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Abstract—The pervasive low-battery anxiety (LBA) among
modern mobile users has caused negative impacts on users’
emotion and health, and such anxiety may directly lead to loss
of customers in power-hungry applications, e.g., video streaming.
Despite its importance, LBA has not been thoroughly investigated
due to the difficulty in quantitatively measuring LBA. To fill
the gap, we present a quantitative model to measure the LBA
among mobile users and design a tailored mechanism to alleviate
it via display energy saving in video streaming. In specific, we
first conduct a large-scale user survey among 2000+ mobile
users and strategically extract an empirical LBA model that
captures the variation of user’s anxiety degree along with the
battery power draining. Then, by exploiting the emerging edge
computing paradigm, we propose LPVS, a novel solution for
low-power video streaming service at the network edge. It
aims to minimize the LBA of mobile users, by integrating the
extracted LBA model with the energy-saving image/video content
transforming techniques. The emulation results using real-world
video watching traces demonstrate that, LPVS can effectively
alleviate mobile users’ LBA and prolong the low-battery users’
video watching time (i.e., customer retention) by 39%.

I. INTRODUCTION

Background: Have you ever worried about the battery

power before your smartphone dies? Have you ever unwill-

ingly given up watching a video, just because of the low-

battery status of your smartphone? If your answer is “yes”,

most probably you are suffering from the “low-battery anxi-

ety” (LBA), i.e., the fear of losing mobile phone battery power,

especially when the battery level is low (say below 20%).

Believe it or not, ninety percent of mobile users showed the

LBA “symptoms”, according to an LG’s survey in 2016 [1].

Worse still, based on our survey over 2000+ mobile users in

2019, the ratio of LBA suffering reaches 91.88% (§ III).

Evidences have shown that LBA can bring wide impacts on

the behavior of mobile users. According to our survey, over

20% of the mobile audiences will drop video watching when

the battery life remains 20% and the dropping rate quickly
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Fig. 1. Energy consumption of different hardware components of a smart-
phone during video playback (data for LCD smartphone is from [9], and data
for OLED smartphone is estimated by comparing the power consumption of
OLED and that of LCD [10]).

rises to 50% when only 10% battery energy left. This suggests

that, saving mobile phone energy and prolonging its working

time can not only release the suffering of LBA but also help

customer retention in mobile video streaming services. For this

purpose, we need to quantitatively investigate LBA and treat

it as an important quality of experience (QoE) metric.

By looking into the power consumption splitting of the

mobile platform during video streaming, we have found that

the display module is the primary energy guzzler. As illustrated

in Fig. 1, LCD and OLED, the mainstreams for smartphone

displays, consume much higher energy than other components

during the video playback. Although a great deal of efforts

have been devoted to saving energy of the major components

of mobile phones, e.g., CPU [2], [3] and communication

module [4], [5], the energy consumption of the display has

attracted relatively less attention.

Pushed by recent industrial developments, the percentage

of energy consumption in displays may become even higher.

First, with continuous hardware upgrade, both the size and

resolution of mobile displays are increasing [6], making the

displays more power hungry. Second, 5G communications and

edge computing [7], [8] are around the corner. Together, they

promise the mobile users a much improved experience of (HD,

4K or 8K) video watching, with faster speed, more stable

connection, and lower latency than those of 4G networks.

This in turn will further boom the already popular mobile

video streaming services and lead to a much increased power

consumption of displays.

Opportunities: It has been found that different multimedia



contents, represented by RGB pixel values, have quite different

power dissipation on display (§ II-B for more details). This

observation directly leads to the design of power-efficient im-

age/video playing schemes using content transforming meth-

ods. With video transforming, a great portion of energy can

be saved with negligible video quality distortion for human

perception [11], [12]. While the image/video transforming can

save display energy, it incurs extra CPU/GPU computation cost

if performed on the mobile devices [11], [12]. Specifically,

the transforming is operated on a per-pixel basis and thus

computation intensive, especially for high-resolution display.

In consequence, the expected energy saving on mobile devices

can be offset or even negated.
The emerging edge computing paradigm is an efficient way

to interact with mobile devices at the network edge [13],

by providing time-sensitive mobile services with computation,

storage and bandwidth resources close to the end users. Com-

pared to remote cloud, edge computing is obviously a better

choice for performing video transforming, since (1) video

transforming depends on users’ device types, e.g., backlight

scaling for LCD and color transforming for OLED, and (2)

edge server is much closer to mobile users. By leveraging edge

computing for video transforming, we can save the display

energy of mobile devices without the transforming overhead.

We name such a refined service low-power video streaming
(LPVS), which could be provided as a value-added service by

the mobile service provider.
Challenges: There are two major challenges in the LPVS

design. First, precisely quantifying the low-battery anxiety of

mobile users is difficult and currently has no readily-available

references. As the anxiety of mobile users belongs to one of

the human feelings or emotions, it is not easy to measure

(with some existing metric) nor optimize as we wished. Thus,

without referred LBA metrics, how can we measure and model
the low-battery anxiety of mobile users in a quantitative way?
Second, due to limited computation resources at the edge

environment, the video streaming provider may not be able

to serve all but part of the audiences with video transforming.

Taking the Nokia AirFrame open edge server [14] for example

and referring to the video transcoding cost [15], one edge

server can only process video streaming for about one hundred

mobile devices simultaneously. Hence, under the resource

constraint, how can we choose the best subset of users to
reduce their LBA? To be specific, as most probably the LBA

is not linearly increased with the draining of battery power,

how can we accommodate the quantified low-battery anxiety
and choose the most cost-effective user groups for video
transforming?

Contributions: Addressing the above challenges, this is

the first paper that systematically and quantitatively investi-

gates the problem of alleviating LBA of mobile users. The

innovation is to use LBA as a critical performance metric to

guide video transforming at the edge. This paper includes the

following contributions:

• We conduct a large-scale survey over 2000+ mobile

users on low-battery anxiety, to model the quantitative

relationship between the mobile users’ anxiety degree

and the mobile devices’ battery status. This survey and

corresponding empirical conclusions provide strong real-

world evidences on the importance of this work.

• By incorporating the extracted quantitative model of

LBA, we propose a new solution tailored for low-power

video streaming, named LPVS, in which we explicitly

depict the scenario and systematically model the energy

saving and anxiety reduction by a joint optimization

problem. By analyzing the hardness of the optimization

problem, we further develop a two-phase heuristic method

to solve it using information compacting and Bayesian

inference.

• We develop the LPVS emulator and use a real-world

Twitch dataset to evaluate the performance of LPVS.

Extensive emulation results demonstrate that, with LPVS,

the overall mobile users can save their devices’ energy

by up to 37% (thus much reducing the LBA of mobile

users) and those low-battery users can prolong their video

watching time by 39%.

II. BACKGROUND AND RELATED WORK

A. Background of Low-Battery Anxiety

The anxiety caused by the low battery power of handheld

devices has been noticed for a long time. It was initially

investigated under the cover of nomophobia, which refers to

the fear of being without a smartphone. In 2016, the low-

battery anxiety was formally proposed mainly owning to an

LG’s survey among 2, 000 smartphone users in the US. The

survey found that ninety percent of the mobile users would

“feel panic” when their phone battery drops to 20 percent or

lower [1]. Since then, the low-battery anxiety, i.e., LBA, has

been widely known to the public.

LBA can bring widely and deeply negative impacts on

mobile users’ lives. According to the LG’s survey, one in three

people are likely to skip the gym, when it comes to choosing

between hitting the gym and charging their smartphones.

Furthermore, for those severely suffering from the LBA, it

can cause strange behaviors, e.g., head home immediately, ask

chargers from strangers, or secretly “borrow” other’s charger.

To be even worse, LBA is becoming the major trigger of

nomophobia, which is commonly treated as one type of mental

health problems.

Although LBA has shown negative effects upon mobile

users’ emotion, behavior and even health, it has not been

investigated thoroughly. To be specific, there is no prior work

measuring and quantifying LBA in a quantitative way, which

is one of the major tasks in this work.

B. Background of Display Power Saving

Modern smartphones are typically equipped with one of

the two display types: Liquid-Crystal Displays (LCD) or Or-

ganic Light-Emitting Diode (OLED) displays. The two types

of displays work differently and have quite different power

consumption characteristics.



TABLE I
REVIEW OF THE STATE-OF-THE-ART POWER SAVING STRATEGIES FOR

LCD AND OLED, RESPECTIVELY.

Type Applied Strategy Power Saving

LCD

quality adapted backlight scaling [18] 27%-42%

dynamic backlight scaling [19] 15%-49%

dynamic backlight luminance scaling [20] 20%-80%

brightness & contrast scaling [21] ≤ 50%

luminance dimming & compensation [22] 20%-38%

OLED

color and shape transforming [17] 25%-66%

color transforming and darkening [23] ≤ 60%

color transforming with constraints [12] ≤ 64%

pixel disabling & resolution scaling [24] ≤ 26%

image pixel scaling [25] 38%-42%

redundant subpixel shutoff [6] ≤ 21%

Average 13%-49%

1) Power Saving for LCD: The major power consumer of

LCD is its backlight, which illuminates the liquid crystals

of the display with various brightness levels. Its power con-

sumption can be quite different at different brightness levels.

Thus, by strategically scaling the backlight and regulating the

image luminance, the original image displayed by a LCD

can be rendered with much less energy and a distortion

negligible/tolerable for human perception [11]. Accordingly,

a broad spectrum of schemes based on backlight scaling (with

luminance compensation) have been proposed to cut down the

power consumption of LCD.

2) Power Saving for OLED: Compared to LCD, the OLED

display is not only thinner and lighter, but also can support up

to three orders of magnitude higher refresh rates [16]. For the

OLED display, different RGB color sub-pixels generate lights

with different energy efficiencies: the blue pixels consume

about twice the power of green ones, while the red in between

of the two [17]. Thus, the power consumption much relies on

the displayed colors (rather than the brightness). On the other

hand, the human visual system (HVS) has great perceptual

flexibility, thus can tolerate small color changes [17]. Accord-

ingly, various color transforming schemes have been developed

for saving energy of OLED displays.

We summarize existing strategies for display power saving

in Table I, for the LCD and OLED displays, respectively. Nev-

ertheless, these strategies are “pixel-wise”, i.e., they operate

on a per-pixel basis, which incurs a non-negligible overhead

for the mobile devices, especially those with high-resolution

displays [11], [12].

C. Work Related to This Paper

Since our work aims at offloading the computation intensive

image/video transforming from smartphones to edge servers

to keep users from worrying about quick battery drainage,

we only introduce the relevant work on proxy-based display

energy saving for video streaming.

In [18], by analyzing the characteristics of video streaming

services, the authors proposed a quality adapted backlight

scaling scheme for LCD energy saving during video playback

of handheld devices. In their prototype, a proxy server was

setup for video transforming and over 40% of the energy

saving was achieved. A similar idea was applied in the work

of [26], where the adaptation of video transforming was shifted

from the low-power device to a proxy middleware. In both

work, the proxy server is a testing platform designed for one

dedicated client device, which is different from our scenario

where the video streaming service is provided for a group of

users. Above all, neither of them takes the users’ low-battery

anxiety into consideration, which is another major difference

from our work.

III. LBA SURVEY AND MODELLING

A. Data Collection

To learn the impact of low-battery anxiety and establish a

quantitative model, we carefully designed an online survey

(refer to [27] for the detailed questionnaire) and continuously

collected the answers from mobile users for over three months.

At the end, we collected 2, 032 effective answers after data

cleansing. Refer to Table II in the Appendix for detailed

information regarding the participants.

Based on the survey data, it is surprising that 91.88% (1, 867
out of 2, 032) of the participants are suffering from the low-

battery anxiety, more or less. This is consistent with the LG

survey [1], but the percentage is even higher in our survey. It is

also interesting to see that nearly half of the mobile users will

give up watching an attractive video, once the battery level of

mobile phone drops below 10%. These findings provide direct

and strong support to the necessity of our work.

B. LBA Curve Extraction

In our elaborately designed questionnaire, one question

the participants need to answer is: At what battery level (in
percentage from 0 to 100%) will you charge your mobile
phone, when it is possible? The answers provide us with an

angle to infer at which energy level a user normally begins to

worry about the battery life, i.e., experience the low-battery

anxiety. Then, with all the collected answers, we are able to

extract the LBA curve model: the anxiety degree (caused by

the draining of battery power) vs. the battery energy status.

Specifically, a four-step procedure is conducted to obtain the

LBA curve from the raw data: (1) initialize 100 empty bins,

indicating the battery level from (almost) empty to full (i.e.,

[1, 100]); (2) for each answer, e.g., a (an integer in [1, 100]),
add one to each of the bins in [1, a]; (3) conduct (2) for

all the answers and obtain a declined discrete curve in the

region of [1, 100]; (4) normalize the 100 cumulative numbers

to the region of [0, 1], denoting the anxiety degree, we obtain

the LBA curve: anxiety degree vs. battery level. A similar

approach was also adopted in [28], to identify the commonly

used response time thresholds for service level objectives in

cloud service.

Following the above extraction process, the resulting LBA

curve from the surveyed 2, 032 users is shown in Fig. 2. From

the illustrated LBA curve, we can observe that:

• The anxiety degree does not linearly increase with the

decrease of energy level. If we use the linear function



Fig. 2. Extracted anxiety curve from the survey data of 2, 032 mobile users.

(the straight dashed line in Fig. 2) as a comparison, user’s

anxiety is a convex function of the energy level when the

energy level is in [20%, 100%], but is concave when the

energy level drops to [0, 20%].
• A sharp increase of anxiety can be observed when the

energy level drops to 20%. This is most probably caused

by the color change of battery icon (e.g., the icon’s

face color changes to yellow or red) and the low-battery

warning message.

C. Insights on LBA Alleviation

The non-linearity of the LBA curve indicates that, the user’s

sensitivity to the power draining (at different battery levels)

is heterogeneous. This also implies that, when choosing a

subset of mobile users for anxiety minimizing, following a

random user selection strategy cannot be optimal, as those are

currently not sensitive to the energy status may be selected

(thus resulting in less performance gain). Instead, the mobile

users that are sensitive to the battery power draining, e.g.,

those near the “sharp increase” area in Fig. 2, should be given

a higher priority. This is also how our optimization scheme

will take effect (§ IV-E).

Note that the extracted LBA curve was obtained with sur-

vey questions, with the assumption that participants’ answers

truthfully reflect their feelings and behaviors. This assumption

may be challenged, and an alternative method to avoid this

pitfall is to look into users’ real behaviors [29], [30], which

we leave as our future work.

IV. LPVS: LOW-POWER VIDEO STREAMING

A. Scenario Overview

As illustrated by Fig. 3, we assume the 5G mobile edge

computing (MEC) [7] platform consisting of 5G base stations,

edge servers, and CDN servers, where the 5G base stations and

edge servers are deployed at locations close to end users and

the CDN servers are located at the CDN Point of Presence

(PoP). There is a content delivery strategy between the edge

servers and the CDN servers [31], [32], which may prefetch

a certain amount of video content from the CDN servers

to the edge server, based on the (historical) video requests

from the mobile users. This content prefetch strategy provides

underlying support for and is independent of LPVS.

We assume that all the mobile devices within one region

(e.g., the covered area of a base station) form one virtual

Fig. 3. The procedure of LPVS within a virtual cluster at the edge.

cluster (VC), where they share the same edge server. Without

loss of generality, assume that one VC hosts N mobile devices.

We divide the time into slots of equal length (e.g., 5-minute

interval in our implementation as per Remark 1). LPVS needs

to make a (new) scheduling decision for video transforming at

the beginning of each time slot (scheduling points in Fig. 4).

Usually, a complete video is split into a number of small

chunks, but depending on different caching strategies [32], the

edge server might not have the whole video chunks and the

number of available video chunks may vary. For a video m,

assume that the currently available number of video chunks,

at the scheduling point, is Km. With the above notations, we

denote the video chunks played on device n in time slot t by

dn(t), 1 ≤ n ≤ N, t ≥ 1, with:

dn(t) := 〈V ID,CID1, . . . , CIDKm〉 (1)

in which V ID stands for the video ID and CIDi, i =
1, . . . ,Km, for the IDs of video chunks available for device

n at the beginning of time slot t.
Overall, at the scheduling point, LPVS should make deci-

sions on whether or not the edge server should perform video

transforming for certain users in the VC, to save display power

and alleviate their low-battery anxiety.

Remark 1. We ignore the scenario where a user switches
videos during one time slot. This omission is due to the
periodical scheduling used in LPVS. The interval time should
not be too small (e.g., in seconds) to avoid unnecessary
computational overhead at the edge server. The empirical
value of 5 minutes is used based on the facts that (1) battery
level should not drop too much during this time and (2) people
can tolerate a certain level of anxiety when battery level does
not drop too much. If a user switches videos during one time
slot, LPVS will keep the same decision (i.e., with or without
video transforming) for this user until next scheduling point.

B. Models for Power Consumption in Video Streaming

When a device plays a video, its power rate1 may fluctuate

up and down along with the played chunks, due to different

brightness levels (for the LCD) or different color distributions

1The power rate is defined as the energy consumption of the mobile device
in the time of playing one video chunk.



Fig. 4. Illustration of power rate estimating with the available video chunks
for three users’ mobile devices.

(for the OLED). When playing video m, we denote the power

rate on the n-th device for the κ-th chunk by pn,m(κ), 1 ≤
n ≤ N, 1 ≤ m ≤ M, 1 ≤ κ ≤ Km. Note that, given the

display’s specification (e.g., type, size, and resolution) and the

available video chunk κ, corresponding power rate pn,m(κ)
can be estimated with existing power models for LCD [20] or

OLED [17].

Also notice that, within one time slot, the requested video

chunks may be not all available (due to different prefetching

and buffering strategies), as illustrated for user 2 and user 3

in Fig. 4. Under such a situation, we only use the available

video chunks for the estimation of pn,m(κ).
By applying the video transforming (given in § II) on the

video dn(t), the power reduction ratio2 of a specific device n
during the time slot t can be represented as γn(dn(t)) (γn for

simplicity), where 0 < γn < 1.

Remark 2. About γn: The parameter represents an average
power saving ratio on device n achieved over a bunch of
video chunks during one time slot. Thus, it is not a fixed
value and can only be learnt after playing the transformed
video. We treat it as a random variable and update its value
with the Bayesian inference, in § V-D. In the following part
of modeling, we assume that we have already learnt the
knowledge of γn.

At the beginning of an arbitrary time slot t, due to limited

edge server capacity, LPVS may only choose a subset of

requested videos for transforming. We denote the decision

variable of whether to perform video transforming for the n-

th device during the entire time slot by xn, with xn = 1
indicating yes and xn = 0 otherwise. Thus, for the time slot

t, we have:

xn ∈ {0, 1}, ∀n. (2)

By determining the value of xn and referring to the knowl-

edge of pn,m(κ) and γn, we are able to infer the power rate

of device n when playing the κ-th chunk of video m by:

ψn,m(κ) = xn ·γn ·pn,m(κ)+(1−xn) ·pn,m(κ), ∀n, ∀κ. (3)

C. Models for Energy Status and Low-battery Anxiety

Another important information in LPVS is the energy status

of mobile devices, measured by the remaining energy of

battery. We denote the energy status of the n-th device at

the beginning of an arbitrary time slot by en,m(κ), where m

2The power reduction rate is defined by the ratio of a device’s power
consumption with and without video transforming during one time slot.

and κ are the video ID and the video chunk ID, respectively,

requested by the n-th device.

Before the edge server determines to transform a video

chunk requested by device n, the device should have sufficient

energy to power the device (otherwise the transforming has no

meaning). Hence, the following inequality should hold:

en,m(κ) ≥ xn · γn · pn,m(κ) ·Δκ, ∀n, ∀κ, (4)

where Δκ denotes the time length of current video chunk.

Thus, when xn = 0, i.e., the video chunks requested by device

n are not transformed, the above inequality takes no effect

(always holds), as en,m(κ) is non-negative.

Meanwhile, with the power rate of device n when playing

the κ-th chunk of video m (given by ψn,m(κ) in (3)), the

energy status of the device (before playing the next video

chunk κ+ 1) can be predicted by:

en,m(κ+1) = en,m(κ)−ψn,m(κ) ·Δκ, ∀n, 1 ≤ κ ≤ Km−1.
(5)

As we have mentioned, over 90% of the mobile users

are suffering from the low-battery anxiety [1] (the figure is

91.88% in our survey). Usually, the less the battery energy,

the higher the anxiety. Such relationship between the battery

energy status and the low-battery anxiety have been captured

by the anxiety curve shown in Fig. 2.

We use φ(·) to denote the empirical function reflecting

the anxiety degree of a user given the energy status of his

device. To be specific, for device n with the energy status of

en,m(κ), the anxiety degree of its owner can be estimated by

φ(en,m(κ)). As illustrated by Fig. 2, the anxiety degree of

a user is between 0 and 1, with energy status of her mobile

device between 100% and 0, correspondingly.

As have been reported, low-battery anxiety can poten-

tially have negative effect on user’s video watching behavior

(§ III-A). Thus, we believe that reducing user’s low-battery

anxiety is a critical aspect in improving the QoE of video

streaming service, which is one key feature of our LPVS.

D. Video Streaming Capacity at the Edge

For the video chunks requested by device n and to be trans-

formed at the edge during time slot t (i.e., dn(t)), the com-

puting resource that the video transforming needs is estimated

by g(dn(t)), where g(·) is the function reflecting the server’s

computing resource needed for video transforming. Similarly,

the storage resource that the video transforming consumes can

be estimated by h(dn(t)), where h(·) is a function for storage

space measuring during video transforming.

For the edge server attached to a VC, it usually has quite

limited computing and storage resources (e.g., the NOKIA or

Inspur edge server [14], [33]). We denote the extra computing

and storage resources available at the edge server to perform

video transforming by C and S, respectively. Then we have

the following two capacity constraints:

N∑
n=1

xn · g(dn(t)) ≤ C, (6)



N∑
n=1

xn · h(dn(t)) ≤ S. (7)

E. Joint Optimization for Energy Saving & Anxiety Reduction

Given the edge server capacity constraints, for each time

slot, our targets are i) to minimize the display energy con-

sumption of all the mobile devices during video playback, and

ii) to minimize the anxiety degree of all users simultaneously.

The problem can be formulated as:

min
x

N∑
n=1

Km∑
κ=1

(ψn,m(κ) + λ · φ(en,m(κ))) (8a)

s.t. (2) ∼ (7), (8b)

where λ is a regularization parameter that balances the two

targets, and Km is a constant representing the total number of

chunks processed by the video streaming server in one time

slot (for an arbitrary video m).

Remark 3. About λ: In practice of LPVS, the regularization
parameter λ should be determined or regulated by the video
streaming service providers, based on their own policies and
specific service-level agreements (SLAs) with the customers.
We will show how this parameter can affect the results, i.e.,
the energy saving and anxiety reduction, in § VII.

V. SOLUTION METHODOLOGY

A. The Difficulties

It is nontrivial to solve the joint optimization problem given

by (8), mainly due to three difficulties:

Difficulty-1: The device energy status (en,m(κ)) should be

predicted after playing each video chunk during the whole

time slot, for constraints (3), (4) and (5) and the objective

function. For instance, with the effect of κ, the energy status

update with (5) needs to be performed chunk by chunk. The

constraints and the objective function hence twist together,

making the optimization problem hard to solve.

Difficulty-2: The problem generally belongs to the integer

programming (as xn(t) is binary), while whether it is linear

or nonlinear solely depends on the function of φ(·) (i.e., the

anxiety curve) in the objective (8a). Referring to our extracted

anxiety curve in Fig. 2, the function is obviously not linear

and thus the problem we are facing belongs to the nonlinear

integer programming, which is normally intractable.

Difficulty-3: Different devices may have different power

reduction ratio γn, whose value is unknown in advance. As

we have mentioned, γn is not a fixed value and may vary

over different transformed videos. Hence, it causes a circular
argument: to solve the problem, we need the value of γn as one

of the inputs; on the other hand, we may have no information

about the value of γn before the problem is solved.

We tackle the above three difficulties with i) information

compacting, ii) a two-phase heuristic, and iii) Bayesian infer-

ence, respectively.

B. Information Compacting

We find that both the constraints and the objective can

be compacted in a way that i) κ is marginalized and ii)

the intermediate energy status (en,m(κ)) is eliminated. After

information compacting, we can transform the problem into a

neater form that renders an easy solution.

1) Information Compacting for the Constraints
First, we perform information compacting on the constraints

of (4) and (5), as only these two constraints relate to en,m(κ).
We first summarize over κ for the inequality of constraint (4):

Km∑
κ=1

en,m(κ) ≥ xnγn

Km∑
κ=1

pn,m(κ) (9)

Using (5), we rewrite the left-hand side of (9) as:

Km∑
κ=1

en,m(κ) (10a)

= en,m(1) + en,m(2) + · · ·+ en,m(Km) (10b)

= en,m(1) + (en,m(1)− ψn,m(1))+

+ (en,m(1)− ψn,m(1)− ψn,m(2)) + . . . (10c)

= Km · en,m(1)−
Km∑
κ=1

(Km − κ)ψn,m(κ) (10d)

Replacing the left-hand side of (9) with (10d), we have:

Km · en,m(1)−
Km∑
κ=1

(Km − κ)ψn,m(κ)

≥ xnγn

Km∑
κ=1

pn,m(κ). (11)

In constraint (11), for given values of the decision variables

xn, 1 ≤ n ≤ N , all the other parameters are easy to calculate:

• Km: the total number of video chunks delivered within

one time slot, which is a known constant for each

individual video;

• en,m(1): the initial energy status of each device at the

beginning of each time slot, which is reported at the

scheduling point by each device;

• pn,m(κ): the power rate of the device playing each chunk

(without transforming), which is known beforehand with

existing power models;

• ψn,m(κ): the power rate of the device playing each chunk

under the given value of decision variable xn, which can

be computed with the knowledge of pn,m(κ) (refer to the

definition in (3));

• γn: the power reduction ratio of each device after video

transforming, which can be estimated and updated via a

Bayesian approach (refer to the details in § V-D).

2) Information Compacting in Objective
Next, we perform information compacting for the objective

function to avoid the computation of intermediate energy status

en,m(κ). With (5), we can derive the relationship between a



device’s predicted energy status (after playing a video chunk)

and its initial energy status:

en,m(κ) (12a)

= en,m(κ− 1)− ψn,m(κ− 1) (12b)

= en,m(κ− 2)− ψn,m(κ− 2)− ψn,m(κ− 1) (12c)

...

= en,m(1)−
κ−1∑
i=1

ψn,m(i) (12d)

Thus, the objective function (8a) can be rewritten as:

N∑
n=1

Km∑
κ=1

(
ψn,m(κ) + λ · φ(en,m(1)−

κ−1∑
i=1

ψn,m(i))

)
(13)

in which all the elements are either readily available or can

be easily computed with the given decision variable of xn.

We then apply the compacted constraint (11) to replace orig-

inal constraints (4) and (5), and the transformed objective (13)

to replace the original objective (8a). It is worth mentioning

that the compacted form of the problem is equivalent to

the original problem (8), as information compacting comes

from (9) and (12), which only involve equalities.

C. A Two-phase Heuristic for Joint Optimization

To solve the nonlinear integer problem, we develop a two-

phase heuristic method:

• Phase-1: We solve the following optimization problem:

min
x

N∑
n=1

Km∑
κ=1

ψn,m(κ) (14a)

s.t. (2), (6), (7), (11). (14b)

Without considering the nonlinear function φ(·), the

above problem belongs to linear integer programming

(ILP). Furthermore, with the compacted form, it can be

directly fed into the off-the-shelf ILP solvers, such as

CPLEX [34], Gurobi [35] or CVX [36]. By solving the

problem, we actually obtain a subset (say, with number

of N ′) of the mobile devices for video transforming, with

which the energy consumption is minimized.

• Phase-2: To further cope with users’ anxiety, we sort the

mobile devices by their energy status, with which the

anxiety degrees of mobile users are ranked. Then, we

try to swap the selected N ′ devices in Phase-1 with the

first (N − N ′) devices whose owners have the largest

anxiety degrees. The swapping is successful only when

the objective value computed with (13) is reduced. The

nonlinear function φ(·) could use any theoretical anxiety-

energy model (none to the best of our knowledge), or an

empirical function such as that introduced in § III.

Note that the computational complexities of both Phase-1

and Phase-2 are much lower than solving the original nonlinear

programming. For a VC including 1000 devices, our imple-

mentation on a low-end machine can find the optimal solution

in Phase-1 in 5 seconds using the off-the-shelf ILP solver, and

can finish the swapping process within 1 minute. Considering

the scheduling time length is 5 minutes in our implementation,

the computing overhead of LPVS is acceptable under “one-

slot-ahead” scheduling working mode.

D. Determine γn with Bayesian Inference

When playing a transformed video, mobile devices of

different specifications (LCD or OLED, size, etc.) may have

different power reduction ratio γn. Nevertheless, before a

transformed video is played on device n, the value of γn is

unknown. In other words, at a scheduling point, we actually

do not know the value of γn for the following time slot (since

the video chunks have not been played yet).

Although we cannot know the value of γn for the current

time slot t (t > 1), fortunately we do have the information of

the previous time slot t− 1 and can get the value of γn at the

end of the previous time slot. This inspires us to update the

value of γn with the obtained information (observation) from

previous time slots. Such an idea can be naturally implemented

with Bayesian inference, by treating γn as a random variable.

1) At the Beginning of the 1st Time Slot
At the beginning of the first time slot, we initialize the

probability distribution function (PDF) of power reduction

ratio with a Gaussian distribution:

p(γn) = N (μ,σ 2) (15)

where μ and σ2 represent the mean and variance of the

Gaussian distribution, respectively. μ can be initialized by:

μ =
γL + γU

2
, (16)

with γL and γU representing the lower and upper bounds of

power reduction ratio, respectively (refer to Table I). As to the

initialization of σ2, we can choose a relatively big value due

to the lack of confidence about the concentration of γn, e.g.,

σ2 = 12 in our implementation.

2) At the End of Time Slot t
With the observation of power reduction when playing

transformed video in time slot t, denoted by Δn, we update the

PDF of γn for the next time slot by computing the posterior

using the Bayesian rule:

p(γn|Δn) =
P (Δn|γn)p(γn)

P (Δn)
, (17)

where p(γn) is the prior of γn used in time slot t; P (Δn|γn)
is the likelihood of the observation under γn; P (Δn) is the

marginal distribution of Δn over γn, i.e.,

P (Δn) =

∫ γU

γL

P (Δn|γn)p(γn)dγn. (18)

3) At the Beginning of Time Slot t+ 1
With the above posterior of γn, we compute the expected

value (or the expectation) of γn:

Ep(γn|Δn) =

∫ γU

γL

γnp(γn|Δn)dγn, (19)



Fig. 5. The histogram of video session durations in our dataset.

and apply the obtained value for video transforming scheduling

(i.e., γn = Ep(γn|Δn)) for time slot t+ 1.

Note that, as γn is assumed to follow the Gaussian distri-

bution, the likelihood-prior pair in (17) is conjugate3. In this

way, the update of γn can be computed precisely without any

approximation.

VI. IMPLEMENTATIONS

A. Real-world Video Streaming Traces

We target at the live video streaming service, as it becomes

extremely popular in recent years. It is reported by Twitch, a

popular live video streaming platform, that in 2017 only, 355
billion minutes of live streams were watched and more than 2
million streamers had broadcast channels on the platform [37].

We then use a dataset from Twitch as input requests for our

evaluations.

The dataset consists of traces from thousands of live stream-

ing channels in 2014, with the sampling interval of 5 minutes.

It includes the detailed information, such as the number of

viewers in each channel, bitrates of each channel, and the

duration of live channels. We filter the data and only keep

the live channels that last for no more than 10 hours, which

results in 1, 566 live channels and 4, 761 live video sessions.

The histogram of video session durations is given in Fig. 5.

B. LPVS Emulation and Setups

To emulate the whole process of LPVS and validate its

effectiveness, we develop an emulator with building blocks

shown in Fig. 6. The major procedures include: information

gathering, request scheduling and video transforming.

1) Information Gathering
Rationale: At each scheduling point of LPVS, along with

their video (chunks) requests, the users (mobile devices) report

the displays’ information (e.g., size and resolution) as well as

the energy status to the LPVS scheduler. Meanwhile, the video

information (e.g., whether cached and currently available) is

also collected from either the CDN PoP or edge streaming

server. In addition, as introduced in § IV-B, the power rates of

requested videos (chunks) are also estimated at the server side,

aided by existing power modeling and profiling techniques for

LCD in [20] and OLED in [17], respectively.

3A likelihood-prior pair is said to be conjugate if they result in a posterior
that is of the same form as the prior.

Fig. 6. The framework of LPVS emulator and its major building blocks.

Setups: The scheduling period (i.e., length of time slot)

of LPVS is set to 5 minutes, which is consistent with the

sampling interval of the Twitch dataset. A group of viewers in

each channel of Twitch are selected and form a virtual cluster

(VC) in our context. Some of the needed information to drive

LPVS can be obtained from the dataset, e.g., the number of

live channels/videos, the number of chunks in each time slot,

and the resolutions of requested videos. For other information

that cannot be learnt from the dataset, e.g., the power rate of

live videos and the specifications of displays, we assign values

for each of them by randomly choosing from available display

resolutions under the supported bitrates. As to the energy status

of the mobile devices, it is also not contained in the dataset, so

we randomly assign values following a Gaussian distribution

at the beginning of emulation.

2) Request Scheduling
Rationale: At the server side, with the gathered information

of user requests (dn(t) defined by (1)), display specifications

(inputs of the resource consumption functions g(·) and h(·)
in § IV-D), energy status (en,m(1)), and video meta data (e.g.,

bitrates, power rates pn,m(κ)), the LPVS scheduler performs

the video request scheduling task. Specifically, by following

the solution methodology introduced in § V, the scheduler is

able to select the optimal subset of the requested videos for

transforming, under the constraints of edge server capacity.

This returns a scheduling strategy that results in the maximum

display energy saving and user low-battery anxiety reduction

simultaneously.

Setups: The LPVS scheduler works under the “one-slot-

ahead” scheduling mode, i.e., during current slot the LPVS

makes decision for the incoming requests in the next time

slot. Then, at the scheduling point of next time slot, the

obtained decision will be executed, with which the selected

videos are sent to the encoders. Furthermore, we experiment

on different values of λ to validate the effectiveness of LPVS

w.r.t. balancing the power saving and anxiety reduction.

3) Video Transforming
Rationale: As shown in Fig. 6, all the requested videos

will go through the encoder component at the server side.

Within the video encoder, the selected videos (chunks) by the

scheduler will be transformed using the techniques introduced

in § II-B, and meanwhile the un-selected videos will bypass

the transforming function. After the video transforming, the

power saving ratio γn can be updated following our strategy



Fig. 7. Energy saving and anxiety reduction under sufficient edge resource.

in § V-D.

Setups: The amount of videos that can be transformed

simultaneously depends on the capacity of edge streaming

server. Referring to one commercial edge server model from

Nokia (AirFrame Open Edge Server [14]) and resource con-

sumption measurements of video transcoding [15], we estimate

that one edge server can process video streaming (including

transforming) for up to 100 mobile devices simultaneously.

Moreover, at the beginning of the first time slot, we set

the prior distribution of γn by a Gaussian distribution with

μ = (0.13+0.49)/2 = 0.31 (refer to the average upper/lower

bounds given in Table I) and σ = 12.

VII. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of LPVS,

under sufficient and insufficient edge capacity, respectively.

Furthermore, we also investigate the impact of LPVS on the

time per viewer, i.e., the time of individual viewers spending

on watching videos. At last, the overhead of LPVS is evaluated

w.r.t. the running time for the optimal scheduling.

A. LPVS with Sufficient Edge Resource

We first analyze the performance of LPVS under sufficient

edge resource condition. As mentioned in our implementa-

tions, we choose the edge server with capacity supporting up

to 100 mobile users’ video transforming simultaneously. Thus,

we look into the performance of LPVS for those VCs with no

more than 100 mobile users (with group size ranging from 50
to 100 specifically).

1) Energy Saving of Mobile Devices: The results on energy

saving can be found in Fig. 7, where the bar chart (in blue

color) shows the percentage of energy saving after applying

LPVS. The average energy saving ratio of different testing

groups is 35.20%, with the maximum energy saving ratio of

37.13%. Thus, it can be concluded that LPVS can save a large

portion of energy of users’ mobile devices.

2) Anxiety Reduction of Mobile Users: The results on

users’ anxiety alleviation can also be found in Fig. 7, with

the orange line chart at the right Y-axis. Specifically, the

percentages of user anxiety reduction after applying LPVS are

given, under different user group sizes. The average anxiety

reduction ratio of different testing groups is 6.82%, with the

maximum anxiety reduction ratio of 7.36%. We can see that,

with LPVS, the mobile users’ anxiety can be alleviated, while

the effect is not significant as that of energy saving. This is

mainly caused by our experimental setup that the energy status

follows a Gaussian distribution, which leads to the majority

with an energy status around 50% where the anxiety curve is

relatively flat (refer to Fig. 2). Nevertheless, as will be shown

in § VII-C, the impact of LPVS on the low-battery users is

significant.

B. LPVS with Limited Edge Resource

We then look into the cases where the edge capacity is

not enough, i.e., the computing and storage resources are

insufficient to provide LPVS to all users but a selected subset.

Specifically, we investigate the performance of LPVS in those

VCs with user group size ranging from 100 to 500. In addition,

since only a subset of users can be served with LPVS, the

regularization parameter λ takes effect in balancing the energy

saving and anxiety reduction.

1) Energy Saving of Mobile Devices: The energy saving

ratios of multiple user groups are shown in Fig. 8(a), under

different settings of λ. We can see that, the energy saving

ratio decreases with the increasing number of mobile users,

as the portion of users that can take advantage of LPVS

becomes smaller. In addition, with the increase of λ, the weight

for energy saving in the objective (of problem (8)) becomes

smaller, thus leading to the decrease of energy saving ratio in

each VC group.

2) Anxiety Reduction of Mobile Users: The anxiety re-

duction ratios of mobile users under different VC groups

are illustrated in Fig. 8(b). Based on the results, the anxiety

reduction ratio decreases with the increase of user group size,

which is caused by the insufficient edge capacity. Furthermore,

with the increase of λ, the weight for anxiety reduction

in the objective function becomes larger, thus resulting in

increased anxiety reduction for each VC group. It is also worth

mentioning that we only illustrate the effectiveness of λ in

balancing the energy saving and anxiety reduction. How to set

the value of λ in practice is determined by the LPVS provider

(based on specific policies and SLAs), which is beyond the

scope of this work.

C. Impact of LPVS on Low-battery Users

We have observed that the overall percentage in anxiety

reduction with LPVS is not that obvious as that in energy

saving, when the majority of users have relatively sufficient

battery life. Nevertheless, when we shift our focus to the

users who have low-battery status, the impact of LPVS is

significant. To test the impact, we calculate the metric of time

per viewer (TPV) for low-battery users, i.e., the time duration

of individual users on video watching, under sufficient edge

capacity condition. The TPV metric is inferred from our online

survey question: At what battery level (in percentage from 1%
to 100%) will you give up watching a video you are interested
in on your mobile phone?

For each VC group we have tested, we collect data on those

users who were i) selected for video transforming (served by



(a) Energy saving with LPVS under different values of λ. (b) Anxiety reduction with LPVS under different values of λ.

Fig. 8. Energy saving and anxiety reduction under the condition of limited edge server capacity.

Fig. 9. Time per viewer increases with and without LPVS.

LPVS) and ii) with energy status in (0, 40%] (so-called low-

battery users) at the starting of LPVS. Then, we calculate the

value of TPV for each low-battery user. For comparison, the

TPV values without applying LPVS are also computed for

these low-battery users.

The results are illustrated in Fig. 9 for the cases with and

without applying LPVS, respectively. From the figure we can

find that, without LPVS, the average value of TPV is 42.3
minutes, while with LPVS, the average TPV value increases

to 58.7 minutes. This means that LPVS brings in an extra TPV

of 16.4 minutes, which corresponds to 38.8% of the watching

time duration of the low-battery users.

D. Overhead of LPVS and Impact on Other QoE Metrics

We treat LPVS as a value-added service upon the conven-

tional video streaming and focus on evaluating the overhead of

LPVS w.r.t. its running time. This is necessary when we adopt

the “one-slot-ahead” working mode. If the scheduling cannot

be finished in one time slot, it will affect the conventional

video streaming service and may degrade other QoE metrics

(e.g., increasing the video freezing time and frequency).

The average running time of LPVS resulting from our

emulation is illustrated in Fig. 10, when performing optimal

scheduling under different VC group sizes. We can observe

that: i) with the increase of user group size (i.e., number

of mobile devices), the running time of LPVS increases

accordingly; ii) the increasing trend is approximately linear,

indicating the low time complexity of our heuristic method

(given in § V-C). Under such a linear increase trend, the

maximum number of mobile devices that our LPVS scheduler

can handle is over five thousand, within the scheduling time

slot of five minutes.
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Fig. 10. Running times of LPVS scheduler with increase of VC group
size; fitted by the linear regression function y = 0.055x − 0.324 with the
R-squared value R2 = 0.999.

Note that we did not consider the overhead of video content

transforming for this analysis, as it is actually completed in

the (conventional) video encoding phase (refer to details of

video transforming in § VI-B). Therefore, the overhead of joint

optimization for energy reduction and anxiety alleviation in

LPVS can be well controlled following the “one-slot-ahead”

working mode, thus making no impact on other QoE metrics

(e.g., delay and jitter) of video streaming in practice. The

perceptual impact of video transform has been well addressed

(e.g., in [17]) and is beyond the scope of our work.

VIII. CONCLUSIONS

We proposed a novel solution for low-power video stream-

ing services, LPVS, to save the ever increasing display energy

consumption of mobile devices and alleviate mobile users’

low-battery anxiety. In specific, we explicitly depicted the

scenario where LPVS could apply, and modeled the energy

saving and anxiety reduction at the edge by a joint optimiza-

tion problem. Then, we analyzed the difficulties in solving

the problem and developed a two-phase heuristic method

accordingly, aided by information compacting and Bayesian

inference. To help build LPVS, we conducted an online survey

on low-battery anxiety and collected data from 2, 032 mobile

users, which were used to extract the quantitative relationship

between the anxiety degree and battery status. With an LPVS

emulator and a real-world Twitch dataset, we investigated the

benefits of our LPVS solution in energy saving and anxiety

reduction. The results demonstrated that LPVS can save the

overall mobile users’ battery lives by up to 37% and prolong

the low-battery users’ video watching time by 39%.
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APPENDIX: SURVEY PARTICIPANTS INFORMATION AND

ETHICS

Table II shows the information of participants in our low-

battery anxiety survey. Each participant was informed of the

intention of this study, the course of data collection and

processing, and how the data would be used. The survey does

not raise any ethical issues.

TABLE II
SURVEY SUBJECTS AND CORRESPONDING FREQUENCIES (PARTICIPANTS

AND MOBILE PHONES, N = 2, 032).

Survey Subjects Frequency (%)

Meta Info.
# Cities 150
# Provinces* 31
# Countries 11
Gender
Male 1095 (53.89)
Female 937 (46.11)
Age
Under 18 9 (0.52)
18 ∼ 25 888 (51.45)
25 ∼ 35 460 (26.65)
35 ∼ 45 250 (14.48)
45 ∼ 65 119 (6.89)
Occupation
Student 1024 (50.39)
Gov/Inst 271 (13.34)
Company 434 (21.36)
Freelance 144 (7.09)
Others 159 (7.82)
Smartphone Brand
iPhone 737 (36.27)
Huawei 682 (33.56)
Xiaomi 228 (11.22)
Others 385 (18.95)

*Provinces refer to provincial-level administrative units of China.


