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ABSTRACT
Core decomposition is a popular tool for analyzing the struc-

ture of network graphs. For probabilistic graphs the computation

comes with several challenges and the state-of-the-art approach

is not scalable to large graphs. One of the challenges is to com-

pute tail probabilities of vertex degrees in probabilistic graphs.

To address this we employ a special version of the Central Limit

Theorem (CLT) to obtain the tail probabilities efficiently. Based

on our CLT methodology we propose a peeling algorithm to com-

pute the core decomposition of a probabilistic graph that scales to

very large graphs and is orders of magnitude faster than the state-

of-the-art. Next, we propose a second algorithm that can handle

graphs not fitting in memory by processing them sequentially

one vertex at a time. This algorithm has the desirable property

that it can produce close approximations to true core numbers of

vertices in only a fraction of iterations needed for full completion.

The graphs in our study are orders of magnitude larger than

those considered in the literature. Our extensive experimental

results confirm the scalability and efficiency of our algorithms;

the largest graph we can process has more than 40 million nodes

and 1.5 billion edges and we are able to compute its core decom-

position on a commodity machine in about two and half hours.

1 INTRODUCTION
Probabilistic graphs are graphs in which each edge has a probabil-

ity of existence (cf. [6–8, 19, 21, 43]). Mining probabilistic graphs

has become the focus of interest in analyzing many real-world

datasets, such as social, trust, communication, and biological

networks due to the intrinsic uncertainty present in them. For in-

stance, influence between users (cf. [7, 17, 21]) in a social network

can be modeled as a probabilistic graph with probabilities on the

edges representing the likelihood that some action of one user

will be adopted by another. In terms of trust inference, probabilis-

tic models with trust values as edge probabilities can be used to

compute trust associated with a social relationship [27, 28]. In

protein-protein networks (cf. [9]) interactions between proteins

are obtained through laboratory experiments that are prone to

measurement errors resulting in edges labeled with confidence

levels that can also be interpreted as probabilities [14, 15, 41].

Discovering dense components is of great importance in an-

alyzing network graphs [29]. A popular way to find such com-

ponents is core decomposition which has been shown to have a

wide variety of applications (cf. [1, 24, 30, 44, 46]). For instance,

it can be used in measuring structural diversity is social conta-

gion [44], describing biological functions of proteins in protein-

protein interaction networks [30], analyzing network structure’s

properties to explore collaboration in software teams [46], and

also as a metric for sentence selection in text summarization [1].
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Probabilistic core decomposition naturally extends all the applica-

tions of deterministic core decomposition to probabilistic graphs.

Other applications, showcased in [6], are facilitating influence

maximization and task-driven team formation in probabilistic

graphs.

In k-core computation the goal is to find the maximal sub-

graph in which each vertex has at least k neighbors within that

subgraph. The set of all k-cores of a graph, for various k , forms

the core decomposition of that graph [40]. Core decomposition

in deterministic graphs has been thoroughly studied in literature

[3, 11, 24, 35], and can be computed inO(m) time, wherem is the

number of the edges in the input graph. However, in the prob-

abilistic context, computing core decomposition is much more

challenging.

Here we use the probabilistic (k,η)-core notion introduced by

Bonchi, Gullo, Kaltenbrunner, and Volkovich in [6]. In (k,η)-core
computation the goal is to find the maximal subgraph in which

each vertex has at least k neighbors within that subgraph with

probability no less than η ∈ [0, 1]. Threshold η is given by the

user and defines the desired level of certainty of the output cores.

A fundamental notion needed to compute the (k,η)-core is the
η-degree of a vertex v . It is the maximum degree such that the

probability for v to have that degree is no less than η.

Challenges and contributions. A significant initial challenge

is computing η-degrees of graph vertices. In [6], the η-degree
of each vertex v is computed using dynamic programming (DP)

which has a complexity of O(d2

v ), where dv is the number of

edges incident to v . Unfortunately, in many real social and web

networks, dv can be in the millions and a quadratic algorithm

such as DP is impractical.

Our first contribution is the design of an efficient method for

computing η-degrees. Our method is based on Lyapunov’s special

version of the Central Limit Theorem [25, 34] and we show its

output to be virtually indistinguishable from exact computation

for vertices with a high number of incident edges.

While solving the challenge of computing η-degrees is an
important step forward, we still need efficient algorithms to

compute core decomposition for large probabilistic graphs. We

propose two efficient algorithms to solve this problem.

The first one, which we call the “peeling algorithm” (PA), re-

cursively deletes (peels-off) the vertex of the smallest degree.

Our contribution here is in designing efficient arrays for storing

important bookkeeping information. Handling these arrays be-

comes challenging because, differently from the deterministic

case, the process of keeping the vertices sorted based on their

changing η-degrees is more complicated and we need to shuf-

fle information carefully in order to keep the arrays up to date.

Notably, our PA algorithm scales to datasets two orders of mag-

nitude bigger than those that the state-of-the-art algorithm [6]

can handle.

For the case when the input graph does not fit in memory, we

propose a sequential algorithm (SA) based on the vertex-centric

model of computation. The main idea of the SA algorithm is to
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maintain an upper-bound, called vertex value, on the core number

of each vertex. This upper-bound is initialized to be the η-degree
of each vertex, and after each iteration of the algorithm it is

tightened further until it reaches the exact core value.While being

moderately slower than PA, there are two notable advantages

associated with this algorithm. First, the SA algorithm has a

memory footprint of O(n) as opposed to O(m) for PA, where n
andm are the number of vertices and edges, respectively. This

amounts to SA requiring 30 to 40 times lower memory for social

and web network graphs in practice. Second, as shown in Section

6, after only a fraction of iterations of the algorithm, we can

obtain an approximation very close to the true core numbers of

vertices.

In summary, our contributions are as follows.

• We introduce an efficient approach to compute η-degrees
using Lyapunov’s central limit theorem which gives very

accurate approximations on the probability that a vertex

can have a certain degree. We prove the accuracy of the

approach and show that this method of computing proba-

bilistic degree is numerically stable.

• We propose a peeling algorithm (PA) based on recursive

vertex deletions which, by using carefully engineered ar-

ray structures, is able to scale to graphs two orders of

magnitude larger than what the state-of-the-art algorithm

can handle.

• For the case when the input graph does not fit into mem-

ory, we propose a sequential algorithm (SA) to produce

the core decomposition in probabilistic graphs with a low

memory footprint. This algorithm can also produce accu-

rate approximations after only a fraction of total iterations,

a useful feature to have in applications when exact core

numbers are not necessary.

2 BACKGROUND
Cores of deterministic graphs. Let G = (V ,E) be an undi-

rected graph, where V is a set of n vertices, and E is a set ofm
edges. For vertex v ∈ V , let NG (v) be the set of v’s neighbors:
NG (v) = {u : (u,v) ∈ E}. The (deterministic) degree of v in G , is
equal to |NG (v)|.

Given V ′ ⊆ V , and EV ′ = {(u,v) ∈ E : u,v ∈ V ′}, graph H =
(V ′,EV ′) is called the subgraph of G induced by V ′. Let k ∈
[0,dmax(G)], where dmax(G) is the maximum vertex degree in

G. The k-core of G is defined as the maximal induced subgraph

Ck (G) = (V
′,EV ′) in which each vertex v ∈ V ′ has degree of at

least k . The set of all k-cores forms the core decomposition of G.
Core decomposition ofG is unique and it satisfies the following

relation [40]: G = C0(G) ⊇ · · · ⊇ Cdmax(G)−1
⊇ Cdmax(G). The

coreness (or core number) of a vertex is defined as the maximum

value of k such that the corresponding Ck (G) contains v .

Probabilistic graphs. A probabilistic graph is a triple G =

(V ,E,p), where V and E are as before and p : E → (0, 1] is a
function that maps each edge e ∈ E to its existence probability

pe . For each vertex v ∈ V , the set of edges incident to v is de-

noted by Nv . dv = |Nv | is the number of all edges incident to

v which is equal to the deterministic degree of v . In the most

common probabilistic graph model (cf. [6, 19, 21]), the existence

probability of each edge is assumed to be independent of other

edges.

In order to analyze probabilistic graphs, we use the concept

of possible worlds that are deterministic graph instances of G in

which only a subset of edges appears. The probability of a possible
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Figure 1: A probabilistic graph.

worldG ⊑ G is obtained as follows: Pr(G) =
∏

e ∈EG pe
∏

e ∈E\EG (1−

pe ).
In a probabilistic graph G, the notion of η-degree, where η ∈

[0, 1], denoted by η-deg(v), of a vertex v is defined in [6] as

the maximum k for which PrG⊑G[dG (v) ≥ k] ≥ η, where
k = 0, . . . ,dv , and the probability is taken over all the possi-

ble worlds G ⊑ G.
For instance, consider Figure 1. When η = 0.5, vertex 6 has

degree at least 2 with probability 0.94 · 0.23 = 0.2162 (product

of probabilities that each of the two edges is in a possible world),

and it has degree at least 1 with the probability 1 − ((1 − 0.94) ·

(1 − 0.23)) = 0.9538 (complementary probability that none of

the two edges is in a possible world) which is greater than the

threshold. Thus, the η-degree of vertex 6 is 1.
In the rest of the paper, we use Pr[d(v) ≥ k] to denote PrG⊑G[dG (v) ≥

k]. The value of Pr[d(v) ≥ k] decreases with the increase of k .
Note thatdv is different fromd(v); the former is constant, whereas

the latter is a random variable.

Cores of probabilistic graphs. In order to extend k-core de-

composition to probabilistic graphs, the notion of (k,η)-core is
defined in [6]:

Definition 1. Given a probabilistic graph G = (V ,E,p), and
a threshold η ∈ [0, 1], (k,η)-core is the maximal induced sub-
graph C(k,η)(G) = (V ′,EV ′ ,p) in which the η-degree of each ver-
tex v ∈ V ′ is at least k . The set of all (k,η)-cores forms the core
decomposition of G.

The core decomposition in probabilistic graphs is unique, and

the (k,η)-cores are nested into each other similar to the deter-

ministic case. The highest value of k for which v belongs to a

(k,η)-core is called η-core number or probabilistic coreness of v .

Computing η-degrees using Dynamic Programming. We

have that Pr[d(v) ≥ k] = 1 −
∑k−1

i=0
Pr[d(v) = i]. One way of

computing Pr[d(v) = i] is to use dynamic programming as pro-

posed in [6]. However, this method of computing the η-degree
has complexity of O(d2

v ) for a vertex v of deterministic degree

dv . This is not practical when dv is big, say over 20 thousand,

which occurs often in all our datasets. In fact, DP cannot finish in

reasonable time even for one such vertex. In addition, web-scale

graphs normally have millions of nodes with moderate-high de-

gree (e.g., a thousand or more), and if DP is applied to every such

node, the total processing time increases considerably. In the next

section we introduce an alternative way for fast computation of

the η-degree of a vertex v using Lyapunov central limit theorem.

3 COMPUTING η-DEGREES USING
CENTRAL LIMIT THEOREM

In this section, we first show how a special version of Cen-

tral Limit Theorem (CLT) can be applied to accurately estimate

Pr

[
d(v) ≥ k

]
. Then, we show theoretical bounds on the accuracy

of this approximation. Specifically, we show that CLT can pro-

duce a very accurate approximation to tail probabilities of the

vertex degree.
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CLT, one of the most important theorems in statistics, states

that given a set of random variables, their properly scaled sum

converges to a normal distribution under certain conditions.

There are different versions of CLT, with the most common one

focusing on independent identically distributed (i.i.d.) random

variables. In this paper, we consider a variant called Lyapunov

CLT [33, 34] that can be applied when random variables are

independent, but not necessarily identically distributed. The Lya-

punov’s condition imposes a limit on the growth of the third

absolute central moment of each random variable in the given

sequence ensuring the convergence of the normalized sum of

that sequence to standard normal distribution. Formally, we have

Theorem 3.1. Lyapunov CLT [25]. Let ξ1, ξ2, · · · , ξn be a
sequence of independent, but non-identically distributed random
variables, each with finite expected value µk and variance σk . Let

s2

n =

n∑
k=1

σ 2

k , (1)

Lyapunov CLT states that if

lim

n→∞

1

s2+δ
n

n∑
k=1

E[|ξk − µk |
2+δ ] = 0, (2)

for some δ > 0, then 1

sn
∑n
k=1
(ξk − µk ) converges in distribution

to a standard normal random variable.

Equation (2) is called Lyapunov’s condition which in practice

is usually tested for the special case δ = 1. The proof for this

theorem can be found in [4, 13].

Computing η-degrees using Lyapunov CLT. In what follows,

we show how Lyapunov CLT can help compute Pr

[
d(v) ≥ k

]
,

for each vertex v of the input probabilistic graph G.

Recall that for each vertex v we have a set of edges incident

to v denoted by Nv . Each ei in Nv has existence probability

pi , which is independent of the other edge probabilities in G.

Corresponding to each edge ei in Nv , we define a Bernoulli

random variable Xi which takes on 1 with probability pi , and 0

with probability (1 − pi ). Formally,

Xi =

{
1 if edge ei incident to v exists in the graph

0 otherwise

(3)

SinceXi is a Bernoulli random variable, we know that E[Xi ] =
µi = pi and Var[Xi ] = pi (1 − pi ). Using the fact that d(v) =∑dv
i=1

Xi , we have:

Pr[d(v) ≥ k] = Pr


dv∑
i=1

Xi ≥ k

 . (4)

According to Equation (4), finding the probability that a ver-

tex v is of the degree at least k is equivalent to computing the

probability that the sum of Xi ’s for v is at least k . In addition,

Bernoulli random variables Xi ’s are independent, but not iden-
tically distributed. Thus, if condition (2) is satisfied and if dv
is large enough, we can conclude that

1

sdv

∑dv
i=1
(Xi − µi ) has

standard normal distribution, where sdv =
√∑dv

i=1
pi (1 − pi ). To

compute Pr[
∑dv
i=1

Xi ≥ k], we can subtract

∑dv
i=1

µi from both

sides of the inequality, and then divide by sdv which results in:

Pr

[ dv∑
i=1

Xi ≥ k
]
= Pr

[
1

sdv

dv∑
i=1

(Xi − µi ) ≥
1

sdv
(k −

dv∑
i=1

µi )

]
. (5)

Using Lyapunov CLT, and setting

Z =
1

sdv

dv∑
i=1

(Xi − µi ), (6)

we can say that Z has standard normal distribution. Thus

Pr

[
d(v) ≥ k

]
� Pr

[
Z ≥ z

]
, (7)

where z = 1

sdv
(k −

∑dv
i=1

µi ). In fact, since Z in Equation (6) has

standard normal distribution, using the complementary cumu-

lative distribution function [56], we can efficiently evaluate the

right hand side of Equation (7). To find the η-degree we start with
k = 1, and approximate Pr[d(v) ≥ k] using Lyapunov CLT, find-

ing the maximum k for which the probability is above threshold

η.
We can apply Theorem 3.1 provided that Lyapunov’s condition

is satisfied. By setting δ = 1 in Equation (2) we show that this

condition holds for a sequence of non-identically distributed

Bernoulli random variables.

Theorem 3.2. Given a sequence of random variables Xi ∼
Bernoulli(pi ), for i ∈ [1,n], the Lyapunov’s condition (2) for δ = 1

is satisfied whenever s2

n =
∑n
k=1

pk (1 − pk ) → ∞.

Proof. For each Bernoulli random variable Xi we know that

σ 2

i = pi (1 − pi ), and µi = pi . Therefore, s
2

n =
∑n
k=1

pk (1 − pk )
according to the equation (1). On the other hand, when δ = 1,

E[|Xk − µk |
3] is computed as follows:

E[|Xk − µk |
3] = pk (1 − pk )

3 + (1 − pk )p
3

k ,

= pk (1 − pk )[(1 − pk )
2 + p2

k ] ≤ σ
2

k , (8)

where in inequality (8) we have used the fact that (1−pk )
2+p2

k ≤

1. Thus,

∑n
k=1

E[|Xk − µk |
3] ≤ s2

n . Substituting this in the Lya-

punov’s condition (2) for δ = 1, we conclude that the condition

is satisfied whenever s2

n/s
3

n → 0 as n → ∞ which means that

sn should go to infinity as n increases. This is equivalent to

s2

n =
∑n
k=1

pk (1 − pk ) → ∞, and as a result the theorem follows.

In other words, since we have

s2

n =

n∑
k=1

pk (1 − pk ) =
n∑

k=1

σ 2

k ≥ nσ 2

min
, (9)

for large n and as long as σ 2

min
= mink {σ

2

k } is away from zero,

nσ 2

min
→ ∞ which results in s2

n → ∞ as n approaches infinity.

□
Accuracy of the Approximation. In order to show the accu-

racy of the approximation, we refer to the Berry–Esseen theorem

[57]: For a given sequence Y1,Y2, ... of non identically distributed

and independent random variables with E(Yi ) = 0, E(Y 2

i ) = σ
2

i ,

and E(
��Y 3

i

��) = ρi < ∞, there exists a constant C0 such that the

following inequality is satisfied for all n:

sup

x ∈R
|Fn (x) − Φ(x)| ≤ C0 ·ψ0, (10)

where Fn is the cumulative distribution of Sn =
Y1+Y2+· · ·+Yn√
σ 2

1
+σ 2

2
+· · ·+σ 2

n

,

which is the sum of Yi ’s standardized by the variances, and Φ is

the cumulative distribution of the standard normal distribution.

In the above inequalityψ0 is a function given by

ψ0 = ψ0(
−→σ ,−→ρ ) =

( n∑
i=1

σ 2

i

)−3/2

·

n∑
i=1

ρi . (11)

where
−→σ = (σ1, · · · ,σn ), and

−→ρ = (ρ1, · · · , ρn ) are the vectors
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of σi ’s and ρi ’s respectively. It should be noted that the best

upper-bound obtained so far for C0 is 0.56 [42].

Based on the Berry–Esseen theorem, the more the number of

edges incident to a vertex, the better the accuracy of the results. In

the following corollary, we show how to obtain an upper-bound

on the maximal error while approximating the true distribution

of the sum of Xi ’s with the normal distribution.

Corollary 1. For each vertex v in the probabilistic graph G
withXi ’s being Bernoulli random variables as defined in (3), where
i = 1, . . . ,dv , the error bound on the approximation of the right-
hand side of Equation (7) to the standard normal distribution is
given as follows:

sup

x ∈R

��Fdv (x) − Φ(x)�� ≤ 0.56√
p1(1 − p1) + · · · + pdv (1 − pdv )

Proof. Setting Yi = Xi − pi in equation (6), we can apply the

Berry–Essen theorem for random variablesY1,Y2, · · · ,Ydv , since
for each Yi , E[Yi ] = 0. In addition,

E[Y 2

i ] = E[(Xi − pi )
2] = Var[Xi ] = σ

2

i = pi (1 − pi ),

E[
��Y 3

i
��] = E[|Xi − pi |

3] = ρi = (1 − pi )
3pi + p

3

i (1 − pi )

= pi (1 − pi )[(1 − pi )
2 + p2

i ] < ∞. (12)

It should be noted that the random variable

Sdv =
(X1 − p1) + (X2 − p2) + · · · + (Xdv − pdv )√

σ 2

1
+ σ 2

2
+ · · · + σ 2

dv

(13)

in the Berry–Essen theorem is the same as the random variable

Z in Equation (6).

Substituting σ 2

i and ρi in Equation (11), we obtain:

ψ0 = ψ0(
−→σ ,−→ρ )

=

( dv∑
i=1

pi (1 − pi )

)−3/2

·

( dv∑
i=1

pi (1 − pi )[(1 − pi )
2 + p2

i ]

)
,

(14)

Using the fact that 1 = (1−pi+pi )
2 = (1−pi )

2+p2

i +2pi (1−pi ) ≥

(1 − pi )
2 + p2

i , we can simplify (14) to have:

ψ0 ≤

( dv∑
i=1

pi (1 − pi )

)−3/2

·

( dv∑
i=1

pi (1 − pi )

)
=

( dv∑
i=1

pi (1 − pi )

)−1/2

=
1√

p1(1 − p1) + · · · + pdv (1 − pdv )
,

(15)

Substituting (15) in (10) the stated claim follows. □

4 PEELING ALGORITHM (PA)
In this section we propose a graph peeling algorithm (PA). Graph

peeling, that is, (1) recursively deleting the vertex v of smallest

degree (2) setting v’s coreness to be equal to its degree at the

time of deletion, and (3) updating the degrees of v’s neighbors
while keeping them sorted, is a general idea that has been used

broadly in core decomposition of deterministic graphs (cf. [3, 24]).

However, it requires substantial algorithmic engineering in order

to achieve high scalability when applied to probabilistic graphs.

This is because when a vertex v is deleted in the peeling process,

updating the η-degrees of v’s neighbors and maintaining the

data structures up to date are non-trivial. In order to tackle these

challenges, we use efficient array structures and lazy updates,

which delay updating the η-degrees of v’s neighbors for as long
as possible.

Computing and updating η-degrees. An expensive step in

the peel-off process is computing initial η-degrees and updating

them for those vertices that lose neighbors in a peel-off step. We

will depart from the feature of the deterministic case of having

vertices sorted at all times based on their current degrees and

allow instead the vertices to not be on their precise order as long

as at the time of their removal we can fix things up using the key

functions and data structures that we define.

More specifically, the computation and update of η-degrees
is delayed as much as possible by using easy to compute lower-

bounds on η-degrees instead of exact values. It is only when a

vertex is candidate for removal that we compute its exactη-degree.
At that time the remaining graph is typically much smaller and

the computation becomes significantly faster.

Based onCorollary 1, we know that LyapunovCLT gives a very

good approximation on tail probabilities of vertex degrees. We

use the values produced by CLT (decremented by a small epsilon)

in order to obtain lower-bounds on η-degrees. For simplicity of

exposition, we refer to the lower-bound values simply as values.
One important difference between the core decomposition of

probabilistic and deterministic graphs is that the η-degree of a
vertex can decrease by at most one when a neighbor is removed

(according to Lemma 2 in [6]) as opposed to exactly one in deter-

ministic graphs. An array A stores, for each value in the input

graph, the set of vertices with that value. In the PA algorithm at

each iteration, we decrease the value of a vertex v by one if a v’s
neighbor is removed. When v’s turn comes to be removed and

processed, we compute its η-degree and if it is the same as its

current value we remove v . Otherwise, we repeatedly swap v to

the proper place in A. There could be several neighbor removals

that did not change the η-degree of v , thus the proper place of v
in A could be far from the next block of vertices, and therefore

we might need to perform several swaps.

PA algorithm description. The PA algorithm is given in Algo-

rithm 1. There we have arrays d, b, p, and A. For an example see

Figure 1 and Table 1. Vertices in the PA algorithm are assumed

to be labeled by numbers 0 to n − 1. Array d initially stores for

each vertex the lower-bound on the η-degree of that vertex. For
instance, vertex 1 has a lower-bound of 1 in Table 1, so d[1] = 1.

Initially, vertices are stored inA in ascending order of their lower-

bounds. We have coloredA in shades of green in Table 1. The first

block in A contains all the vertices with a lower-bound equal to

0; the second block contains vertices with lower-bound equal to

1, and so on. In order to determine the index boundaries of such

blocks in A, we define array b which stores the index boundaries

of the vertex blocks inA. In Table 1 we have for instance b[1] = 2

and b[2] = 6. In order to handle swapping efficiently we define

an array p which stores the position of each vertex in A. For
instance, vertex 6 is at position 2 in A, therefore p[6] = 2.

There are two additional arrays as well; gone and valid. Since
we do not remove vertices physically from the graph, we use

array gone to keep track of the removed vertices at each step of

the algorithm. Array valid tells for each vertex v if the η-degree
of v is the same as the value d[v]. The array gone is initially

set to false for all the vertices, because none of the vertices has

been removed yet. Array valid is set to all-false vector because

all the vertices are on their lower-bound at the beginning of the

algorithm. For instance, in Table 1, we have valid[4] = f alse
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which indicates that vertex 4 is on its lower-bound and its η-
degree should eventually be computed.

We illustrate a few steps of the PA algorithm on the graph in

Figure 1. We set η = 0.5. The PA algorithm starts with the first

vertex v in array A, checking whether v is on its lower-bound

or its η-degree is available. As can be seen in Table 1, vertex 0 is

the first vertex in A. Since valid[0] = f alse , the vertex 0 is on

its lower-bound, and its η-degree might be higher. Therefore, it

might not be its turn to be removed. As such, the compute_swap

function is called (line 19, Algorithm 1) to compute the η-degree,
and then do the required number of swaps to the right, using

Algorithm 3, to place the vertex in the proper block of A. Thus,
unlike deterministic case we do need to perform several swaps to
the right. The compute_swap function (Algorithm 4) computes

the η-degree of vertex 0, which turns out to be 1. Thus, the vertex

only needs one swap to the right in A to be placed in the block

containing all the vertices with degree 1. In order to do each swap

in constant time (using Algorithm 3), we swap vertex 0 with the

last vertex in the same block which is 6. As a result, the positions

of vertices 0 and 6 should be swapped as well: p[0] = 2,p[6] = 1.

Vertex 0 becomes the last element of its current block (the block

of vertices with degree 0). In order to make vertex 0 become an

element of the next block, the index of the block of vertices with

degree 1, b[1], is decremented by one to include vertex 0 as its

first element. We have b[1] = 1, and vertex 0 becomes the first

element of the block of vertices with degree 1.

Table 2 shows the current status of arrays after swapping ver-

tex 0 with 6. The updated values are shown in red color. As can

be seen, valid[0] = true because now the η-degree of vertex 0 is
available. Now, vertex 6 is the first vertex in A and the algorithm

processes it. The summary of the results is shown in Table 3.

Since valid[6] = true we can safely remove vertex 6. The corre-

sponding index in array gone is set to true, and the coreness of

vertex 6 is set to d[6], which is 1.

When a vertex v is removed, we process those neighbors u
of v with a higher degree (lower-bound or exact) than v’s (see
lines 14-16), and decrement their degrees by one. Therefore, these

neighbors should be moved one block to the left inA. This is done

in constant time using the swap_left function (line 15) which is

shown in Algorithm 2. For instance, vertex 3 is a neighbor of

vertex 6 with degree 2, which is decremented by one, from 2 to 1,

when vertex 6 is removed. Therefore, vertex 3 should be swapped

to the block in the left in A, which contains vertices of degree 1.

The process is similar to swapping to the right. However, when

swapping to the left, vertex u is swapped with the first vertex,w
in the same block in A. In addition, the positions of u andw are

swapped in p. Then, the block index in b is incremented by one

(line 7, Algorithm 2), making u the last element of the previous

block.

Correctness of the algorithm. For every v ∈ V , and C ⊆ V , a
vertex property function [3] is a function ϕ(v,C) : V × 2

V → R,
and it is monotonic if ∀C1,C2 ⊆ V : C1 ⊆ C2 implies that

ϕ(v,C1) ≤ ϕ(v,C2). According to the result by Batagelj and Za-

versnik [3], for a monotonic vertex property function ϕ(v,C), the
algorithm that repeatedly removes the vertex with smallest ϕ
value gives the core decomposition. Since η-degree of a vertex
is a monotonic vertex property function [6], then our peeling

algorithm, which removes the vertex with smallest η-degree at
each iteration of the algorithm, computes the desired core decom-

position. Also, it should be noted that, the algorithm scans the

next vertex in array A only when the η-degree of the previous

vertex has been set. In addition, the lower-bounds never surpass

the value of η-degrees. Thus, we conclude that the PA algorithm

computes the desired core decomposition in probabilistic graphs.

Running time of the PA algorithm. The compute_swap func-

tion is dominated by two parts: (1) computing η-degrees takes
O(η-deg(u)) for each vertexu (2) swapping a vertex to the proper
block; each swap is done in constant time, and the maximum

number of swaps required for a vertexu isO(η-deg(u)). However,
as reported above, initially the difference between the lower-

bounds obtained by Lyapunov CLT and the η-degrees is no more

than one. Hence, either one or no swap is required initially. Thus,

the compute_swap function takes in total

O
©­«
∑
v ∈V

∑
u :(u,v)∈Nv

η-deg(u)
ª®¬ = O

( ∑
v ∈V

dvδ
′

)
= O(mδ ′),

wherem is the number of edges, and δ ′ is the maximum η-degree
over all vertices at the time of their removal. The swap_left func-

tion swaps each vertex one block to the left inA in constant time.

Therefore, the main cycle (Algorithm 1, line 6-19) takes O(mδ ′).
In conclusion, the running time of the PA algorithm is O(mδ ′).

Index 0 1 2 3 4 5 6

d 0 1 1 2 1 1 0

A 0 6 1 2 4 5 3

p 1 3 4 7 5 6 2

b 0 2 6

valid false false false false false false false

gone false false false false false false false

Table 1: Arrays d, b, A, p, valid, and gone in the PA algorithm for
the graph in Figure 1.

Index 0 1 2 3 4 5 6

d 1 1 1 2 1 1 0

A 6 0 1 2 4 5 3

p 2 3 4 7 5 6 1

b 0 1 6

valid true false false false false false false

gone false false false false false false false

Table 2: First step of the PA algorithm (after swapping vertex 0) for
the graph in Figure 1.

Index 0 1 2 3 4 5 6

d 1 1 1 2 1 1 1

A 6 0 1 2 4 5 3

p 2 3 4 7 5 6 1

b 0 0 6

valid true false false false false false true

gone false false false false false false false

Table 3: Second step of the PA algorithm executed on the graph in
Figure 1.

5 SEQUENTIAL ALGORITHM (SA)
In this section we present a sequential algorithm (SA) which

processes the vertices one-by-one, and as such, does not require

the graph to be fully loaded into memory but rather one vertex at

a time. Furthermore, as shown in Section 6, after only a fraction

of iterations, SA is able to produce high quality results.

SA maintains bookkeeping information for each vertex and

has a memory footprint ofO(n) as opposed toO(m) for PA. More
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Algorithm 1 PA k-core computation function

1: function K_CoreCompute(Graph G, η)
2: initialize(d, b, p, A, G)
3: gone← False ▷ all-false vector

4: valid← False ▷ all-false vector

5: i ← 1

6: while i < n do
7: v ← A[i]
8: if valid[v] = true then
9: gone[v] ← true
10: for all u : (u,v) ∈ Nv do
11: if d[u] = d[v] then
12: if valid[u] = false then
13: compute_swap(d,p, b,A,u, valid)
14: if d[u] > d[v] then
15: swap_left(d,p, b,A,u)
16: valid[u] ← false
17: i + +
18: else
19: compute_swap(d,p, b,A,v, valid)
20: return d

Algorithm 2 PA swap to left function

1: function swap_left(d,p, b,A,u)
2: du ← d[u], pu ← p[u]
3: pw ← b[du] ,w ← A[pw]
4: if u , w then
5: A[pu] ← w , A[pw] ← u
6: p[u] ← pw , p[w] ← pu

7: b[du] + +, d[u] − −

Algorithm 3 PA swap to right function

1: function swap_right(d,p, b,A,u)
2: du ← d[u], pu ← p[u]
3: pw ← b[du + 1] − 1 ,w ← A[pw]
4: if u , w then
5: A[pu] ← w , A[pw] ← u
6: p[u] ← pw , p[w] ← pu

7: b[du + 1] − −, d[u] + +

Algorithm 4 η-degree computation and swap function

1: function compute_swap(d,p, b,A,u, valid)
2: η_deд← compute η-deg(u)
3: valid[u] ← true
4: diff← η_deд − d[u]
5: for j ← 1 to diff do
6: swap_right(d,p, b,A,u)

specifically, SA adopts the “semi-external” model of computation,

which assumes that for each vertex we can fit a small constant

amount of information in main memory while the edges of the

graph are stored on disk. As other works have shown, this model

is practical for a large number of real-world, web-scale graphs,

and widely adopted to handle other graph problems [32, 45, 50,

51].

Algorithms that are sequential and semi-external do exist

for deterministic core-decomposition (see [24, 35, 45]). They are

based on the idea of maintaining an upper-bound on each vertex’s

coreness. This upper-bound is initialized to the degree of each

vertex, and after each iteration of the algorithm it is tightened

further using a simple locality property until it reaches the exact

core value. The locality property is as follows. The coreness of a

vertexv can at most be the largest value k such thatv has at least

k neighbors with a value greater or equal to k . Locality-based
tightening (LBT) lowers the bound of a vertex to be the number

k described above.

Unfortunately, this idea does not work for probabilistic core

decomposition. LBT does not necessarily converge to true core

values of vertices. For an example, consider Figure 1, η = 0.5,

and Table 4. We initialize the upper-bounds to the η-degree of
each vertex. Then, we execute a round of LBT. The bound for

vertex 3 is tightened to 2. This is because the largest k for which

vertex 3 has at least k neighbors with a value at least k is 2. These

neighbors are 1, 2, 4, and 5 with a bound equal to 2. Running one

more iteration of LBT does not produce any further tightening.

However, the true core number of vertex 3 is 1 not 2 (see Table 4,

last column). In the following, we tackle the problem with a

new procedure we call probabilistic bound tightening (PBT). PBT
takes into consideration the edge probability values and uses an

optimized version of dynamic programming to gradually tighten

the upper bounds of vertices to the true coreness. While PBT by

itself can be used to compute coreness, we combine PBT with

LBT in order to speed up the convergence, since LBT is faster

than PBT.

First we show that the obtained values at the end of LBT are

always an upper-bound to the true coreness values.

Proposition 1. Let G = (V ,E,p) be a probabilistic graph.
Also, for each vertex v ∈ V , let kv be the true coreness of v , and
¯kv be the value assigned to v at the end of the LBT phase. Then,
¯kv ≥ kv .

Proof. Once a LBT phase terminates, and the coreness of v
is fixed to

¯kv ; then there should be a subset V¯kv of neighbors

of v with the size at least
¯kv , and ∀u ∈ V¯kv :

¯k(u) ≥ ¯kv , where
¯k(u) is the coreness assigned to u by LBT. However, considering

the existence probability of edges incident to v , the value for

Pr[dG(V ¯kv )
(v) ≥ ¯kv ] can be less than η, where G(V¯kv ) is the in-

duced subgraph byV¯kv . On the other hand, since Pr[d(v) ≥ k] is

monotonically non-increasing with the value of k , the true core-
ness ofv should be in the interval [0, ¯kv ] such that Pr[dG(V ¯kv )

(v)

≥ k] ≥ η > Pr[dG(V ¯kv )
(v) ≥ ¯kv ]. Thus, ¯kv ≥ kv . □

Once a LBT phase terminates, PBT starts to check whether

the obtained value for each vertex is the true coreness of the

vertex or not. If not, the gap is tightened further. We run LBT

and PBT repeatedly, one after the other, until the core value for

each vertex reaches a fixed point.

Before formally giving the algorithm, we present an exam-

ple to illustrate how the SA algorithm works. We consider the

probabilistic graph in Figure 1 and η = 0.5. LBT for this example

was discussed earlier and the vertex values at the end of it are

given in Table 4, third column. As can be seen, there are some

vertices whose bounds are different from their true coreness (e.g.

vertices 1 and 3). Therefore, the SA algorithm starts PBT to close

this gap by checking for exactness of each bound to the true

coreness of the vertex. For instance, consider vertex 1. We should

check whether the coreness of it can be equal to 2 or not. In

probabilistic core decomposition, a vertex v has coreness k if
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Pr[dH(v) ≥ k] ≥ η, where H is a maximal subgraph in which

each vertex has degree of at least k . Checking Pr[dH(1) ≥ 2],

we see that this probability does not pass threshold η = 0.5,

and therefore vertex 1 cannot have coreness of 2 in subgraphH

which contains the neighbors 2 and 3. We perform the check of

Pr[dH(v) ≥ k] using an optimized version of dynamic program-

ming explained later. Vertex 0 cannot belong to the subgraph

because its bound is less than 2. For vertex 1, the maximum value,

for which the probability passes the threshold, is equal to 1. As

a result, the bound on the coreness of vertex 1 is updated to 1.

The same process is done for vertex 3. The values obtained at the

end of PBT are shown in the fourth column of Table 4, which

contains exactly the true core value of each vertex.

v η-degree LBT-Round 1 PBT-Round 1 Coreness

0 1 1 1 1

1 2 2 1 1

2 2 2 2 2

3 3 2 1 1

4 2 2 2 2

5 2 2 2 2

6 1 1 1 1

Table 4: Upper-bounds obtained at LBT and PBT phase of SA. η =
0.5 for the example. LBT and PBT correspond to locality-based and
probability bound tightening, respectively.

SA algorithm description. The main cycle of SA is given in

Algorithm 5. We define two Boolean variables, PBT_phase and
etadegree_change. Variable PBT_phase is used to determinewhether

a PBT phase has been started or not. The variable etadegree_-
change is used to record whether there is some vertex (in PBT

phase) with its η-degree changed or not. Initially both of them are

set to false. Then, we invoke LBT. Once this process terminates

(line 4), the vertex value (upper-bound) of all the vertices should

be checked for the possibility of gap between the current vertex

value and its true coreness. In fact, for each vertex v it should

be investigated whether the degree of v can be greater than or

equal to its current vertex value with probability no less than

η or not. If so, the current vertex value should be the same as

its η-deg(v). Checking whether a vertex should be processed (in

PBT) or not is done using the Boolean array check which contains
a flag for each vertex. If the flag is set to true, its vertex value

needs to be checked, using the PBT function (see line 10). Then,

the algorithm enters a PBT phase (lines 8-10). We make a clone,

checkNow, of check; then we reinitialize check to the all-false vec-

tor (lines 8-9). The clone is needed to be used in the for loop
in the PBT function (line 3, Algorithm 6). If after a PBT phase

terminates there is some vertex with its η-degree not equal to its

current vertex value, a new LBT phase is started again (line 15)

and this process continues until a fixed point is obtained for all

the vertices (lines 11-12).

PBT is given in Algorithm 6. The implementation iterates over

each vertex v , and checks if there is a gap between v’s value and
its true coreness; if so, that vertex should be processed. In this

process, only the neighbors ofv whose current values are greater

or equal to v’s value are considered because it is only them that

can contribute to v’s coreness. We compute Pr[d(v) ≥ C[v]] and
checkwhether it passes thresholdη or not. If Pr[d(v) ≥ C[v]] < η,
then, since we know that Pr[d(v) ≥ k] is non-increasing with k ,
the maximum k for which the probability passes the threshold is

returned and stored in variable localValue (line 5). In this case, all

the values from (C[v] − 1) down to localValue should be checked

as candidate values for the coreness ofv and the maximum value

(variable max in line 16), is chosen as the new value of v . This
way we make sure that the algorithm does not go below the real

coreness value at each PBT step (lines 8-15). For each value j in
the for loop (line 8) we check whether Pr[d(v) ≥ j] ≥ η (line

9). If so, max is set to j (line 10) and the vertex value is updated

to max (line 16). Otherwise, the value for which the probability

passes the threshold is stored in variable value (line 13), and if

it is greater than max, the latter is updated to the former (lines

14-15).

It should be noted that in the for loop, similar to what we

do in lines 4-5 of Algorithm 6, we should compute Pr[d(v) ≥ j]
and check if it passes the threshold or not. For this, we use an

optimized dynamic programming process as follows. Variable

j starts from C[v] − 1 and goes down to localValue. In order

to avoid computing these probabilities from scratch, once we

compute Pr[dH(v) ≥ C[v]], we cache the following probabilities

Pr[dH(v) = 0], · · · , Pr[dH(v) = C[v]], whereH contains all the

neighbors ofv whose upper-bound is at leastC[v]. Then, since for
j = C[v] − 1,H ′ contains all the neighbors whose upper-bound

is exactly equal to j (we denote this set byVj ) and higher, we can
have H ′ = Vj ∪ H . Therefore, to compute Pr[dH′(v) ≥ j] we
use the computed probabilities inH and only consider vertices

in Vj . This way we optimize DP to compute the probabilities

very fast since Vj is typically small (e.g., about 100 in our later

evaluated large-scale graphs). For the next iteration, we store

all the probabilities computed in the previous iteration and use

them to compute new probabilities. In the following we describe

our DP process in more detail.

Let assume that we have computed Pr[dH(v) = k], where k =
0, 1, ..., j , andH is a subgraph of the input probabilistic graph in

which each vertex has core value at least j . Also, letVj−1 contain

all the vertices (including the neighbours ofv) whose core value is
exactly j−1. Thus,H ′ = H∪Vj−1 is the subgraph whose vertices

have core value at least j − 1. We denote {e1, ..., ex } to be the set

of edges incident to v such that for each ei = (ui ,v), ui ∈ Vj−1,

where i = 1, ...,x . In order to evaluate Pr[dH′(v) = k ′], where
0 ≤ k ′ ≤ k , and avoid from scratch computation, we denote the

degree ofv in the subgraphH ′ by d(v | (H ∪{e1, ..., ex })). Then,
it holds that:

Pr[d(v | (H ∪ {e1, ..., ex })) = k
′] =

= pex Pr[d(v | (H ∪ {e1, ..., ex−1})) = k
′ − 1]+ (16)

+ (1 − pex )Pr[d(v | (H ∪ {e1, ..., ex−1})) = k
′].

LettingT (x ,k ′) = Pr[d(v | (H ∪ {e1, ..., ex })) = k
′], we have the

following recursive formula:

T (x ,k ′) = pexT (x − 1,k ′ − 1) + (1 − pex )T (x − 1,k ′) (17)

with the following base cases:{
T (0,k ′) = Pr[dH(v) = k

′], 0 ≤ k ′ ≤ k

T (x ,−1) = 0,
(18)

As can be seen, in the base case of the recursive formula, we

are using the previously computed probabilities to compute the

probabilistic degree of vertex v in the new subgraph, which

results in saving time significantly.

Since the vertex value of v is updated, all its neighbors with

value at least the vertex value of v should be checked for validity

of their vertex value. We show in the following that the PBT

estimate of the coreness eventually equals the true coreness for

each vertex.

331



Algorithm 5 SA k-core computation function

1: function SA_core_computation(Graph G)

2: PBT_phase ← f alse
3: C ← 0 ▷ array of core values

4: LBT()

5: check← True ▷ all-true vector

6: etadeдree_chanдe ← f alse
7: while true do
8: checkNow← check.clone()
9: check← False ▷ all-false vector

10: PBT(G, checkNow)

11: if etadegree_change = false then
12: break
13: else
14: PBT_phase = true
15: LBT()

16: etadegree_change← f alse

17: return cores

Algorithm 6 SA probabilistic bound tightening function

1: function PBT(G, checkNow)

2: for all v ∈ V do
3: if checkNow[v] = true then
4: if Pr[dH(v) ≥ C[v]] < η then
5: localValue← compute η-degH(v)
6: max ← localValue
7: m ← C[v] − 1

8: for all j ←m down to localValue do
9: if Pr[dH′(v) ≥ j] ≥ η then
10: max← j
11: break
12: else
13: value← compute η-degH′(v)
14: if value ≥ max then
15: max ← value
16: C[v] ←max
17: etadegree_change← true
18: for all u : (u,v) ∈ Nv do
19: if C[u] ≥ C[v] then
20: check[u] ← true

Correctness of the SA algorithm.We prove this by contradic-

tion. Suppose that after the last PBT phase, there is vertexu1 such

that k(u1) = k1 (real coreness) and core[u1] = k
′ > k1, where core

is the coreness assigned to u1 after PBT phase. Since k(u1) = k1,

k1 is the maximum value such that Pr[dH(u1) ≥ k1] ≥ η, and
Pr[dH′(u1) ≥ i] < η for all i > k1, whereH andH ′ are the max-

imal induced subgraphs in which each vertex has degree at least

k1 and i , respectively, with probability no less than η. Based on

the properties of cores of a graph, we know thatH ′ ⊆ H . If all

the neighbors of u1 inH have coreness k1, then u1 will not have

any neighbors with coreness greater than k1 inH
′
, so u1 eventu-

ally sets core[u1] equal to k1, which is a contradiction. The similar

argument holds if all the neighbors of u1 in H have coreness

greater than k1. Since k(u1) = k1 and core[u1] = k ′ > k1, there

should exist a neighbor u2 with k(u2) = k1 and core[u2] > k1

such that Pr[deдH′∪{u2 }(u1) ≥ k ′] ≥ η, because otherwise

Pr[dH′(u1) ≥ k ′] < η. In fact, the existence of this neighbor will

contribute to the assigned coreness of u1 to be greater than k1.

Now by reasoning similar to [35], we can build a sequence of

vertices S =
{
ui ,ui+1,ui+2, ...,uj = ui

}
connected to each other

with k(ui ) = k1 and core[ui ] > k1. For each vertex ui in S , let Vi
be the set of all neighbors of ui inH

′
. Now, we can define a set

U = S ∪
⋃
ui ∈S Vi . The corresponding induced subgraph G(U ) is

a k ′-core, because all the vertices in Vi have coreness at least k
′

with probability greater than or equal to η. Also, since for each
vertex ui in S , Pr[dVi∪{ui+1 }(ui ) ≥ k ′] ≥ η, we have that G(U )
is a k ′-core where k ′ > k1. Hence, we find a subgraph whose

vertices have coreness k ′ > k1 which is a contradiction because

we assumed that each vertex in S has coreness k1. Therefore, k1

is not a maximal (i.e. true) coreness.

Running time of the SA algorithm. The time complexity of

the algorithm is dominated by time complexity of the PBT be-

cause LBT has a time complexity of O(N − K + 1) [35], where

K is the number of vertices with minimal degree (in probabilis-

tic graphs it refers to η-degree). To analyze the time complex-

ity of a PBT step (Algorithm 6), let ∆ be the maximum upper-

bound on the η-degree over all the vertices in all the probabilistic

bound tightening steps. Lines 4 and 5 (η-degree computation)

are done simultaneously, and take time O(dvC[v]) for each ver-

tex v , where C[v] is the upper-bound on the η-degree of v . In
practice this computation is fast because the η-degree computa-

tion is performed on the subgraphH which contains only those

neighbors of v whose upper-bound is at least C[v] (not all the
dv vertices). In the worst case the inner loop is repeated C[v]
times, and each time the η-degree computation and the check-

ing of the probability threshold (lines 9 and 13) are performed

similarly to what explained above. Therefore, the time complex-

ity of this part is:

∑C[v]
j=1

O(jdv ). It should be noted that at each

iteration in the for loop, we use the previously computed prob-

abilities to avoid computing η-degrees from scratch. However,

here we consider the worst case analysis of the algorithm. The

time complexity of lines 18-20 is O(dv ). As a result, each PBT

iteration takes

∑
v ∈V

(
O(C[v]dv ) +

∑C[v]
j=1

O(jdv ) + O(dv )
)
=∑

v ∈V

(
O(∆dv ) + O(θdv ) + O(dv )

)
, where θ = ∆2

. Therefore,

the time complexity of each PBT round is O(mθ ), where m is

the total number of edges. In the worst case, we assume that at

each PBT round, the difference between the actual coreness of a

vertex and its initial estimate (the initial η-degree) decreases by
one unit. Thus, in the worst case Γ =

∑
v ∈V η-deg(v) PBT steps

are required. Therefore, the total running time can be expressed

as: O(Λm), where Λ = Γθ .
As in [35], the complexity upper bounds for such iterative

algorithms are not representative of practical performance. In

practice, LBT and PBT are fast, and the number of iterations is

only a handful, thus SA is an efficient algorithm for large datasets

while requiring only O(n) memory footprint.

6 EXPERIMENTS
In this section, we present our experimental results. Our im-

plementations are in Java and the experiments are conducted

on a commodity machine with Intel i7, 2.2Ghz CPU, and 12Gb

RAM, running Ubuntu 14.03. The hard disk is Seagate Barracuda

ST31000524AS 2TB 7200 RPM.

The statistics for all of the datasets we consider are shown in

Table 5. We obtained flicker, dblp, and biomine from the authors

of [6], and the rest of the datasets from Laboratory of Web Algo-

rithmics.
1
The datasets are divided by horizontal lines according

to their size, small (S), medium (M), large (L), and extra large (XL).

1
http://law.di.unimi.it/datasets.php
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We use the Webgraph framework [5] to store these datasets. The

flickr, dblp, and biomine datasets already contained probability

values. For the other datasets we generated probability values

uniformly distributed in [0, 1].

We evaluate our algorithms in three important aspects. First

is numerical stability. As [6] points out, using probability val-

ues may lead to numerical instability. We discuss this in Subsec-

tion 6.1. Second is the quality of our η-degree lower-bounds using
Lyapunov CLT. We evaluate and discuss this in Subsection 6.2.

Third is the efficiency of our proposed algorithms. We show our

performance results in Subsection 6.3.

6.1 Numerical Stability
For evaluating numerical stability we refer to the results of η-
degree computations shown in Table 6. The table contains results

for η = 0, η = 10
−9

and dv = 100, dv = 1000. For each com-

bination of η and dv we compute η-degrees for 1000 randomly

selected vertices. We show results for twitter-2010, but any of the

other datasets above can be used for this experiment to obtain

similar results.

Using the BigDecimal class in Java we adjust the numerical

precision to different levels when using DP for computing η-
degrees. We compare numerical results of DP using different

precision levels in Java, where DPU (DPwith unlimited precision)

is the highest level of precision and thus the gold standard. The

DP128 and DP256 columns in the table correspond to computing

η-degrees using DP by setting precision to 128 bit and 256 bit,

respectively. We observe that the more we increase the level

of precision, the longer it takes to perform the computation.

For example, when executing the DP algorithm for computing η-
degrees for vertices withdv = 1000, it takes more than 7000 times

longer to perform the computation using unlimited precision

than using the default (plain) number computation in Java.

Following [6], we start by setting η = 0 (top two parts). For this

η the (k,η)-core decomposition of a probabilistic graph should

coincide with the core decomposition of the deterministic graph

derived by ignoring probabilities. The accuracy can thus be mea-

sured by comparing, for each vertex, the (k, 0)-core number with

the core number obtained on the deterministic version of the

graph.

We can see that for η = 0, we need a lot of precision (bits) to

achieve error free computation. For example, when dv = 100, we

need at least 256-bit precision, whereas when the degree is 1000,

we need DP with unlimited precision.

The DPLog2 column of the table shows the results if we op-

erate in logarithmic space
2
. We can see that DP operating in

logarithmic space is very stable and never produces any error at

all, while being much faster than the DP variants operating with

specified precision.

We test η = 0 to compare our results to previous work [6].

However, the situation changes significantly if η is greater than

zero even by a very small amount. If we set η = 10
−9

(one bil-

lionth) or higher, we never get an error even for plain DP which

is much faster than any other DP variant including the one in log

space (see the two bottom parts). We tested with η in [10
−9, 0.5]

and obtained similar results.

The last column of Table 6 shows the accuracy of η-degree
computation when using Lyapunov CLT instead of DP. For η = 0,

computing η-degrees using CLT is error-free. More interesting

are the bottom two parts for η greater than zero. For vertices

2
https://en.wikipedia.org/wiki/Logarithm

Name |V | |E |

flickr 24,125 300,836

dblp 684,911 2,284,991

cnr-2000 325,557 2,738,969

biomine 1,008,201 6,722,503

ljournal-2008 5,363,260 49,514,271

arabic-2005 22,744,080 553,903,073

uk-2005 39,459,925 783,027,125

twitter-2010 41,652,230 1,202,513,046

Table 5: Dataset Statistics

DP DP128 DP256 DPU DPlog2 CLT

NE 100% 99% 0% 0% 0% 0%

AE 8% 5% 0% 0% 0% 0%

AT 0.09 11.44 12.57 27.71 1.56 0.05

NE 100% 100% 100% 0% 0% 0%

AE 40% 35% 28% 0% 0% 0%

AT 3.3 1238 1499 26355 222 0.1

NE 0% 0% 0% 0% 0% 43%

AE 0% 0% 0% 0% 0% 1%

AT 0.19 14.41 15.34 43.86 2.14 0.27

NE 0% 0% 0% 0% 0% 0%

AE 0% 0% 0% 0% 0% 0%

AT 3.7 1244 1382 23934 171 0.3

Table 6: Error statistics and average running time for different pre-
cision levels for η = 0 and η = 10

−9. NE stands for Number of Errors,
AE for Average Relative Error, andAT for Average Time (ms). Specif-
ically, AE=∥error ∥/true_value .
1st part:η = 0,dv = 100; 2ndpart:η = 0,dv = 1000; 3rd part:η = 10

−9,
dv = 100; 4th part: η = 10

−9, dv = 1000

DP: DP using plain numbers in Java; DP128, DP256, DPU: DP us-
ing BigDecimal in Java and setting the precision to 128 bits, 256
bits, and unlimited, respectively; DPlog2: DP doing computations
in log space.

with dv = 100, CLT makes errors in computation (on 43% of the

vertices), however, those errors are small; only 1% on average of

the η-degree value.
When considering vertices with dv = 1000, the computation

using CLT is error-free and furthermore it is orders of magnitude

faster than the variants of DP. Again, we also tested with a variety

of η levels and obtained similar results. Guided by the above,

in our algorithms, we set the threshold on dv to start using

Lyapunov CLT for computing η-degrees at 1500. Recall that the
η-degree computation is needed in PA when a vertex becomes

candidate for removal, while in SA it is needed when initializing

vertex values.

In summary, regarding numerical stability, our contribution is

to show that DP is sensitive to the setting of η value and becomes

error-free once η is greater than zero even by a small amount.

This was not investigated thoroughly before. On the other hand,

CLT is resilient to different η values (even η = 0). With respect

to efficiency in computing η-degrees, when dv ≥ 1000, CLT can

be used to produce error-free computations orders of magnitude

faster than all the DP variants.

6.2 Accuracy of CLT as a lower-bound
Here we investigate the quality of the lower-bounds on η-degrees
obtained using CLT. Namely, we compare CLT with another

method for deriving lower-bounds used in [6], which utilizes a
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Figure 2: Average error (average of difference from true core coreness) and max error (maximum difference from true coreness) versus itera-
tions for different values of η.

Dataset

Max Error

CLT Beta Function

biomine 1 1,663

cnr-2000 1 9,056

ljournal-2008 1 9,453

Table 7: Maximum error of CLT and regularized beta function for
selected datasets.

formula based on the regularized beta function.
3
We computed

initial η-degrees for biomine, cnr-2000, and ljournal-2008 with

η = 0.1 using DP, Lyapunov CLT, and regularized beta function.

Then, we computed the maximum error for CLT and regularized

beta function. We report the results in Table 7. As can be seen,

the maximum error for CLT for all the datasets is one which

means that the difference between the values obtained by CLT

and the true values is either zero or at most one. On the other

hand the max error for the regularized beta function is big, in

the order of thousands.

The small value of error for CLT is of great importance in the

main cycle of the PA algorithm where each vertex is processed

based on its lower-bound before its true η-degree is computed.

To summarize, since the difference between each vertex’s lower-

bound (computed by CLT) and its true η-degree is small, we only

need to do a small number of swaps to place a vertex in the proper

place in the array A resulting in significant savings in running

time.

6.3 Efficiency of the Proposed Algorithms
Table 8 shows the running times of the PA (left) and SA (right)

algorithms on the selected datasets. For twitter-2010 we report

the results for different values of η ranging from 0.1 to 0.5. For the

other datasets, we only show results for η = 0.1 and omit results

3
http://mathworld.wolfram.com/RegularizedBetaFunction.html

for η = 0.2, . . . , 0.5, since they are similar to those for η = 0.1

and their nature is the similar to what we see for twitter-2010.

For the small and medium datasets, PA produced the results in

about 2 sec for the small and 4 to 6 sec for themedium datasets. PA

also performed well on the large datasets; biomine and ljournal-

2008, computing the core decomposition of these two graphs

on average in only 40 sec and 2 min, respectively. Notably, for

biomine for instance, our algorithm is 32 times faster than the

algorithm of [6] (see also Table 10 which we discuss later).

The running time of PA is good on the very large datasets

as well. On uk-2005 and arabic-2005, PA completed in about 28

min and 42 min, respectively; less than one hour; in contrast

the state-of-art [6] was not able to complete for these datasets

in our machine after one day. For twitter-2010, which is much

larger than uk-2005 and arabic-2005, with a maximum η-degree
of 1, 500, 282, our PA algorithm completed in around two hours,

which is impressive for processing such a big dataset on our

consumer-grade machine.

The running times of SA are shown in Table 8 (right part).

For the small and medium datasets the total running times of SA

were similar to those of PA. For the large datasets, SA needed

more time, 2-3 times more, than PA. However, we recall that SA

has a much smaller memory footprint than PA, namely O(n) as
opposed to O(m) for PA. As such we are trading time for space

when using SA over PA, a beneficial feature to have when using

low-cost, cloud-server machines.

Another benefit of using SA is that it can produce good ap-

proximate results after only a small fraction of total iterations.

We discuss this more later in this section.

Effect of η values. We observe that the total running time does

not changemuch as the value ofη increases. This is because when
η increases, the η-degree of a vertex might not change or slightly

decrease and as such this does not have a significant effect on

the total running time of the algorithms. This is also evident in
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Table 9 where the average coreness (kavg) and the maximum

coreness (kmax) decrease only slightly as η increases. As before,

we report the average coreness, the maximum coreness, and the

maximum η-degree for twitter-2010 for η = 0.1, . . . , 0.5, whereas

for the other datasets we only show the values for η = 0.1.

Comparing with the algorithm of [6].We also compared the

running times of our algorithms, PA and SA, to that of the algo-

rithm of [6] (which we call BGKV
4
), for η = 0.1. We considered

the (k,η)-core implementation made available to us by the au-

thors of [6] with numbers represented by using BigDecimal in

Java. From this, we also created a second version, which we call

BGKV-2, where we replaced the computations using BigDecimal

with plain computations in Java. This is because as shown in

Subsection 6.1, for η greater than 0, the use of BigDecimal for DP

is not warranted.

Table 10 summarizes the running times on three datasets, flickr,

dblp and biomine. For biomine, which is a large dataset, we were

only able to use up to 64 precision bits. We can see that both

PA and SA are significantly faster than BGKV. For example, for

biomine our algorithms are more than 32 times faster than BGKV.

BGKV-2 is faster than BGKV. For the small datasets, flickr and

dblp, it is even faster than PA and SA. This can be attributed to

the fact that since the memory footprint is small, the benefit of

using our algorithms is outweighed by the overhead of using the

Webgraph compression structures in PA and SA.

The situation changes significantly as the size of the datasets

grows. For biomine, BGKV-2 is about twice slower than PA and

SA. For the rest of the datasets that are bigger than biomine,

BGKV-2 cannot run to completion in our machine after one

day. For those datasets, our algorithms, PA and SA, are the only

algorithms that can produce results in a matter of minutes or few

hours (for twitter-2010), Table 8.

Convergence speed of SA. To further investigate the execu-

tion of SA as it unfolds with time, we look at average error and

maximum difference (max error) from the true core value over

the sequence of iterations (see Figure 2). As shown by the plots

in the top part of the figure, the average error sharply decreases

for all the datasets which we consider, except for uk-2005 and

arabic-2005 whose average errors decrease more gradually.

Similar to the average error, the maximum difference from

the true core value (shown in the plots in the bottom part) drops

quickly, becoming 1 in only a fraction of the total number of

iterations. Furthermore, as the value of η increases, the total

number of iterations required decreases.

These results show that SA produces approximate results of

good quality in only a fraction of iterations needed for completion.

For instance, for arabic-2005 with η = 0.1, the average error

drops below 0.01 at iteration 200, only one third of the total

number of required iterations (about 600, see the end of the curve).

Depending on the application domain this can be a desirable

property during data analysis.

7 RELATEDWORK
Among different notions of cohesive subgraphs, k-core is one
of the most popular (cf. [1, 24, 30, 44, 46]. Other definitions of

dense subgraphs such as maximal cliques can also be computed

using k-core decomposition [16]. In deterministic graphs, the

computation of k-core has been well studied. Batagelj and Zaver-

snik [3] give an efficient peeling algorithm for deterministic core

decomposition. Montresor et al. [35] give a distributed algorithm

4
Abbreviation using the first letters of the authors’ names.

Dataset η PA-Running Time SA-Running Time

flickr 0.1 2.05 1.88

dblp 0.1 5.81 9.57

cnr-2000 0.1 3.99 8.49

biomine 0.1 40 40

ljournal-2008 0.1 120 342

arabic-2005 0.1 2,539 2,513

uk-2005 0.1 1,709 1,961

twitter-2010

0.1 8,096 21,662

0.2 8,547 20,268

0.3 8,358 19,670

0.4 8,364 20,544

0.5 8,929 20,111

Table 8: Running times (sec) of PA and SA. Numbers less than 10
have been rounded to 2 decimal places, and those above 10 have
been rounded to the nearest integer.

Dataset η-degmax kmax kavg η

flickr 78 46 3.70439 0.1

dblp 162 26 1.99825 0.1

cnr-2000 9,255 38 5.77113 0.1

biomine 6,269 79 3.08697 0.1

ljournal-2008 9,664 156 5.4735 0.1

arabic-2005 287,949 1,088 15.2903 0.1

uk-2005 888,658 274 13.0279 0.1

twitter-2010

1,500,282 986 15.7391 0.1

1,499,970 976 15.0873 0.2

1,499,744 970 14.6407 0.3

1,499,552 964 14.2919 0.4

1,499,372 959 13.9927 0.5

Table 9: Maximum η-degree, maximum probabilistic coreness, av-
erage probabilistic coreness, value of the threshold η.

Algorithm flickr dblp biomine

BGKV

pr=64 18 90 2,493

pr=128 27 133 N.P.

pr=256 35 148 N.P.

BGKV-2 0.49 4.26 85

PA 2.05 5.81 40

SA 1.88 9.57 40

Table 10: Running time (sec) of the algorithm in [6] with BigDeci-
mal (BGKV), and without (BGKV-2) versus PA and SA. “pr” is the
precision (bits) used. BGKV cannot run for biomine to completion
after one day (we use N.P. for “Not Possible”). BGKV-2 is faster for
the small datasets, flickr and dblp, but twice slower for biomine
than PA and SA. For the rest of the datasets that are bigger than
biomine, both BGKV and BGKV-2 cannot run to completion in our
machine after one day. Our algorithms PA and SA can produce re-
sults for every dataset, see Table 8.

for deterministic core decomposition and introduce the concept

of locality-based bound tightening. Wen et al. [45] propose I/O

efficient core decomposition algorithms which only allow node

information to be loaded in memory. Khaouid et al. [24] consider

deterministic core decomposition of large networks on a single

PC. Sariyuce et al. [39] propose incremental k-core decompo-

sition algorithms for dynamic graph data, in which edges are

added/deleted on a regular basis. In a similar setting, a distributed

k-core decomposition and maintenance algorithms are proposed

in [2]. Core decomposition in large temporal graphs is addressed

in [47].
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For probabilistic graphs, the generalization of k-core is the
notion of (k,η)-core introduced by Bonchi et al. [6], which we dis-
cussed in detail throughout the paper. Other notions of cohesive

subgraphs are studied in probabilistic setting [18, 36, 55]. [36, 53]

focus on the problem of finding k vertex sets with the largest

maximal-clique probabilities. Truss decomposition as another

notion of a cohesive subgraph has been studied in [18, 55].

Significant research has been done in mining and querying

probabilistic graphs. Reachability is addressed in [12, 20, 22, 23].

Shortest paths are studied in [38, 48] and frequent subgraph

mining in [10, 37, 52, 54]. Clustering analysis is investigated in

[26, 31] and subgraph similarity in [49].

8 CONCLUSIONS
We presented two efficient algorithms, PA and SA, for computing

the core decomposition of probabilistic graphs at web scale. An

important contribution of this work is the use of Lyapunov Cen-

tral Limit Theorem in these algorithms to compute tail probabili-

ties for η-degrees. We evaluated our algorithms, and showed that

they are efficient and numerically stable. Our algorithms were

considerably faster than the-state-of-the-art for large datasets.

For datasets larger than biomine, our algorithms PA and SA, were

the only algorithms able to run to completion on a consumer

grade machine. In particular, PA was able to compute probabilis-

tic core decomposition for uk-2005, arabic-2005, and twitter-2010

in 28 min, 42 min and 2.2 hours, respectively, which is impressive

for such large datasets. SA has smaller memory footprint and can

produce approximate results of high quality in only a fraction of

iterations needed for full completion.
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