
Rldish: Edge-Assisted QoE Optimization of HTTP
Live Streaming with Reinforcement Learning

Huan Wang1, Kui Wu1, Jianping Wang2, and Guoming Tang3

1Department of Computer Science, University of Victoria, B.C., Canada
2Department of Computer Science, City University of Hong Kong, Hong Kong

3Peng Cheng Laboratory, Shenzhen, China

Abstract—Recent years have seen a rapidly increasing traffic
demand for HTTP-based high-quality live video streaming. The
surging traffic demand, as well as the real-time property of live
videos, make it challenging for content delivery networks (CDNs)
to guarantee the Quality-of-Experiences (QoE) of viewers. The
initial video segment (IVS) of live streaming plays an important
role in the QoE of live viewers, particularly when users require
fast join time and smooth view experience. State-of-the-art
research on this regard estimates network throughput for each
viewer and thus may incur a large overhead that offsets the
benefit. To tackle the problem, we propose Rldish, a scheme
deployed at the edge CDN server, to dynamically select a suitable
IVS for new live viewers based on Reinforcement Learning (RL).
Rldish is transparent to both the client and the streaming server.
It collects the real-time QoE observations from the edge without
any client-side assistance, then uses these QoE observations as
real-time rewards in RL. We deploy Rldish as a virtualized
network function (VNF) in a real HTTP cache server, and
evaluate its performance using streaming servers distributed over
the world. Our experiments show that Rldish improves the state-
of-the-art IVS selection scheme w.r.t. the average QoE of live
viewers by up to 22%.

I. INTRODUCTION

Background: Live large-scale events drive nearly 10 times

more viewer engagement than on-demand videos, and the

HTTP-based live streaming has been gaining increasing pop-

ularity in recent years [1]. Due to the stringent real-time

requirement and high traffic spikes of live videos, content

delivery networks (CDNs) continue to struggle with delivering

high-quality live videos to viewers while guaranteeing their

Quality-of-Experiences (QoE) [2], [3]. Since live viewers are

normally very sensitive to QoE deterioration such as slow

startup time and the dreaded spinning pinwheel (i.e., video

buffering), lower QoE generally means a higher abandonment

rate of users.
To address such an issue, CDN operators rely on the widely

distributed edge servers (e.g., the edge data centers [4]) to

handle the increasing demand of live videos. Using edge

servers as the cache, most viewers can fetch the requested

contents directly from the cache rather than the original video

sources. Nevertheless, the first batch of requests would still

miss the edge cache due to the real-time property of live

streaming [5]. Even worse, the performance of TCP-based

content transmission may decline due to the long-latency

backhaul in the content delivery path [6].
The existing research mainly uses adaptive bitrate algo-

rithms to improve the QoE of viewers via dynamically choos-

ing a bitrate for each video segment [7], [8], [9]. While these

efforts have shown considerable QoE improvement, they may

lead to decreased video quality during the streaming process.

Many studies have pointed out that users may quickly abandon

a video session if the quality is not sufficient [10], [11]. An

alternative method to improve the QoE is to conduct transient

holding of a minimum number of video segments at the edge

servers such that the clients can select a suitable initial video

segment (IVS) that best matches their network throughput [12]

to start the playback. Our experience in real-world live video

streaming suggests that this is a much more effective way for

QoE improvement.

Existing IVS selection strategies either use a fixed value [13]

or use the “optimal” value [12]. In the former, the RFC

standard of HTTP Live Streaming (HLS) suggests that “client

should not choose a segment that starts within three segment

durations (the maximum playback duration of video segments

in the playlist) from the end of the playlist file” in order to

avoid playback stalls [13]. In the latter, the “optimal” IVS
value is derived to match the current network conditions (e.g.,

throughput) [12].

Clearly, the former will not work well for high-quality live

video streaming due to the dynamic network conditions. The

latter is promising but has two main pitfalls. First, it relies

on the per-user based network throughput estimation. The

network throughput is related to multiple complex factors

(e.g., RTT and router buffer size), which frequently changes

over time [14]. This can incur high computational overhead,

especially for live videos where the number of live viewers

is large [5]. Second, when a user joins a live channel, the

server can only infer the user’s network throughput through

the signal strength (e.g., RSRP, RSRQ and RSSI in LTE)

and mobility pattern (e.g., fast, slow, static). The network

throughput estimation in this case may not be accurate, leading

to a suboptimal choice of IVS. In practice, the overhead of

searching for the “optimal” value may offset the benefit. It is

also hard to quickly react to the network condition change.

Our ideas: To overcome the above problem, we propose a

reinforcement learning-based dynamic IVS selection scheme

(Rldish) deployed on edge CDN server to maintain a balance

between exploring suboptimal decisions and exploiting cur-

rently optimal decisions. Rldish uses a real-time exploration
and exploitation (E2) model [15] to learn the IVS selection au-
tomatically, and is deployed as a virtualized network function

(VNF) on the CDN edge server by the CDN operator. It can
work seamlessly with existing edge CDN proxy (cache) server
(e.g., Nginx) [5], [16], and can also react to the network
condition (throughput) change via real-time exploration.

Rldish makes the IVS decisions on a per-stream basis to

avoid high overhead in per-user based throughput estimation.

Since an edge CDN server generally serves its proximal end

users, viewers accessing the same live video usually share

the common video delivery path from the origin server to the

edge and generally experience the similar network conditions

when fetching the same video from the edge. Based on this

observation, Rldish continuously updates the currently optimal

decisions on IVS selection for the live viewers on a per-
stream basis, based on the real-time QoE measurements and

feedback. The decisions will then be updated into the media

playlist files of each stream for the subsequent live viewers.

Challenges: Our goal is to implement Rldish only at the

edge servers and make no changes on either the client or the

origin server. We are faced with the following challenges:

First, how to mitigate the negative impact of caching on
the learning performance? It is uncertain that whether an

exploration action will lead to a cache hit at the edge server. In

other words, the same IVS may miss the edge cache sometimes

but hits the cache at other times. Since cache hit or miss would

greatly impact the QoE of viewers, it may “confuse” RL due

to significant different rewards fed by the same choice.

Second, how to conduct real-time QoE measurements at
the edge? RL requires feedback of viewers’ QoE to compute

the reward of previous explorations. However, the viewers’

QoE metrics (e.g., startup latency, video buffering ratio/time)

are generally collected at the client side. Modifying the client

side to collaborate with the edge is not desirable.

Third, how to support different types of QoE objectives?
Live videos consist of different types of traffic (e.g., live event

streaming, and user-generated live videos). Viewers may have

different QoE metrics for different contents. For example, live

event streaming might value the lower playback latency more.

Contributions: This paper makes the following contribu-

tions:

• Rldish is the first research work to apply RL to IVS selec-

tion of HTTP-based live streaming to optimize the QoE

of live viewers. It collects the real-time QoE observations

from the edge as the rewards of explorations without

client-side assistance, and is completely transparent to

both the clients and the streaming servers.

• We systematically tackled the above technical challenges.

For the first challenge, we define a new coordinate system

for RL choices by considering the real-time caching

status of each live stream in the edge server. Each

RL exploration is then calibrated based on its relative

position in the coordinate system such that caching status

rather than a static IVS is used in the exploration. For the

second challenge, we dive into Nginx kernel and make

changes to collect the TCP and HTTP performance data

(e.g., HTTP response time and RTT) of live viewers to

further generate the QoE data. For the third challenge,

79

Origin server

80 81 ... 90 91 92

Edge cached segments

......

Segments at the origin server

Proxy request: GET /channel_id/3340/91.ts

Waiting queue
#EXTINF:10,
3340/seg-89.ts
#EXTINF:10,
3340/seg-90.ts
#EXTINF:10,
3340/seg-91.ts
#EXTINF:10,
3340/seg-92.ts

Playlist file

Edge server

Cache
MISS

Fig. 1. Architecture of live video delivery over edge servers.

we define a reward function by elaborately considering

three different types of QoE metrics of live video and

offering options for service providers to tune their QoE

preferences.

• We cast the RL problem in the core of Rldish as a

non-stationary multi-armed bandit (MAB) problem and

enhance the Discounted-UCB (D-UCB) [17], a variant

of Upper Confidence Bound (UCB) algorithm, for the

special needs of Rldish.

• We deploy Rldish as a virtualized network function

(VNF) in a real HTTP cache server, and perform exten-

sive real-world experiments to evaluate its performance

using streaming servers distributed over the world. Eval-

uation results show that Rldish improves the state-of-the-

art IVS selection scheme w.r.t. the average QoE of live

viewers by up to 22%.

II. BACKGROUND AND OVERVIEW OF RLDISH

A. HTTP-based Live Video Delivery

HTTP-based live video streaming has gained increasing

popularity in recent years owing to that HTTP is compatible

with large numbers of client-side applications (e.g., web

browsers and mobile applications) [3]. As illustrated in Fig. 1,

once a raw live video is generated from the source (i.e., the

broadcaster), it is first uploaded to the origin server, where it

is encoded into multiple streams with different pre-determined

bitrates. The server then splits each stream into a sequence of

small video segments. To watch videos, the clients download

the segments sequentially with HTTP GET [13], [2].

Every time when a client joins a live channel, she first needs

to request the playlist file (shown in Fig. 1) from the origin

server which contains a list of up-to-date (i.e., the segments

that can be readily fetched) video segments of the requested

live channel. Based on this playlist, the client then chooses an

initial video segment to start the playback [13]. Afterwards,

the client generally plays the video segments in the order that

they appear in the playlist.

For live streaming, this playlist file is continuously updated

by the streaming server once new segments have been gener-

ated. The client continuously accesses the newest playlist file

to know the up-to-date video segment information (i.e., URI).

Since caching video segments at the edge server is generally

triggered by viewer requests and the video segments need time

to be delivered from the streaming server to the edge server,

it is possible that the newest several video segments may not

be fully cached in the edge server when their information is

already shown in the playlist file (e.g., segment 91th and 92th

in Fig. 1).

B. The Impact of IVS on QoE of Live Viewers

The selection of IVS can impact the QoE of live viewers

greatly. We use the example in Fig. 1 to explain. The figure

shows a scenario where segments of a live stream (with bitrate

3340 kbps) from sequence number 0th to 92th have all been

generated at the origin server, while the newest two segments

91th and 92th have not yet been cached at the edge server.

At the same time, three new live viewers near the edge server

try to join this live channel based on the information of the

fetched playlist.

Although playing the newest segment (segment 92th) would

provide the users with the smallest streaming latency, it may

generate playback stalls for the watching process later on,

since there are no pre-buffered segments at the edge that can

be used for the subsequent segment requests of the client.

Since the edge server typically issues a new HTTP request

to the origin server to fetch the segment once a cache miss

happens, this also induces a high startup latency for live

viewers. A naïve idea to reduce the high startup latency and

remove the buffering events is to join the live channel with

a relatively conservative IVS (e.g., segment 89th in Fig. 1).

Nevertheless, a too conservative IVS may lead to unnecessary

latency (i.e., a receiver’s playback is far behind the live

streaming source).

Therefore, it is critical to develop a dynamic IVS selection

policy to optimize QoE. The policy needs to consider both

the complex caching status and real-time network conditions.

Note that QoE of live viewers is mainly determined by back-

haul throughput under the cloud-edge streaming infrastructure

because viewers generally have sufficient download speeds

from their local edge CDN servers. One might consider that

when the backhaul throughput is under a poor condition,

QoE of live viewers will get worse again after a certain

period of video watching even if it started with the right IVS.

Actually, the proxy (edge) server normally maintains multiple

keep-alive TCP connections with the streaming server. Thus,

the download processes of multiple video segments will be

conducted simultaneously if the backhaul throughput is less

than the average bitrates of live stream. Therefore, the edge

server can ensure the client, once it selects the right IVS, to

have local access to the subsequent video segments [12].

C. Overview of Rldish

Rldish realizes the dynamic IVS selection policy within the

edge server. We present the core design and the implementa-

tion of Rldish in Fig. 2. It consists of three key components:

1) QoE Collector: it communicates with the (HTTP) proxy

server in real time to collect the QoE data (e.g., startup

latency, video buffering time) of live viewers (refer

to § III-C for more details).

Playlist file

(C
hannel id, B

itrate)

R
ew

ards

RLLa
te

st
 IV

S

QoE
Collector

Proxy Server

Proxy cache

Playlist
Manager

Video segments Video segments

Client
Origin Server

Request & response
of playlist file

RLDIS

Edge
Server

QoE
feedback

Fig. 2. System design of Rldish.

2) RL based IVS Selector: it accepts the fresh data of the re-

wards feedback from the QoE Collector to continuously

update the latest IVS selection for each live stream by

running a reinforcement learning algorithm.

3) Playlist Manager: it periodically sends requests to the

origin server for the most up-to-date playlist files of live

streams currently accessed by local users. It maintains

the playlist files of all live streams in the local cache by

using the new IVS (from the RL) to update the original

playlist files.

When a user joins a live channel, the proxy server will

locate the first request for the user’s playlist file to the local

edge cache. By identifying the requested channel ID and

bitrate information from the request URI, the corresponding

playlist file for the requested stream can be obtained from

the Playlist Manager. Once the first requested playlist file

has been successfully delivered to the client, the subsequent

requests for playlist files are handled by the proxy server

independently: it returns the up-to-date unmodified playlist

file to the client. In practice, there are many ways for the

HTTP proxy server to distinguish whether a playlist request

is from a new client or not so as to take different response

decisions. One of the easiest way is to use an HTTP Cookie

to indicate the state information of a connection.

After the user has played the live stream for a certain
time (e.g., 3 minutes after the first playlist request), QoE
Collector collects data (e.g., startup latency, total buffering

duration) from the proxy server by analyzing the transmission

finish time of each individual segment and their expected

playback time at the client end. The collected QoE data,

as the feedback of the previous trial, are reported to the

RL module, which provides the Playlist Manager with the

newest IVS information to update the playlist files for new

coming live viewers. In this way, Rldish could control the

playback behaviour of all viewers served at the edge. Note that
clients can still adjust their video bitrates during the watching
process to obtain better QoE, since Rldish only manipulates

the IVS selection step.

In the following, we introduce the core RL algorithms used

by the IVS Selector.

III. CORE ALGORITHMS

A. Discounted-UCB (D-UCB) for Non-stationary MAB

The problem of dynamically learning and choosing IVS in

real time according to time-varying network conditions can

be modelled as the non-stationary multi-armed bandit (MAB)

problem [17], where the bandit facing K arms needs to decide

which arm to play when the environment may change (i.e., the

distribution of rewards may change) over time. This model is

consistent with our situation where the network conditions

may change over time (for both paths from the origin to

the edge and from the edge to the end users). We modify

Discounted-UCB (D-UCB) [17], a variant of UCB (Upper

Confidence Bound) algorithm, to solve this problem. For the

paper to be self-contained, we introduce the details of D-UCB.

The D-UCB algorithm can adapt to the QoE drift of the live

streaming, since it automatically gives higher weight to more

recent measurements by exponentially discounting historical

measurements with a discount factor [15], [17]. The details

of D-UCB are shown in Algorithm 1, where T → ∞. At

each time t, the bandit chooses an arm It ∈ {1, · · · ,K} with

the highest instantaneous expected reward X̄t(γ, i) + ct(γ, i),
where X̄t(γ, i) (shown in Equation (1a)) is the discounted

empirical average of the observed rewards, and γ ∈ (0, 1) is

a discount factor to control the algorithm’s preference degree

for the recent measurements. The smaller the γ, the higher

discount rate on the historical measurements, therefore the

higher weight on recent measurements. Xs(i) denotes the

instantaneous reward of arm i at time s.

X̄t(γ, i) =
1

Nt(γ, i)

t∑
s=1

γt−sXs(i)�{Is=i} (1a)

Nt(γ, i) =

t∑
s=1

γt−s
�{Is=i}, (1b)

�{Is=i} =

{
1 , if Is = i,

0 , otherwise.
(1c)

ct(γ, i) is the discounted padding function, which is defined

as follows:

ct(γ, i) = 2B

√
ξ log nt(γ)

Nt(γ, i)
, nt(γ) =

K∑
i=1

Nt(γ, i), (2)

where B is the upper bound on the rewards and ξ > 0 is

a parameter to control the probability of exploration. When

an arm is frequently used in the past, its padding function

gets smaller than the other arms, so that the other arms get a

chance of being explored [14].

Algorithm 1: Discounted UCB

1 for t from 1 to K, play arm It = t;
2 for t from K + 1 to T do
3 play arm It = argmax

1≤i≤K
X̄t(γ, i) + ct(γ, i).

B. Tailored D-UCB Algorithm

The D-UCB shown in Algorithm 1 needs to keep all the his-

torical rewards (i.e., Xs(i), ∀s ∈ {1, · · · , t}, i ∈ {1, · · · ,K})

to calculate X̄t(γ, i) and ct(γ, i) for each time step, which

may result in high computational overhead. Considering the

limited resource of edge server and high traffic volume of live

streaming, we need to tailor the D-UCB algorithm to solve our

problem more efficiently.

Let X̂t(γ, i) :=
∑t

s=1 γ
t−sXs(i)�Is=i. We have

X̄t(γ, i) = X̂t(γ,i)
Nt(γ,i)

. Instead of recalculating X̂t(γ, i) and

Nt(γ, i) with the historical rewards each time, the calculations

could be completed easily using their previous states, i.e.,
Nt(γ, i) = γΔi(t) ×Nr(γ, i) + �{It=i}, (3a)

X̂t(γ, i) = γΔi(t) × X̂r(γ, i) +Xt(i)�{It=i}, (3b)

where r is the last time (before t) that arm i was se-

lected and Δi(t) = t − r. For a given γ and time t,
we represent the Nt(γ, i) and X̂t(γ, i) of all arms in the

format of vector, i.e., N = [Nt(γ, 1), · · · , Nt(γ,K)] and

X = [X̂t(γ, 1), · · · , X̂t(γ,K)], to allow easy updates on

X̄t(γ, i) and ct(γ, i). Then the instantaneous expected rewards

for all the arms at time t can be computed as:

R := X �N + 2B((ξ log ‖N‖1)N◦−1)◦
1
2 (4)

where � and ◦ denote the entrywise division and power opera-

tion, respectively. The details of the tailored D-UCB is shown

in Algorithm 2, where ei denotes (0, · · · , 0, 1, 0, · · · , 0) where

the ith element is 1 and all other elements are 0.

Algorithm 2: Tailored D-UCB

1 X = N = R = 0 ∈ R
K

2 for t from 1 to T do
3 play arm It = t (If t ≤ K)

4 play arm It = argmax
1≤i≤K

R (Otherwise)

5 Xt(i) ← Get the reward of It, i ← It
6 X = γX +Xt(i)ei, N = γN + ei
7 calculate R (refer to Equation (4))

C. Definition of Reward Function

In order to use RL to dynamically select the best IVS to

optimize QoE, we need to define the metrics that measure

the QoE of live viewers. While QoE may be measured in

many different angles and there is no consensus on the QoE

metrics, we use the most-adopted ones for QoE evaluation in

live streaming [18], [19], including:

• General latency (gl): the delay time that the viewer’s

playback is behind the video source’s live production

progress.

• Startup latency (sl): the delay between the time when

the user sends the first request and the time when the

playback starts.

• Buffering time (bt): the total time of playback stalls

experienced by the live viewer.

-M N10-1

Edge cached segments
Segments not yet
cached in edge

12K

Arm

345

'N'M

Fig. 3. Illustration of arm definition for RL.

The above three metrics together are sufficient to describe

the QoE of live viewers. In addition, these metrics are closely

related to the IVS selection: A high startup latency is normally

caused by the cache miss of the first requested segment (IVS)

in the edge server; a high general latency is mainly caused by

a too conservative IVS (i.e., segment far away from the end

of original playlist); a long buffering duration is mainly due

to a too aggressive IVS (i.e., segment too close to the end of

original playlist). Combining all the above three metrics, our

reward function is given in Equation (5), where α+β+δ = 1
and 0 ≤ Xt(i) ≤ 1.

Xt(i) = 1− (α ∗ slt(i)

slmax
+ β ∗ glt(i)

glmax
+ δ ∗ btt(i)

btmax
). (5)

In reward function (5), slt(i), glt(i), and btt(i) denote the

startup latency, general latency, and buffering time of arm i
at time t, respectively. Accordingly, slmax, glmax and btmax

denotes the maximum startup latency, the maximum general

latency, and the maximum buffering time observed in the

history, respectively. α, β and δ are the weight factors of the

three different QoE metrics. In practice, since different live

video providers may emphasize different QoE metrics (e.g.,

streaming of live events may favor lower general latency),

they could customize this reward function by using different

values of scale factors (i.e., α, β and δ).

D. Definition of Arms

The D-UCB algorithm requires a decision arm space with

discrete values, which is in accord with our problem with

discrete video segment choices. An intuitive idea is to define

an arm as the gap between a certain segment and the last

segment (in the current playlist). However, this would lead to

the problem raised as Challenge 1 in § I.

To solve this problem, we define the arms by considering
the real-time position of video segments in the edge cache
instead of their position in the playlist. Fig. 3 shows the

general caching status of a live stream at an arbitrary time

instant, where each video segment is denoted by a square (the

closer to the right, the newer the segment). Video segments

that have already been cached in the edge are marked by the

red box, and the segments that have been generated (shown in

the playlist) but have not been cached in the edge server are

marked by the green box. To ease illustration, we label the

segments from −M to N , where −M and N correspond to

the oldest segment cached in the edge and the newest segment

shown in the playlist file, respectively, and 0 refers to the

TABLE I
HTTP REQUEST & RESPONSE DATA

Metrics Description

Request Processing
Time (rpt)

Time elapsed from when the edge receives
the first byte of request until the last byte of
response is acknowledged by the client

Upstream Response
Time (urt)

Time elapsed from when the edge establishes
a connection to an upstream server until it
receives the last byte of the response body

Segment Size (ss) Size of the requested segment

Round Trip Time (rtt) Smoothed round-trip time (srtt) between the
edge and the client

Response Finish Time
(rft)

Local time when the last byte of response is
acknowledged by the client

Caching Status Segment request HIT or MISS at the edge
cache

newest segment currently in the edge cache. Note that since

edge caching is a dynamic process triggered by user requests,

M and N are dynamic (non-negative) values during the whole

streaming process.

We then select a fixed, sufficiently large segment interval

[M ′, N ′] such that [−M,N] ∈ [−M ′, N ′] holds all the time.

Based on the new interval, we could setup a one-to-one map-

ping between the arm set {1, · · · ,K} and {−M ′, · · · , N ′},

as shown in Fig. 3, where K = M ′ + N ′ + 1. Therefore,

whenever an IVS choice (It ∈ {1, · · · ,K}) is given by RL,

Playlist Manager first uses the above mapping to find the

corresponding video segment in the playlist, then modifies

the playlist file accordingly.

IV. IMPLEMENTATION OF KEY COMPONENTS

A. QoE Collector

To measure the QoE metrics from the edge side, QoE
Collector collects the performance data of HTTP interactions

of each live session from Nginx, as shown in Table I, all

of which can be tracked during the interaction process for

each HTTP request. It then calculates QoE metrics, the startup

latency, buffering time, and general latency, using the collected

information.

1) Startup Latency (sl): Fig. 4 shows the basic HTTP

interactions between the edge and the client. Let l and s denote

the request for playlist file and IVS, respectively. Based on the

Caching Status of each HTTP requests (shown in Table I),

Rldish measures the startup latency of each live video session

as follows.

When an IVS request misses the edge cache,

sl :=
t4 − t3
ss

∗ s̄s+ (t3 − t1), (6)

where ss and s̄s are the size of IVS and the average video

segment size of this live stream, respectively, and t1, t3, t4 are

calculated with the performance data collected (refer to Table I

and Fig. 4) by t1 = rftl − rtt − rptl, t3 = t2 + urts(t2 =
rfts − rtt − rpts), and t4 = rfts − rtt, respectively. Note

that (t4− t3) is the IVS transmission time, and (t3− t1) is the

sum of the other startup time excluding the IVS transmission

time.

It is worth mentioning that even for the same live stream

(with the same bitrate), the sizes of generated video seg-

ments (with the same playback duration) are not exactly the

same. Different sizes of IVS generally bring different segment

transmission time, which implies different startup latency and

different rewards. Our reward function implicitly considers the

impact of different IVS sizes on RL by normalizing the video

transmission time in (6).

When an IVS request hits the edge cache, urts becomes

(nearly) 0 and the startup latency could be calculated by
(t4−t2)

ss ∗ s̄s + (t2 − t1) instead. Note that we use t1 as

the request starting time to calculate startup latency without

including the time for (local) TCP connection establishment

between the edge and the client. This is because: i) the con-

nection establishment time is irrelevant to the arm selection,

and ii) the time is much shorter than the IVS transmission

time.

Origin server Edge server Client

surt

t 1

t 2

t 3

t 4

srpt rtt

lrpt

Fig. 4. Illustration of HTTP interactions of live streaming between the client
and the edge server.

2) Buffering Time (bt): To calculate the buffering time of

a live viewer, we collect the rft of all video segment requests

during a certain time period from the beginning of the live

session. The total buffering time could be derived as follows:

bt =
N∑
i=2

max{rfti − rpti, 0}, (7)

where rfti is the response finish time of ith video segment

and rpti denotes the playback start time of ith segment (the

time when the playback of (i − 1)th segment is finished).

If we use pti−1 to denote the real playback start time of

(i − 1)th segment, then we have rpti = pti−1 + sd, where

sd is the segment (playback) duration. We can calculate

pti−1, recursively, with pti−1 = max{rpti−1, rfti−1}. Note

that when i = 2, pti−1 is the startup latency sl, and the

corresponding rpti−1 is 0 (no startup latency). In this recursive

way, we can obtain the total buffering time.

3) General Latency (gl): The general latency of a live

session is defined as the segment duration time multiplied by

the number of segments between IVS and the newest segment

in the playlist when a user sends her first request. This metric

can be easily calculated since all the related values are readily

available. Note that in a given live stream, while the segments

may have different sizes, their duration time is all the same

(e.g., each segment lasts for 5 seconds).

B. Playlist Manager

The Playlist Manager generates the final playlist files that

will be accessed by clients, and it needs to communicate

with multiple units to accomplish that function. To reduce

the overhead, the playlist file of a live stream is not generated

individually for each new request. Instead, there are only three
types of events in our system that can trigger the update

of playlist file of a live stream: i) RL module provides a

new choice (different from previous one) of IVS of the live

stream, ii) a fresh new playlist file with the description of

new segments is obtained from the origin server, and iii) new

segments of the live stream are cached in the edge server.

Arm: 6

 #ARM: 06
 #EXTINF:10,
 3340/seg-89.ts
 #EXTINF:10,
 3340/seg-90.ts
 #EXTINF:10,
 3340/seg-91.ts

Updated
playlist

Newest segment cached in
edge: seg-90.ts (N=2222)

Coordinate: -1

 #EXTINF:10,
 3340/seg-89.ts
 #EXTINF:10,
 3340/seg-90.ts
 #EXTINF:10,
 3340/seg-91.ts
 #EXTINF:10,
 3340/seg-92.ts

Original
playlist

IVS: seg-89.ts

{ , , } { ', , '}1 K N M, } { ', , '}, } { '{ ', ,
(N' = 4) ()N 2

Fig. 5. Example of playlist file update procedure.

The first two types of events are controlled by Rldish itself,

while the last type of events (i.e., edge caching) is managed

by the Nginx server. To know exactly the edge caching status,

the Playlist Manager monitors the edge cache in real time to

find if new cache files have been generated and which video

segments are in the cache files.

Using HLS protocol as the example, Fig. 5 shows an

example on how to update the playlist file, where arm 6 given

by RL will first be directed to video segment 89th. Then we

remove the information of segment 92th from the original

playlist so that the HLS client will play segment 89th as

the IVS to start the live streaming. Note that the information

of 90th and 91th could also be eliminated from the updated

playlist in this example. Also note that the HLS client by

default starts the playback from fragment N − 2, N being

the last segment of the live playlist [13]. Thus, segment 90th

would be played as the IVS if the playlist is not updated by

the Playlist Manager
We add a new tag #ARM in the updated playlist to mark the

arm selection of each playlist file during the whole streaming

process. The QoE Collector module will then obtain the value

of this tag from the HTTP response to know the arm selection

of each live session (persistent HTTP connection used), i.e.,

the mapping between arm selections and their corresponding

QoE rewards, as introduced in § III-C and § III-D.

V. PERFORMANCE EVALUATION

A. Experimental Setup

Clients & servers setup: We use HLS as the streaming

protocol in our experiment. Based on the well-known hls.js

(version 0.12.4) library [20], we implement the HTTP live

streaming client relying on HTML5 video. Our client adopts

the default HLS configuration which proactively buffers the

future video segments when the duration of total buffered

segments is less than 30 seconds or the total buffered segment

size is less than 60 MB. The client runs on a Google Chrome

browser (version 75) on top of Windows PCs.

The edge cache server is deployed on a local data center in

Hong Kong with an average 8 ms RTT to our client machines.

The bandwidth for a single segment download is set to 64
Mbps, which is in accord with general download speed from

a local CDN edge server. It runs Nginx (version 1.9.9) as

the HTTP reverse proxy. Rldish is implemented and deployed

as a Docker [21] container on this edge server. Using the RL

algorithm introduced in § III, it accesses the QoE observations

from Nginx and provides a revised playlist file to the Nginx

through shared volume mounted from the host machine.

Since in practice the origin server managed by the content

providers could be in different locations, we create 3 VM

instances, located at East Coast North America, West Coast

North America, and Japan, respectively, to serve as the origin

streaming servers. The first two instances are launched on East

Cloud and Arbutus Cloud of Compute Canada, respectively,

and the third VM in Tokyo is launched via Google Cloud. The

average RTTs from our edge server to the 3 VMs are 234 ms,

156 ms, and 52 ms, respectively. Each VM runs the system

of Ubuntu 18.04 with kernel 4.15.0-34 as well as an Apache

HTTP web server.

Live video setup: To generate the source of live video

streaming, we use FFmpeg [22] to convert a local 2K High

Frame Rate (HFR) video file (MP4 format) into 3 HLS live

source with average bitrates 24 Mbps (2K HFR), 16 Mbps

(2K standard), and 8 Mbps (1080P), respectively. Each live

source is further generated into two HLS streams with a video

segment length of 5 seconds and 10 seconds, respectively. We

deploy the video segments of the 6 HLS streams (i.e., stream

with quality 2K HFR, 2K standard and 1080p with segment

length 5s and 10s respectively) onto each of the above-

mentioned 3 origin servers. Then for each stream, we create a

background process (in each of the VM), which periodically

(every 5 or 10 seconds) generates a new HLS playlist file

according to the normal segment playback sequence (i.e.,

updating the playlist file by adding new segment information

into it). The streaming process at the origin server is repeated,

once it reaches the last segment of a video.

Test scenarios: To evaluate the performance of Rldish and

other schemes, we set up multiple HLS clients. Each client

joins a live stream by first sending the HTTP request to

HTTP proxy server in the edge (in practice, DNS CNAME

redirection is commonly used to accomplish this procedure).

It then plays the live video for 2 minutes. The QoE data of

the live viewers are collected during this period.

To evaluate the performance of Rldish under changing

network conditions, we manually set up the streaming servers

to limit the segment download throughput for a single request.

When conducting our experiment on a given live stream, we

setup the backhaul network throughput range from 1/3 the

stream bitrate to the stream bitrate. Refer to Fig. 8 for more

details on the throughput setting. For a given throughput, each

of the clients repeatedly joins the live streaming and plays the

video 30 times based on the real-time IVS decisions made by

Rldish. The network throughput then changes to another value

within the range, to evaluate if Rldish could quickly react to

the network condition change. In order to collect sufficient

QoE observations to evaluate the performance of Rldish, our

HLS clients join each of the live streams broadcast by each

of our streaming servers (18 live streams in total).

B. Evaluation Methodology

We evaluate the performance of Rldish and compare it with

that of two other schemes:

ETHLE: this scheme was proposed in [12], which calcu-

lates the IVS choice (x) based on the following inequality:

argmin
x

x ≥ 1

lseg
(dstartup +

sseg − thstartup

bwmax
), (8)

where lseg and sseg are the duration and size of a single video

segment, respectively, dstartup and thstartup are the duration

and total number of bytes transferred in the slow start period

of TCP, respectively. bwmax is the bottleneck bandwidth of

the backhaul link. We assume this scheme has the complete

network throughput information (i.e., our backhual throughput

setting) without using the estimation method. Refer to [12] for

more details of the algorithm.

E2E: this scheme serves the live viewers via the CDN edge

server directly. It does not adopt dynamic IVS selection at the

edge, and the client adopts the default HLS setting which

starts the playback from segment N − 2, where N is the last

fragment of the live playlist.

For comparison, we also provide the results for the offline
optimal scheme, which makes an offline selection on an

IVS with the highest average QoE (based on our former

experiments) under the current network condition. It has the

complete network throughput information and thus represents

the best performance that Rldish and other methods can

possibly achieve. To ease analysis, the performance data (i.e.,

the QoE of viewers) are collected at the edge directly using the

methods introduced in § IV. It is worth mentioning that with

Chrome DevTools, we validated that the QoE data collected

at the browser side are pretty close to those collected at the

edge.

C. QoE Criteria

There are well-defined metrics for the QoE of live viewers,

which have been studied in [18], [19]. The QoE metrics

considered in these work generally include startup latency,

buffering ratio/time, playback delay (general latency), and

(a) QoEvs for 5s segment. (b) QoEpg for 5s segment. (c) QoEvs for 10s segment. (d) QoEpg for 10s segment.

Fig. 6. The average performance on QoE of Rldish and other schemes for all live streams. The results are normalized and weighted based on the QoE criteria
used. Refer to the error bars of Fig. 8 for the QoE distributions of Rldish.

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

2K HFR

N
.A

. E
as

t
Ja

pa
n

E2E Offline optimal ETHLE RLDISH

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

2K Standard

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

1080p

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

(a) Stream of 5s segment

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

2K HFR

N
.A

. E
as

t
Ja

pa
n

E2E Offline optimal ETHLE RLDISH

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

2K Standard

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

1080p

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F
0 0.5 1

Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

0 0.5 1
Average QoE

0

0.2

0.4

0.6

0.8

1

C
D

F

(b) Stream of 10s segment

Fig. 7. CDF results of QoEvs of live viewers for Rldish and other schemes with streaming severs located in North America and Japan respectively.

rate of bitrate fluctuation. Since the bitrate decrease generally

means QoE deterioration [23], this QoE deterioration can be

roughly reflected by the total buffering time. Therefore, we

consider startup latency (sl), total buffering time (bt), and

general latency (gl) as defined in Section III-C.
(1) QoEvs: this QoE criterion favors low video buffering

time by assigning a high weight to the live streaming with a

low buffering time. It focuses on visual comfort of viewers.

In our experiments, the weights of sl, gl, and bt in this QoE

criterion are set to α = 10%, β = 30% and δ = 60%,

respectively.
(2) QoEpg: this QoE criterion favors low general latency

(i.e., the progress of playback). It gives a high weight to the

streaming with low general latency and thus focuses more

on the timeliness of live streaming. Note that while QoEpg

values more on general latency, it does not necessarily mean

that live viewers have to experience playback stalls during the

watching process. Actually, the playback stalls can be avoided

by adapting to a lower bitrate. In our experiments, the weights

of sl, gl, and bt in this QoE criterion are set to α = 10%,

β = 60% and δ = 30%, respectively.

Remark 1. It is more illustrative to use a higher QoE score to
mean better QoE. Since the lower values in startup latency,
general latency, and total buffering time mean better QoE,
we use the following equation to transform a metric to a
(normalized and weighted) QoE score:

QoE(m) = 1− w ∗ mob

mmax
, (9)

where m denotes a QoE metric (i.e., startup latency, general
latency, or total buffering time), mob is the observed value of
m and mmax is the historical worst value of m, w denotes
the weight of metric m. With this transform, a higher QoE
score means a better performance. All experimental results
in the latter figures use the above transform.

D. Performance Evaluation

1) Overall Performance: The average QoE for a certain

segment length of each scheme (180 runs over 9 live streams,

1620 runs in total) is given in Fig. 6, where two QoE criteria

QoEvs and QoEpg are considered. The figure shows the

detailed QoE scores of all the schemes with the weighted score

on each QoE metric. In the case of live stream with segments

of 5 seconds, Rldish improves ETHLE by 14.2% and 16.5%
w.r.t. QoEvs and QoEpg , respectively, and improves E2E by

35.9% and 9.8% w.r.t. QoEvs and QoEpg , respectively. In

the case of live stream with segments of 10 seconds, Rldish
improves ETHLE by 10.3% and 22.8% w.r.t. QoEvs and

QoEpg , respectively, and improves E2E by 26.5% and 11.2%
w.r.t. QoEvs and QoEpg , respectively.

Recall that QoEvs favors low buffering time. Rldish under

this QoE criterion sacrifices slightly on the general latency (by

using a relative conservative IVS) in order to guarantee lower

buffering time for the viewer. With QoEpg , Rldish improves

its performance on general latency while the performance on

buffering time is degraded. The service provider can adjust

8 12 16 20 24
Backhaul throughput: Mbps

20

40

60

80

100

Av
g.

 Q
oE

 (%
)

2K HFR

RLDISH
ETHLE
E2E

3 4 5 6 7 8
Backhaul throughput: Mbps

20

40

60

80

100

Av
g.

 Q
oE

 (%
)

1080P

RLDISH
ETHLE
E2E

4 6 8 10 12 14
Backhaul throughput: Mbps

20

40

60

80

100

Av
g.

 Q
oE

 (%
)

2K Standard

RLDISH
ETHLE
E2E

Fig. 8. The average QoEvs of different schemes under different network throughput using the dataset N.A. West VM as the streaming server

the weights of different QoE metrics in the reward function

to satisfy different QoE objectives.

Since ETHLE and E2E schemes could not adapt to different

QoE objectives, their detailed QoE metrics (e.g., buffering

time) should remain the same for the two QoE criteria cases.

However, Fig. 6 shows a performance deterioration on QoE

scores for the two schemes from QoEvs to QoEpg . This is

because the QoE scores could get worse when the same

latency value is multiplied by a higher weight (refer to (9)).

Fig. 7 provides more detailed QoEvs results in the form of

CDFs for each live stream. Since the QoE results do not show

too much difference between the streaming servers located in

North America (N.A.) West and N.A. East, only N.A. East

results are shown in this figure.

There are two key takeaways from Fig. 7. First, Rldish
provides the majority of live viewers with the QoE score at

around 75%− 80% (We can see a sharp increase during that

range in the CDF). By conducting deep analysis on the QoE

data from our experiments, we find that these QoE values are

mainly contributed by the IVS selections at a critical point:

these are the IVS choices which reach a good balance in

buffering time and general latency for the viewer. At the

critical point, Rldish should not use a newer segment as the

IVS since that will lead to the punishments on playback stalls.

These IVS selections normally lead to small buffering time

(close to zero) and similar general latency. Since they are

usually the newest video segment in the edge server (IVS just

hits the edge cache), their startup latency is also pretty small.

Second, Rldish may generate a small fraction of poor deci-

sions. It has overall around 5% of total viewer’s QoE in the

range of 20% to 50% according to CDF. These poor decisions

are mainly caused by the exploration choices of RL including

the startup explorations. This problem could be alleviated,

since startup explorations of RL could be accomplished by

pre-testing clients (machines) located near the edge server.

Fig. 8 breaks down the QoE scores of all schemes under

different throughput of backhaul network. Despite a relatively

high standard deviation on QoE scores during the startup

phase of RL (shown with error bars), Rldish outperforms the

other schemes when backhaul network throughput is low.

VI. RELATED WORK

Related work can be primarily grouped into two categories:

QoE enhancement via bitrate adaption and network throughput

prediction, and optimization of IVS selections. In the first

category, research efforts have been devoted to adaptive live

streaming algorithms. In [24], Bruneau-Queyreix et al. pro-

posed a prototype of a hybrid P2P/multi-server video quality-

adaptive streaming solution, which simultaneously uses multi-

ple servers and peers to enhance the QoE of live viewers with

expanded bandwidth and link diversity. Aiming at satisfying

live viewers’ personalized QoE, Wang et al. [25] proposed a

reinforcement learning-based solution to automatically learn

the transcoding selections so that the backhaul bandwidth

could be saved. To reduce the general latency of live videos,

the authors in [26] proposed an adaptation bitrate algorithm

for HTTP-based live streaming by conducting TCP throughput

prediction. The research of QoE optimization of live videos

has also been conducted in [27], [7] and [28].

In the second category, Ge et al. [12] improved the QoE

of live viewers by holding a minimum number of video

segments at the edge server such that the clients can select

the optimal IVS to best match their network throughput. While

this work has shown decent QoE improvement, it may have

two pitfalls. First, it relies on the per-user based network

throughput estimation to derive the optimal IVS values, which

may lead to high computational overhead. Second, this scheme

may not quickly react to network throughput changes.

VII. CONCLUSION

By designing, implementing, and evaluating Rldish, this

paper tackled the technical challenges in applying RL to IVS
selection of HTTP-based live streaming to improve the QoE

of live viewers. Compared with the state-of-the-art solutions,

Rldish is lightweight and completely transparent to both the

clients and the streaming server. More importantly, Rldish
solved three critical difficulties of using RL in this specific

application context, and enhanced the existing D-UCB RL

algorithm for the special needs of Rldish. We deployed Rldish
as a virtualized network function (VNF) in a real HTTP

cache server, and performed extensive real-world experiments

to evaluate its performance. The evaluation results show that

Rldish improves the state-of-the-art IVS selection scheme w.r.t.

the average QoE of live viewers by 10% to 22%.

ACKNOWLEDGMENT

This work was supported in part by Mitacs (No.

FR36061), Natural Sciences and Engineering Research Coun-

cil of Canada (NSERC) (No. RGPIN-2018-03896), Hong

Kong General Research Fund under project 11216618, Na-

tional Natural Science Foundation of China (No. 61802421,

61828202), and China Postdoctoral Science Foundation (No.

2019M663017).

REFERENCES

[1] Cisco, “Global mobile data traffic forecast update, 2015–2020,” White
Paper, February, vol. 3, 2016.

[2] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang,
“Practical, real-time centralized control for cdn-based live video deliv-
ery,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4,
pp. 311–324, 2015.

[3] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM). ACM, 2017, pp.
197–210.

[4] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y.
Zomaya, “Secure and sustainable load balancing of edge data centers
in fog computing,” IEEE Communications Magazine, vol. 56, no. 5, pp.
60–65, 2018.

[5] F. Larumbe and A. Mathur, “Under the hood: Broadcasting live video
to millions,” https://code.fb.com/ios/under-the-hood-broadcasting-live-
video-to-millions/.

[6] C. Ge, N. Wang, G. Foster, and M. Wilson, “Toward qoe-assured 4k
video-on-demand delivery through mobile edge virtualization with adap-
tive prefetching,” IEEE Transactions on Multimedia (TMM), vol. 19,
no. 10, pp. 2222–2237, 2017.

[7] A. Detti, B. Ricci, and N. Blefari-Melazzi, “Tracker-assisted rate adap-
tation for mpeg dash live streaming,” in IEEE International Conference
on Computer Communications (INFOCOM). IEEE, 2016, pp. 1–9.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4. ACM,
2015, pp. 325–338.

[9] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and
B. Sinopoli, “Cs2p: Improving video bitrate selection and adaptation
with data-driven throughput prediction,” in Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 2016, pp. 272–285.

[10] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V. Sekar, I. Stoica,
and H. Zhang, “Understanding the impact of video quality on user
engagement,” Communications of the ACM, vol. 56, no. 3, pp. 91–99,
2013.

[11] S. S. Krishnan and R. K. Sitaraman, “Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs,”
IEEE/ACM Transactions on Networking (TON), vol. 21, no. 6, pp. 2001–
2014, 2013.

[12] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “Qoe-assured 4k http
live streaming via transient segment holding at mobile edge,” IEEE
Journal on Selected Areas in Communications (JSAC), vol. 36, no. 8,
pp. 1816–1830, 2018.

[13] J. Roger Pantos, William May, “RFC 8216: HTTP Live Streaming,”
https://tools.ietf.org/html/rfc8216.

[14] X. Nie, Y. Zhao, D. Pei, G. Chen, K. Sui, and J. Zhang, “Reducing web
latency through dynamically setting tcp initial window with reinforce-
ment learning,” in Quality of Service (IWQoS), 2018 IEEE/ACM 26th
International Symposium on. IEEE, 2018.

[15] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling data-driven
quality of experience optimization using group-based exploration-
exploitation,” in 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 17), 2017, pp. 393–406.

[16] T. Mauro, “Why Netflix Chose NGINX as the Heart of Its CDN,”
https://www.nginx.com/blog/why-netflix-chose-nginx-as-the-heart-of-
its-cdn/.

[17] A. Garivier and E. Moulines, “On upper-confidence bound policies for
switching bandit problems,” in International Conference on Algorithmic
Learning Theory (ALT). Springer, 2011, pp. 174–188.

[18] A. Ahmed, Z. Shafiq, and A. Khakpour, “Qoe analysis of a large-
scale live video streaming event,” ACM SIGMETRICS Performance
Evaluation Review, vol. 44, no. 1, pp. 395–396, 2016.

[19] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A survey on quality of experience of http adaptive streaming,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2014.

[20] “hls.js,” https://github.com/video-dev/hls.js/.
[21] “Docker,” https://www.docker.com/.
[22] “FFmpeg,” https://ffmpeg.org/.
[23] S. Tavakoli, S. Egger, M. Seufert, R. Schatz, K. Brunnström, and N. Gar-

cia, “Perceptual quality of http adaptive streaming strategies: Cross-
experimental analysis of multi-laboratory and crowdsourced subjective
studies,” IEEE Journal on Selected Areas in Communications (JSAC),
vol. 34, no. 8, pp. 2141–2153, 2016.

[24] J. Bruneau-Queyreix, M. Lacaud, and D. Négru, “A hybrid p2p/multi-
server quality-adaptive live-streaming solution enhancing end-user’s
qoe,” in Proceedings of the 25th ACM International Conference on
Multimedia. ACM, 2017, pp. 1261–1262.

[25] F. Wang, C. Zhang, J. Liu, Y. Zhu, H. Pang, L. Sun et al., “Intel-
ligent edge-assisted crowdcast with deep reinforcement learning for
personalized qoe,” in IEEE International Conference on Computer
Communications (INFOCOM). IEEE, 2019, pp. 910–918.

[26] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, “Qoe-based low-delay live
streaming using throughput predictions,” ACM Transactions on Mul-
timedia Computing, Communications, and Applications (TOMCCAP),
vol. 13, no. 1, p. 4, 2017.

[27] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation of
bitrate adaptation methods for http live streaming,” IEEE Journal on
Selected Areas in Communications (JSAC), vol. 32, no. 4, pp. 693–705,
2014.

[28] R. Huysegems, J. Van Der Hooft, T. Bostoen, P. Rondao Alface,
S. Petrangeli, T. Wauters, and F. De Turck, “Http/2-based methods to
improve the live experience of adaptive streaming,” in Proceedings of
the 23rd ACM International Conference on Multimedia. ACM, 2015,
pp. 541–550.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

