, 27], B(x2,6) = [3, 10], B(x3,6) = [2, 9],
B(x1,3) = [2, 9], B(x4,5) = [0, 27], B(x2,3) = [0, 7],
B(x1,6) = [0, 7]. If we denote the error bound of a link metric
as the inferred upper bound minus the inferred lower bound,
the total error bound of all links is 96.

After we obtain the tightest lower and upper bounds on
unidentifiable links, a natural question is: how to further
tighten the total error bound by deploying an extra monitor?
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Fig. 1: An example: (a) initial monitor deployment, (b) new monitor deployment with Boolean-based network tomography, (c)
new monitor deployment with bound-based network tomography.

Boolean-based network tomography cannot answer this ques-
tion directly. One may wonder if the monitor placement solu-
tion to minimize the total number of unidentifiable links [2]
would also lead to the tightest total error bound. This solution
is shown in Fig 1 (b) where the new monitor is placed at v2 (in
blue color). The total number of unidentifiable links is reduced
to 2, which are l3,4 and l4,5 with new bounds B(x3,4) = [0, 23]
and B(x4,5) = [0, 23], respectively. The total error bound is
reduced to 46.

With the bound-based network tomography which will be
presented in this paper, we should deploy the new monitor
at v4, as shown in Fig 1 (c), which reduces the total error
bound to 16 even if the total number of unidentifiable links is
4 (i.e., B(x1,6) = [0, 4], B(x2,3) = [0, 4], B(x1,3) = [2, 6], and
B(x2,6) = [3, 7]). Clearly, bound-based network tomography
finds a better solution w.r.t. reducing the total error bound.

Motivated by the above example, we aim to answer the
following two questions: (1) given a set of deployed monitors,
how to infer the tightest lower and upper bounds of uniden-
tifiable links? (2) given a set of deployed monitors, how to
deploy extra monitors to minimize the total error bound?

To answer the first question, we first study how to derive the
tightest upper and lower bounds for unidentifiable links given
a set of deployed monitors and end-to-end measurements. We
then study how to use the minimum number of end-to-end
measurements among a set of deployed monitors to achieve
the tightest total error bound.

The main challenge of the second problem is that the
reduced total error bound remains unknown until we have
actually deployed the new monitor and collected new mea-
surement results. Thus, the second problem is theoretically
unsolvable, because we are not allowed to use the “trial-
and-error” method and thus have no way to compare the
total error bound reduction if deploying the new monitor at
different places. To avoid this situation, we replace each bound
interval obtained by existing monitor deployment with the
mean value of the lower and upper bounds. The practical
meaning of this processing is to estimate end-to-end delays
that we would expect with the new monitor and existing
monitors, before physically deploying the new monitor. With
this pre-processing, we are able to identify the optimal location
to place a new monitor to minimize the total error bound.

The contributions of the paper are as follows:

• Given a set of deployed monitors and end-to-end mea-
surements with the monitors, we present a solution to
find the tightest total error bound for unidentifiable links.

• Given a set of deployed monitors, the number of possible
measurement paths could be huge. We propose a method
that minimizes the total number of measurement paths,
with which the tightest total error bound can be derived2.

• Given a set of deployed monitors and aforementioned pre-
processing, we develop a monitor deployment method so
that a newly-added monitor can maximally reduce the
total error bound.

• We thoroughly evaluate our monitor deployment method
by comparing it with two benchmarks: random deploy-
ment and the deployment that maximizes the total number
of identifiable links. The results show that our monitor
deployment method can significantly reduce the total
error bound in bound-based network topography.

II. SYSTEM MODEL

A network is modelled as a graph G =< V,L > that
consists of |V | vertices and |L| links. With a set of monitors
deployed in the network, we can use existing methods, such
as that in [5], to derive the delay on identifiable links. In
this paper, we are interested in the delay bounds on those
unidentifiable links.

Following the convention in network performance tomogra-
phy [2], [5], we introduce basic assumptions and notations:

• G: A connected and undirected graph. Each link has
distinct end nodes (i.e., no self loop), and no 2 links in
G connect to the same pair of nodes.

• Measurement path (MP): A non-loop path that only
contains 2 monitors at its end nodes.

• Bi-connected component (BC): A maximal subgraph of G
that is either (i) a single link, or (ii) 2-vertex-connected.

• Tri-connected component (TC): A maximal subgraph of
G that is either (i) a circle, or (ii) 3-vertex-connected.

• Vantage w.r.t. a TC T : A node that is either (i) a monitor
in T , or (ii) a cut node that separates T from at least one
monitor.

2Note that this does not necessarily mean we know the exact value of
tightest total error bound. The exact value of tightest total error bound is
unknown until measurement results are collected following the suggested
measurement paths.



• Exterior links: the links incident to only 1 vantage in a
TC T .

• 2-bridge-cut: a pair of links that satisfies i) the removal of
the pair of links increases the number of connected com-
ponents in G, ii) if only one link is removed, the number
of connected components in G remains unchanged.

• 2-vertex-cut: a pair of nodes whose removal disconnects
G, but removing only one would not disconnect G.

End-to-end delays along MPs form a linear system. We use
the example in Fig. 2 to illustrate the concept. The network
has 2 monitors in red color. First, the end-to-end delays along
all MPs between the two monitors form the following linear
system, where xi,j denotes the delay on link li,j and wl

denotes the end-to-end delay on MP l.

Fig. 2: An example network.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1,2 + x1,4 = w1

x2,4 = w2

x2,3 + x3,4 = w3

x1,2 + x1,3 + x3,4 = w4

x2,3 + x1,3 + x1,4 = w5

(1)

The above linear system could be written into R′x = w′,
where

R′ =

⎛
⎜⎜⎜⎜⎝
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
1 1 0 0 0 1
0 1 1 1 0 0

⎞
⎟⎟⎟⎟⎠ (2)

x =
(
x1,2 x1,3 x1,4 x2,3 x2,4 x3,4

)ᵀ
(3)

w′ =
(
w1 w2 w3 w4 w5

)ᵀ
(4)

From linear system (1), we can derive that x2,4 = w2 and
x1,3 = (w4+w5−w3−w1)/2. Since we can derive the values
of x2,4 and x1,3, we could move the known metric values to
the right-hand-side in (1) to form a new linear system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1,2 + x1,4 = w1

0 = w2 − x2,4

x2,3 + x3,4 = w3

x1,2 + x3,4 = w4 − x1,3

x2,3 + x1,4 = w5 − x1,3

(5)

Since x2,4 only appears in the second equation, it cannot be
used to determine the bounds for other unidentifiable links. As
such, the second equation 0 = w2 −x2,4 is out of our interest
and can be safely removed. The resulting linear system is the
final mathematical model that is useful for our purpose.

⎧⎪⎪⎨
⎪⎪⎩

x1,2 + x1,4 = w1

x2,3 + x3,4 = w3

x1,2 + x3,4 = w4 − x1,3

x2,3 + x1,4 = w5 − x1,3

(6)

which could be simplified as Rx = w where

R =

⎛
⎜⎜⎝
1 0 1 0 0 0
0 0 0 1 0 1
1 0 0 0 0 1
0 0 1 1 0 0

⎞
⎟⎟⎠ (7)

x =
(
x1,2 x1,3 x1,4 x2,3 x2,4 x3,4

)ᵀ
(8)

w =
(
w1 w3 w′

4 w′
5

)ᵀ
(9)

where w′
4 = w4 − x1,3 and w′

5 = w5 − x1,3.

Remark 1. In the rest of this paper, the linear system model
(LSM), Rx = w, by default refers to the final linear system
after the above preliminary processing. We stress that the LSM
is non-invertable, because links in the LSM are unidentifiable
(otherwise there is no need for bound-based tomography.).

III. BOUND ANALYSIS OF UNIDENTIFIABLE LINKS

A. Solution Space of a Non-invertable Linear System

Since LSM Rx = w is non-invertable, the rank of R (i.e.,
the number of linearly independent measurement paths) is
less than the number of links in G. In linear algebra [6], the
solutions of non-invertable LSM form a solution space, which
is constructed by free variables. In other words, the solution
x is presented in the form that every other pivot variable (i.e.,
non-free variable) is the linear combination of free variables.

B. Utilization of Free Variables

To derive the tightest total bound of undetermined variables
in the LSM, we first introduce the following property of free
variables [6]:

Remark 2. For a non-invertable linear system Rx = w
having n variables, there are different combinations of n′ vari-
ables that can serve as free variables, where n′ = n−rank(R).

As an example, the solution space of linear system (6) can
be represented as⎧⎨

⎩
x1,2 = w1 − w′

5 + x2,3

x1,4 = w′
5 − x2,3

x3,4 = w3 − x2,3

(10)

if we select x2,3 as the free variable, or⎧⎨
⎩

x1,4 = w1 − x1,2

x2,3 = w′
5 − w1 + x1,2

x3,4 = w1 + w3 − w′
5 − x1,2

(11)

if we select x1,2 as the free variable.
While the same solution space can be represented in differ-

ent forms, we need to determine which representation leads
to the tightest total error bound. This question is answered in
the next section.



C. Steps to Obtain the Tightest Total Error Bound

Let T EB =
∑B(xi) denote the total error bound of a LSM,

where B(xi) is the length of bound interval for xi. We first
define the concept of natural bound interval:

Definition 1. Natural bound interval (NBI): In an LSM, the
natural bound interval of a variable xi is the interval [0, bi],
where bi is the (end-to-end) measurement value corresponding
to an equation that contains xi. If there are multiple equations
containing the variable xi, the tightest natural bound interval
(TNB) of xi is the interval [0, bmin], where bmin is the smallest
value among all the (end-to-end) measurements corresponding
to those equations.

1. Obtain the TNB of every variable in the LSM.
2. Sort the variables in an ascendant order by the upper bound

in TNB, denoted as O = {xs
1, x

s
2, · · · , xs

n}. Find each of
the variable combinations, denoted as Fc, satisfying i) the
variables in Fc together can serve as free variables, ii) Fc

has the tightest total |TNB| (|TNB| is the length of TNB).
Put all Fc’s into a candidate free variable set CFV .

3. For each Fc in CFV , the final bound interval of each free
variable in Fc is its TNB. Since each pivot variable xp

is a linear combination of the free variables in Fc, we
can obtain a bound interval for xp, denoted as Bc(xp), by
plugging free variables’ TNBs into the linear combination.
The intersection of Bc(xp) and TNB(xp) is the final bound
interval of xp.

4. Each Fc in CFV gives a total error bound T EB. Return
the smallest T EB over all Fc’s in CFV .

Remark 3. Note that in Step 2, not every combination of
n− rank(R) variables can be used as free variables. Use the
following linear system as an example:

R1x1 =

(
1 0 1 1
0 1 0 1

)⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠ =

(
w1

w2

)
(12)

could be solved as

x =

⎛
⎜⎜⎝
w1

w2

0
0

⎞
⎟⎟⎠+ x3

⎛
⎜⎜⎝
−1
0
1
0

⎞
⎟⎟⎠+ x4

⎛
⎜⎜⎝
−1
−1
0
1

⎞
⎟⎟⎠ , (13)

where x3 and x4 correspond to the last 2 columns in R1 and
they are free variables. However, if we re-organize the above
linear system as

R2x2 =

(
1 1 0 1
0 0 1 1

)⎛
⎜⎜⎝
x1

x3

x2

x4

⎞
⎟⎟⎠ =

(
w1

w2

)
, (14)

then x2 and x4 together cannot serve as free variables,
because x1 and x3 do not form an identity sub-matrix in
the reduced row echelon form of R2. In other words, x1

and x3 cannot be the pivot variables together because their
corresponding columns in R2 are linearly dependent.

Remark 4. The worst-case time complexity for the above
search algorithm is O(

(
n

rank(R)

)
). Since there are cases that

any combination of n−rank(R) variables can be free variables
and we need to check all possible combinations of free
variables to know the tightest total |TNB|, no other search
algorithm can have a smaller worst-case time complexity.
As a fast approximation, after we sort the variables in the
second step, we can select variables, following that order,
that together serve as free variables, and then use the first
free variable combination in Step 3 and omit Step 4.

D. Theoretical Guarantee
The above method assures that T EB is minimum. The proof

needs the following lemma.

Lemma 1. For a full measurement matrix R (including all
possible MPs), its reduced row-echelon form is a matrix whose
element can only be −1, 0, or 1.

Theorem 1. The total error bound T EB obtained in Sec-
tion III-C is the minimum T EB that could be derived from
the LSM.

Proof. Due to space limit, we only provide the main idea of
the proof.

We first prove the case where any n − r variables
(r = rank(R)) can serve as free variables. Assume that
the free variable combination providing tightest T EB is
{xr+1, xr+2, . . . , xn}, then the solution form should be ar-
ranged as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

...
xr

xr+1

xr+2

xr+3

...
xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
...
dr
0
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cr+1,1

cr+1,2

...
cr+1,r

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xr+1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cr+2,1

cr+2,2

...
cr+2,r

0
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xr+2 + · · ·+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cn,1
cn,2

...
cn,r
0
0
0
...
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

(15)
where the first r variables are pivot variables. Moreover,
ci,j ∈ {−1, 0, 1} (i = r, r + 1, · · · , n, j = 1, 2, · · · , n) in
(15) according to Lemma 1.

We will show that any other solution form, whose free
variables’ total |TNB| is strictly less than the total |TNB| of
{xr+1, xr+2, . . . , xn}, would lead to a larger total error bound.
To change (15) into another solution form, at least one pivot
variable should exchange with one free variable. Without loss
of generality, we let pivot variable xr exchange with free vari-
able xr+1 which satisfies condition |TNB(xr+1)| < |TNB(xr)|
(otherwise the total |TNB| of new free variables is equal to the
total |TNB| of new free variables) and show that the resulting
total error bound becomes larger.

Exchanging pivot variable xr and free variable xr+1 could
be done in the rth equation in (15)

xr = dr + cr+1,rxr+1 + cr+2,rxr+1 + · · ·+ cn,rxn

where every ci,r (i = r + 1, r + 2, · · · , n) is −1, 0 or 1 by
Lemma 1, and under our particular assumption (i.e, any n− r



variables can be used as free variables), cr+1,r cannot be 0
(otherwise we cannot exchange xr+1 with xr). Afterwards,
we could arrive

xr+1 =

{
dr − xr + · · ·+ cn,rxn, when cr+1,r = −1
−dr + xr − · · · − cn,rxn when cr+1,r = 1

(16)
Furthermore, Equation (16) can be written into

xr+1 =

{
−xr + C when cr+1,r = −1
xr − C when cr+1,r = 1

(17)

where C = dr + cr+2,rxr+2 + · · ·+ cn,rxn.
By analyzing bound interval changes of xr+1 and xr and

their impact on T EB after such an exchange, we can conclude
that the new form leads to T EB no smaller than that before
the exchange. The lengthy analysis is omitted to save space.

For the case where not any n − r variables can serve as
the free variables, we can use the same analysis but with a
restriction that only eligible free variable combinations are
considered.

Lastly, for the situation where there are multiple free
variable combinations with the tightest total |TNB|, the last
step guarantees we will obtain the minimum T EB.

IV. MINIMIZING THE NUMBER OF MEASUREMENT PATHS

Given a set of deployed monitors, we can form an LSM by
listing all possible MPs and use the method in the previous
section to obtain the tightest T EB. Nevertheless, the total
number of possible MPs is huge; and it is well known
that listing MPs between two monitors is #P -complete [7].
Naturally, we need to answer the following question: given
a set of deployed monitors, what are the least MPs with
which we can derive the tightest total error bound? We stress
again that the exact value of tightest total error bound remains
unknown until measurement results are collected following the
suggested measurement paths.

We first classify the identifiability of links, using the same
technique of decomposing the network into tri-connected
components (TCs) [2], [4]. We then obtain the smallest set
of MPs using the TC tree.

Given a network G =< V,L > with a pre-determined
deployment of k (k > 2) monitors, the link identifiability
problem could be converted to a 2-monitor problem by in-
troducing two virtual monitors, each connecting to existing
monitors with virtual links [2]. Following the same graph
construction in [4], we can obtain the extended graph Gnew

with only 2 virtual monitors m′
1 and m′

2, in which G is the
interior graph of Gnew. Next, we decompose Gnew into TCs,
which are recorded in a TC tree [8]. According to [4], the
resulted TCs have the following topological properties:

1) The two virtual monitors, m′
1 and m′

2, are included in
the same TC, denoted by T0;

2) Each TC T includes only two vantages. The vantages of
T0 are m′

1 and m′
2, and each of the other TCs includes

only one 2-vertex-cut that separates itself from m′
1 and

m′
2.

3) All the TCs can be arranged in a tree structure, if we
treat T0 as the root, the other TCs as nodes, and the 2-
vertex-cut between the TCs as the edge. An example is
shown in Fig. 3.

Fig. 3: An example of graph decomposition. Note that v1 and
v5 are the vantages w.r.t. T1, and v2 and v5 are the vantages
w.r.t. T2.

Given a TC T with two vantages μ1 and μ2, denote T̃ as the
subgraph of T obtained by removing the direct link between
μ1 and μ2 (Note that if there is no real link between μ1 and
μ2, then a virtual link lμ1,μ2

was generated during the graph
partition process). The TC tree has the following features to
help us determine the identifiability of links [4]:

1) Every real link in T0 is identifiable (k ≥ 3). Only 3 types
of links are unidentifiable in other TCs as follows.

2) Exterior links of a 3-vertex-connected TC T3vc, i.e., links
that are incident to only 1 vantage of the T3vc, are
unidentifiable.

3) For a 3-vertex-connected TC T3vc, links of a 2-bridge-cut
in T̃3vc are unidentifiable.

4) All the links in T̃circle, where Tcircle is a circle TC, are
unidentifiable.

Remark 5. The identifiability of the direct link between the
two vantages can be determined in the parent TC which they
belong to. As shown in Fig. 3, v2 and v5 are the vantages w.r.t.
T2. The identifiability of link between them can be determined
in T1, following the above procedure.

From now on, we divide all the TCs into 2 types:
1) Normal TC: 3-vertex-connected TC T3vc without 2-

bridge-cut link in T̃3vc.
2) Special TC: 3-vertex-connected TC T3vc with 2-bridge-

cut link in T̃3vc and circle TC Tcircle.
Because of the special topological features of these uniden-

tifiable links and the fact that the delay on identifiable links’
can be uniquely determined [5], we can construct the smallest
set of MPs to obtain the tightest T EB by the following results.

Theorem 2. After Gnew is partitioned into TCs recorded in
a TC tree, for a particular non-root TC T with a parent TC
Tp:

1) When Tp is normal TC and doesn’t share vantage with
T :

• If T is a 3-vertex-connected TC, which has 2 van-
tages μ1 (with nμ1 exterior links incident to it) , μ2

(with nμ2 exterior link incident to it), and np pairs of



Algorithm 1 Minimal Measurement Path Construction

Input: a network graph G and deployed monitors
Output: the necessary and sufficient measurement paths to

obtain the tightest T EB
1: obtain Gnew by adding two virtual monitors and corre-

sponding virtual links [2];
2: partition Gnew into tri-connected components, which are

recorded in a TC tree [8];
3: create an empty set MP;
4: put all the leaf TCs in a set L = {T 1

l , T 2
l , · · · , T n

l },
also put their corresponding tandem trees in set ST =
{ST 1

l ,ST 2
l , · · · ,ST n

l };
5: for each ST i

l do
6: mark all the TCs from the leaf TC to the first non-root

TC with index 1, 2, 3, · · · , ni;
7: for i = 1 to ni do
8: mark the 2 vantages of Ti as {μ1, μ2};
9: call FindPathsInsideTC(Ti) and record the re-

turned paths in Pi.
10: for any monitor pair (m1,m2) do
11: identify a one-to-one, monitor-vantage mapping,

denoted as (m1, u1) and (m2, u2) without loss of
generality;

12: call FindPathsFromMonitorToTC(Ti) and
record the returned paths from m1 to u1 in Pm1,μ1

and paths from m2 to u2 in Pm2,μ2
;

13: construct an MP by concatenating three paths from
the sets, Pm1,μ1 , Pi, and Pm2,μ2 , respectively; con-
struct all MPs by finding all possible path concate-
nations;

14: put all the constructed MPs into MP;
15: return MP;

non-exterior 2-b-c link (since some 2-b-c links could
also be exterior link), then the minimal number of
MPs needed to derive the tightest T EB for links in
T is 2np × nμ1

× nμ2
.

• If T is a circle TC, then the minimal number of MPs
needed to derive the tightest T EB in T is 1.

2) All the other cases, i.e., i) Tp is normal TC but share
vantage with T or ii) Tp is special TC, need special
treatment3.

Finally, the minimal total number of MPs is then obtained
by summing over the number of MPs assoicated with each
non-root TC.

Theorem 2 only tells the minimum number of MPs. The
steps of constructing these MPs is given in Algorithm 1.
Ignoring the complexity in partitioning the network into TCs,
the worst-case time complexity of Algorithm 1 is O(αN2

T ),
where α is the maximum TC size among all the TCs and NT
is the total number of TCs.

3While we omit the detail due to space limit, the main idea is to look up
the ancestor TCs of Tp, one by one towards the root, until reaching the first
normal TC.

Remark 6. In Line 4 of Algorithm 1, we call the path from the
root to the leaf node as a tandem tree, with each node on the
tree representing a TC in the network. In Line 10, all monitors
are in the root TC, i.e., T0. In Line 13, two paths can be con-
catenated only if they share a common end node. Algorithm 1
needs to call two functions FindPathsFromMonitorToTC
and FindPathsInsideTC, whose details are omitted due
to page limit. Simply put, FindPathsFromMonitorToTC
is to find a path from the monitor to a vantage point of
TC Ti, which travels all TCs along the TC tree and uses
one of the vantage point when passing an intermediate TC.
FindPathsInsideTC is to find a path between the two
vantage points of Ti, which uses links adjacent to the vantage
points inside Ti. An example is shown in Fig. 4.

Remark 7. Due to the topology features of the TC tree, the
constructed set of MPs is necessary and sufficient because
(1) some TC would not be covered if any MP in the set is
remove (i.e., necessary), and (2) any other MP not in the
set is either an MP in the set plus some identifiable links
or the concatenation of several MPs already in the set (i.e.,
sufficient).

Fig. 4: An example: there are 12 possible MPs between
the 2 monitors (in red color), whereas by Theorem 2 and
Algorithm 1, only 2× 2 = 4 MPs shown above are needed.

V. DEPLOYING NEW MONITORS TO REDUCE THE TOTAL
ERROR BOUND

So far we have the tightest T EB under the existing monitor
deployment. A follow-up question is: if we are allowed to
put an extra monitor, where should we put it so that T EB
is maximally reduced by the new monitor? As discussed in
Section I, this question is theoretically unsolvable. Hence, we
use the mean value of the lower and upper bounds on each link
to estimate the delay of a path between an existing monitor
and a candidate node, should the new monitor be deployed at
the candidate node. The solution and theorems presented in
this section are based on this assumption.

A. Total Error Bound Reduction Analysis

After partitioning Gnew into a TC tree, the place of the new
monitor, mnew, could be determined at the TC level. This is
based on two observations.

First, for a particular TC T , placing mnew at different
interior nodes of T (i.e., nodes in T except vantage node)
will result in the same link identifiability [2], [4], because i)



if T is a 3-vertex-connected TC, then no matter where we put
mnew inside T , it will lead to the same new TC tree structure,
based on which the link identifiability is determined, and ii) if
T is a circle TC, although putting mnew at different interior
nodes of T will lead to different new TC tree structures, for
any 2 different new TC trees GT 1 and GT 2, the identifiable
links in GT 1 and GT 2 are the same.

Second, same link identifiability (with the existing and new
monitors) leads to same T EB, because i) the same set of
additional identifiable links (due to the new monitor) creates
the same reduction on T EB, ii) the total reduction on the error
bounds for the remaining unidentifiable links is only affected
by the additional identifiable links.

Therefore, we only need to determine the right TC to place
mnew. We address this problem by analyzing how the new
monitor would transform the original TC tree as follows.

Adding one more monitor to Gnew will transform the
original TC tree into a new TC tree that is restructured by
the virtual links between mnew and {m′

1,m
′
2}. Use Fig. 5a as

an example, there are 6 non-root TCs in the original TC tree,
which all are the candidate TC for deploying mnew.

Remark 8. T0 is ruled out from the candidate set because
placing mnew into T0 does not change the original TC tree
structure and thus will not make any diffrence on T EB.

We first consider the situation where the non-root TCs are
all 3-vertex-connected TCs. For instance, if mnew is placed
into T3, as shown in Fig 5a, the edges (2-vertex-cuts) between
T0 and T1 (e0,1), between T1 and T2 (e1,2), and between T2
and T3 (e2,3) will all disappear in the new TC tree because
with the virtual links lmnew,m′

1
, lmnew,m′

2
, the 2-vertex-cuts

e0,1, e1,2, e2,3 are no longer 2-vertex-cuts in the new TC tree.
Hence, T0, T1, T2 and T3 merge into T ′

0 in the new TC tree.
But if mnew is placed into T2, as shown in Fig 5b, only T0,
T1, and T2 are merged into T ′

0 in the new TC tree.
The other possible situation is that some non-root TCs are

circle TCs. These circle TCs should appear along some tandem
sub-tree. After mnew is placed into the leaf node of this
tandem tree, such tandem sub-tree will not merge into T ′

0 in
the new TC tree, because there may exist 2-b-c links in a circle
TC, which prevent this tandem tree to be 3-vertex-connected
component in the new TC tree. For example, in Fig 6, there is
a circle TC T1 in the leftmost original TC tree. After placing
mnew in the leaf TC T2, say at node v6, this tandem TC tree
will not merge into T ′

0 .
So far, we have disclosed the TC tree transform should a

new monitor be added into a non-leaf TC. We next present the
following theorem, with which an algorithm can be designed
for optimal deployment of the new monitor.

Theorem 3. For a tandem TC tree with non-root nodes
{T1, T2, · · · , Tn} (n ≥ 1) in tandem (i.e., Tn is the leaf TC on
the TC tree), placing mnew into the interior node of Tn will
maximally reduce the T EB.

While we omit the proof due to space limit, Theorem 3 is
easy to understand, because putting the new monitor at the

(a) Place mnew into T3

(b) Place mnew into T2

Fig. 5: Examples for monitor placement.

Fig. 6: Monitor placement when non-root T1 is circle TC.

leaf TC will merge more TCs into T ′
0 , and links in T ′

0 are
identifiable [4].

We now analyze a general TC tree. A random TC tree
could be decomposed into several tandem sub-trees, each
from the root T0 all the way down to a leaf node. For
instance, in Fig. 5a, this general TC tree has 3 tandem
sub-trees ST 1 = {T0, T1, T2, T3}, ST 2 = {T0, T1, T2, T4},
ST 3 = {T0, T5, T6}. Because of Theorem 3, leaf nodes T3, T4
and T6 are the candidate TCs for placing mnew. Topologically
speaking, ST 3 is independent since it shares no TC with
other tandem sub-tree, ST 1 (or ST 2) is dependent (with other
tandem sub-trees), because it shares TCs with ST 2 (ST 1).

The two types of tandem sub-trees require different ways of
calculating the reduced total error bound: placing mnew into
T6 could only affect the unidentifiable links in ST 3, i.e., T6’s
corresponding tandem sub-tree. Placing mnew into T3 (or T4),
however, will not only affect its corresponding tandem sub-
tree, but also other tandem sub-trees that share TC with it. For
example, if mnew is put in T3, the T EB of unidentifiable links
in T4 could also be reduced if there are links turn identifiable



in the communal TCs of ST 1 and ST 2, i.e., T1 and T2.
Therefore, {ST 1,ST 2} and {ST 3} should be classified

into different types of tandem sub-trees, which need different
ways of calculating the reduced total error bound:

1) Dependent tandem sub-tree: it shares a TC or multiple
TCs with other tandem sub-tree(s).

2) Independent tandem sub-tree: it does not share TC with
any other tandem sub-tree.

In Algorithm 2, ST in different categories will be treated dif-
ferently. The algorithm calls GetΔT EBForDependentTree
and GetΔT EBForIndependentTree to calculate the T EB
reduction for dependent tandem sub-tree and that for inde-
pendent tandem sub-tree, respectively. The details of the two
functions are omitted to save space, but the main idea is to
identify all TCs that will be impacted by the new monitor.

B. Maximally Reducing the Total Error Bound (MREB)

Based on the above analysis, for a general TC tree with
several leaf TC nodes as {Tl1 , Tl2 , · · · , Tln}, each leaf node
corresponding to a tandem sub-tree, placing mnew in Tli
makes a series of unidentifiable links in its tandem sub-tree
become identifiable, based on which the reduction on the
minimum T EB can be calculated. The best place for deploying
the new monitor is in a leaf TC that maximally reduces the
mininum T EB.

Ignoring the complexity of partitioning the network into
TCs, the worst-case time complexity of Algorithm 2 is
O(βNT ), where NT is the total number of TCs and β is
the complexity of calculating T EB as discussed in Remark 4.

Algorithm 2 MREB: Maximally Reducing T EB
Input: network graph G and initial monitors deployment
Output: the location of mnew that maximally reduces T EB

1: obtain Gnew and partition Gnew into TCs recorded in a
TC tree [8]

2: put all the leaf node TCs in a set L = {T 1
l , T 2

l , · · · , T n
l };

also put their corresponding tandem trees in set ST =
{ST 1

l ,ST 2
l , · · · ,ST n

l }
3: for each ST i

l ∈ ST do
4: if ST i

l is Independent then
5: ΔT EBi= GetΔT EBForIndependentTree
6: else
7: ΔT EBi= GetΔT EBForDependentTree
8: ΔT EBj = max(ΔT EB1,ΔT EB2, · · · ,ΔT EBn)
9: return a random interior node of T j

l

VI. PERFORMANCE EVALUATION

We test the performance of MREB with real-world ISP net-
works, using several representative autonomous system (AS)
Internet topologies collected by the Rocketfuel [9] project.
Among the four AS networks, two are from Europe, one from
Australia, and one from US. Their size is different to represent
different scales of AS networks. Their parameters are shown
in Table I, where |L|, |V |, and NT denote the number of links,
the number of nodes, and the number of TCs, respectively.

We compare MREB with the following two monitor deploy-
ment strategies:

• Random: Deploy the new monitor at a randomly-selected
node, excluding the nodes that already have a monitor.

• MAIL: Deploy the new monitor at a node that maximizes
the number of additional identifiable links.

TABLE I: Parameters of AS Network Topology

ISP Name |L| |V | NT
Ebone (Europe) 381 172 37
Tiscali (Europe) 404 240 52

Telstra (Australia) 758 318 50
AT&T (US) 2078 631 154

For each AS network, we perform 50 rounds of test. In each
round, we set the link delay as a random number in the range
from 1 second to 30 seconds. We partition the network into bi-
connected components (BCs), and in each BC, we randomly
deploy a monitor. This way of deploying initial monitors is
to spread the monitors across the whole network and avoid
“bad” deployment that puts all initial monitors in one BC.
In addition, spreading initial monitors in each BC instead
of each TC will lead to a good number of unindentifiable
links, because otherwise there is no strong need of bound-
based performance tomography if most links, if not all, are
identifiable already. We then calculate T EB with the deployed
monitors. After that, we run different algorithms, i.e., MREB,
Random, and MAIL, to deployed a new monitor, and calculate
the T EB again using all deployed monitors. By comparing
the value change of T EB before and after the new monitor
deployment, we obtain T EB reduction due to the new monitor.

(a) Ebone (b) Tiscali

(c) Telstra (d) AT&T

Fig. 7: Performance of MREB, random, and MAIL.
From Fig. 7, we can see that MREB consistently leads to the

highest T EB reduction in different ISP networks. Interestingly,
the performance of MAIL is sensitive to network topology.
Comparing Fig. 7 (a) and (c), we can see that MAIL may work
better or worse than Random, depending on the underlying
network topology. Random deployment has a relatively stable



performance, but may suffer terribly if the network is big (e.g.,
in the AT&T network).

From Table II, in the AS networks MREB can improve
Random and MAIL w.r.t. average T EB reduction by up to
1587% and 245%, respectively. Even if checked with the
smallest improvement, MREB can still improve Random by
72%, and MAIL by 63%.

TABLE II: Average T EB Reduction over 50 Tests

Topology
Method

MREB Random MAIL

Imp. over (Random, MAIL)
Ebone (Europe) 206 (198%, 148%) 69 83

Tiscali (Europe) 122 (93%, 63%) 63 75
Telstra (Australia) 145 (72%, 154%) 84 57

AT&T (US) 1130 (1587%, 245%) 67 328

Simulated small graph
343 (50%, 0%) 228 343

278 (58%, 0%) 176 278

Remark 9. Results in the first 5 rows in Table II are obtained
by omitting the last step in the calculation of T EB (Remark 4).
If using the last step in the calculation of T EB, we cannot
obtain results for the four ISP networks due to high time
complexity and can only get the results (the last row) for
simulated small graphs (i.e., a graph with 15 nodes and an
average node degree of about 3.5). In small networks, nearly
all links are identifiable and thus the benefit of MREB is small.

VII. RELATED WORK

The concept of network tomography was first introduced
in [1]. Since then, network tomography has been extensively
studied, with the goal of inferring internal network perfor-
mance based on end-to-end measurements [2]–[5], [10]–[17].

Most existing work targeted at the identifiability problem.
The objects in study are either all links [2], or preferential
links [3], [16], or preferential paths [4]. Associated with the
identifiability problem are three highly-correlated problems:
(1) whether or not the objects are identifiable with existing
monitors? (2) what is the minimum number of monitors that
are required to identify the objects? and (3) how to deploy the
monitors to identify the objects? Some papers [2], [15] studied
other relevant problems: when the number of monitors is given
or the monitor placement is known, what is the maximum
number of links that can be identified.

Regarding measurement paths between monitors, existing
work can be classified into two categories. One is that probing
packets are routed according to the routing table in the
network [12], [13], so called uncontrollable measurement.
The other is that probing packets follow specified path using
source routing [2], [3], [14], [16], [17], so called controllable
measurement. This paper belongs to the second category.

VIII. CONCLUSION

We extended Boolean-based network tomography to bound-
based network tomography, in which not only existing results
on link identifiability in Boolean-based network tomography
hold as before, but also performance bounds on unidentifiable
links are derived. While conceptually simple, bound-based
network tomography poses much harder technical challenges

and renders existing Boolean-based solutions suboptimal or
even infeasible. We tackled several core technical challenges
in bound-based network tomography, including how to derive
the tightest performance bounds, how to build minimal set
of measurement paths for deriving the tightest performance
bounds, and how to deploy extra monitors to tighten perfor-
mance bounds over existing ones.
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