
Phong Normal Interpolation Revisited

C. W. A. M. VAN OVERVELD
Eindhoven University of Technology
and
B. WYVILL
University of Calgary

Phong shading is one of the best known, and at the same time simplest techniques to arrive at
realistic images when rendering 3D geometric models. However, despite (or maybe due to) its
success and its widespread use, some aspects remain to be clarified with respect to its validity
and robustness. This might be caused by the fact that the Phong method is based on geometric
arguments, illumination models, and clever heuristics. In this article we address some of the
fundamentals that underlie Phong shading, such as the computation of vertex normals for
nonmanifold models and the adequacy of linear interpolation and we apply a new interpola-
tion technique to achieve an efficient and qualitatively improved result.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: three-Dimensional Graphics
and Realism—color, shading, shadowing, and texture

General Terms: Algorithms

Additional Key Words and Phrases: Computer graphics, geometric modeling, rendering,
shading

1. INTRODUCTION

Computer graphics, when viewed as a technical discipline, is relatively
young. Compared with mathematics or physics, for example, not much
tradition has emerged as yet as to the directions in which specialized
research will develop. An ongoing stream of new ideas and methods of a
wide variety are being generated by workers in the field, whereas the
eventual fruitfulness of these ideas and methods may only show up later.
Only a few of the results that have emerged so far may be classified as
paradigms, in that they are sufficiently mature and well established to

Authors’ addresses: C. W. A. M. van Overveld, Eindhoven University of Technology, Depart-
ment of Mathematics and Computing Science, P.O. Box 513, 5600 MB, Eindhoven, The
Netherlands; email: ^wsinkvo@info.win.tue.nl&; B. Wyvill, University of Calgary, Department
of Computer Science, 2500 University Drive N.W., Calgary, Alberta, Canada, T2N 1N4; email:
^blob@cpsc.ucalgary.ca&.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0730-0301/97/1000–0397 $03.50

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997, Pages 397–419.

continue as a template for further development. Among these established
methods are concepts such as the Z-buffer algorithm, the use of parametric
surfaces, ray-tracing, and Phong shading.

Identifying a paradigm in retrospect is not too hard; however, describing
it at a sufficient level of abstraction in order to catch its crucial concept
often requires some insight. This may help us to understand the cause for
the success of that paradigm, and it helps in exploring new applications,
alternatives, or ramifications.

For instance, the concept of Phong shading [Phong 1975] is introduced
(e.g., in Foley et al. [1990], p. 738) as mostly an extension of Gouraud
shading [Gouraud 1971] where one of the flaws of the latter is corrected, in
that highlights in the interiors of polygons can be reproduced. So at the
lowest level of abstraction, Phong shading could be seen as a method for the
synthesis of highlights. However true, this formulation would do no justice
to the creative process that gave rise to Phong shading as it is currently
used in most rendering systems. First of all, the notion “Phong shading”
refers to both an illumination model and an interpolation scheme for
normal vectors. The illumination model relates the illumination in a point
P to the local normal vector nP in that point, and the interpolation scheme
defines nP in terms of the normal vectors in the vertices of the polygon to
which P belongs. The observations, essential for devising Phong shading,
are:

(1) the visual appearance of an object is not only determined by its
geometrical shape but also by the distribution of reflected light;

(2) the amount of light that is reflected from a surface segment depends
chiefly on the local surface normal;

(3) A C0 (continuous) normal vector field matches with a C1 (differentiable)
surface geometry;

(4) piecewise linear interpolation is a simple way to achieve a C0 vector
field; and

(5) decoupling the orientation of the surface normals and the true shape of
the underlying geometrical model may cause a simple polyhedral model
to produce a visual appearance of a smoothly curved object, which
otherwise could only be achieved with a much denser polygonal mesh.

Summarizing (1) to (5) yields an even more abstract formulation of the
quintessence of Phong shading: normal vectors can be used to enhance the
visual appearance of geometrical objects. Notice that in the latter formula-
tion, we have abstracted away from some ingredients of the more commonly
used meaning of Phong shading. The following points concern this abstrac-
tion.

(1) The notion of visual appearance does not necessarily refer to highlights
only, but may include other aspects of illumination;

(2) apart from linearly interpolating normal vectors, there might be other
means for achieving the light reflection distribution of a (piecewise) C1

surface geometry;

398 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

(3) it is not necessary to refrain from geometrical modifications of the
underlying surface geometry in order to enhance its visual appearance,
or, stated differently: using the information of the normal vectors it
might be possible to come up with a somewhat adapted geometry that
matches better with a valid smooth object; and

(4) “enhancement” is not necessarily equivalent to “smoothing”: alternative
geometric operations may be thought of, parameterized by normal
vectors, that generate more involved geometries starting from simple
polyhedral objects.

The current article discusses some topics in relation to the items (1) and
(2). Of course, many authors already have elaborated on Phong shading,
methods for improving it, and have explored different applications for
normal vectors in the context of rendering. Section 2 deals with this
previous work. In Section 3 the question of where vertex normals come
from is addressed, this question being fundamental to whatever interpola-
tion or geometric modification technique will be used afterwards. Among
other things, an algorithm for the computation of vertex normals for
nonmanifold polyhedral models is presented. Next, in Section 4, an alterna-
tive to linear interpolation of normal vectors is investigated. A summary
and the conclusions of this article appear in Section 5.

2. PREVIOUS WORK

Normal vectors have been used to enhance the visual appearance of (mostly
polyhedral) geometrical objects in numerous ways ever since the introduc-
tion of Phong shading. Perhaps the best known example is bump mapping
(introduced by Blinn [1978]) but also displacement mapping [Cook 1984]
and environment mapping [Blinn and Newell 1976] may be thought of as
part of the Phong heritage. With the introduction of refraction in ray-
tracing [Whitted 1980], normals not only serve to compute the amount of
reflected light, but also to compute the direction of the refraction rays.

Also in modeling, normal vectors play a crucial role: for example, in the
polyhedron modeling system of Allan et al. [1989] modifications of a
polygon mesh can be made by shifting vertices in a direction normal to the
mesh. More recently, with the advent of constraint-based modeling systems
(e.g., the Mallet system [Mallet 1992]), normal vectors serve as a shaping
device in that a surface may be required to be perpendicular to a given
direction in a given point. The use of normal vectors, or rather tangent
vectors, in specifying tensor product surfaces has been well known since
the introduction of Hermite patches [Boehm et al. 1984].

Some authors have questioned the adequacy of the traditional two-fold
linear interpolation of normal vectors while scan-converting polygons for
rendering. Shoemake [1985] recommends the use of quaternion rotation,
rather than linear interpolation for the interpolation for orientations, to
arrive at a smoother appearance; Duff [1979] notes that the traditional
two-fold linear interpolation is not affine invariant which causes highlights
to move in a nonrealistic manner over rotating objects. Duff describes a

Phong Normal Interpolation • 399

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

method based on barycentric coordinates for curing this flaw. Also the
necessity of repeated renormalization of normal vectors has been subject to
investigation; Bishop and Weimer [1986] give an algorithm that circum-
vents this costly operation.

3. WHERE THE VERTEX NORMALS ORIGINATE

For polyhedral models, considered as a stream of polygons, vertex normals
are often calculated as a process separate from Phong shading. Phong
shading normally consists of, for every scanline, linear interpolation of
vertex normals to produce edge normals at the extremes of that scanline,
and subsequently, for every pixel, interpolating between these edge nor-
mals to find the normal vector in the pixel. Indeed, providing for normal
vectors in the vertices can be argued to be part of the modeling process.

Especially in the case of CSG modeling [Requicha 1980] or other types of
modeling that are based on assembling a scene from instantiations of a
limited (parameterized) set of geometrical polyhedral primitives, generat-
ing the normal vectors together with the locations of the vertices is the
most obvious thing to do, provided that the geometrical primitives are
closed shapes. For example, for a sphere, irrespective of the number of
polygons that is used to approximate its shape, the normal vectors are
generally all assumed to point in radial directions.

Even if the geometric model is not assembled from a set of closed
polyhedra, normal vector assignments can be rather straightforward. Con-
sider, for example, a geometrical model that is the isovalue surface of a
well-chosen potential function (as in Wyvill and Wyvill [1989]). Here it is
guaranteed that the surface is orientable; moreover, in a polyhedral ap-
proximation of such a surface, every vertex is completely surrounded by
polygonal facets that are all part of the surface. Then a normal vector can
be assigned to every vertex by appropriate averaging [Rogers and Adams
1976] of the normal vectors of the surrounding facets. (There is, however, a
problem here: it is not a priori clear what weights should be applied to the
normals when averaging.)

Also in the case where the polygons are consistently oriented (all clock-
wise or all counterclockwise), assigning normal vectors is a straightforward
task, and the standard algorithms such as in Newman and Sproull [1979]
and Rogers and Adams [1976] are perfectly adequate.

It is not always possible, however, to guarantee consistent orientation for
an arbitrary polygon mesh. First of all, if the polygon mesh is not a
manifold, there may not exist one global consistent orientation; as we
discuss later, it may be necessary then to identify several subsets of the
mesh that are manifolds and orient each manifold individually. Second,
even if the polygon mesh represents one orientable manifold, globally
consistent orientation may be hard to guarantee a priori, depending on the
modeling technique used. For instance, in a free-hand 3D geometric design
environment where a user may add vertices, edges, and polygons in an
arbitrary order, nothing is known about the relative orientation of these

400 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

polygons, and achieving a globally consistent orientation requires a sepa-
rate processing step.

This is the situation we consider in the current section: the geometric
model studied here consists of a set of vertices and a set of faces; a face is
just a cyclic list of vertices. This means that nothing is known a priori of
the topology: an edge of a face may be shared not only by two but also by
one, three, or more faces.1

The algorithm suggested here for obtaining vertex-normal vectors con-
sists of three passes. These are explained intuitively; a (somewhat more)
formal definition of the geometry is introduced, and the second and third
passes of the algorithm are described in terms of the formal definitions.

3.1 Intuitive Description

Normal vector interpolation between adjacent faces may only be expected
to yield an intuitively clear result if these faces share exactly one edge
where this edge is not shared by any other face. Such a pair of faces, say f1
and f2 are called good neighbors, abbreviated by f1 îì f2. The relation îì

induces a transitive closure *îì. Here f1
*îì f2 means that either

f1 îì f2

or

? f3: f1 îì f3: f3
*îì f2 .

In other words, the relation f1
*îì f2 exists if f1 and f2 are connected

eventually via a series of îì relationships. Note that if f1 and f2 share an
edge, say e, and also f1

*îì f2, it is still possible that a third face f3 is
incident with e and at the same time f1

*îì f3 and f2
*îì f3. So in this case

f1 îì f2 does not hold. This happens if the surface “loops back,” as one of
the configurations in Figure 1 illustrates.

The relation *îì is symmetric, reflexive, and transitive; it causes the set of
faces to be partitioned into equivalence classes. Normal vector interpola-
tion between two adjacent polygons that share an edge is allowed provided
that they belong to the same equivalence classes. In Figure 1, a schematic
configuration is depicted that gives rise to several equivalence classes.

If it were only for establishing if normal vector averaging between two
adjacent polygons is allowed, the actual construction of the equivalence
classes could be omitted. There is a second reason, however, which makes it
very convenient still to construct the equivalence classes. Indeed, comput-
ing a normal vector for a polygon leaves its sign undetermined. In order to

1One can adopt a somewhat liberal point of view towards edges where more than two faces
meet. One possibility is to argue that normal vector averaging is allowed at such edges
provided that the smooth surface which is being simulated is differentiable. Since this would
significantly complicate a quantitative analysis of the normal vector interpolation, we stick to
the more strict point of view that normal vector averaging is only allowed at edges where two
faces meet.

Phong Normal Interpolation • 401

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

average the normal vectors of two adjacent polygons, however, the normal
vectors of these two faces have to be consistently oriented. Now when using
an algorithm that builds an equivalence class starting from one polygon
and next recursively searches all adjacent polygons for good neighbors,
normal vector orientation can be done at the same time. Based on the
preceding considerations, a first estimate of a three-pass algorithm for
computing vertex normals looks like the following.2

(1) Read the geometric model; for all faces, compute the normal vector
(apart from its sign);

(2) partition the set of faces into equivalence classes and come up with a
consistent orientation for all normal vectors within each equivalence
class;

(3) for all faces, loop over their vertices; for each vertex, find the neighbor-
ing faces that belong to the same equivalence class and average the
normal vectors of these faces; assign the resulting normal vector to this
vertex; output the vertices and normal vectors for each face. If we find a
vertex where faces from different equivalence classes meet, normal
vector averaging is only performed with the normals from faces that

2In many systems, the cyclic order of the vertices defines the sign of the surface normal vector
direction. The algorithm discussed here makes no such assumption.

Fig. 1(a)—top: a polygon mesh that gives rise to two equivalence classes; Fig. 1(b)—bottom: a
polygon mesh that gives rise to one equivalence class. (Notice the three-face edge.)

402 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

belong to the equivalence class of the current face. So in this case, one
vertex will receive as many different normal vectors as there are
different equivalence classes among the incident faces of that vertex.

Before turning to a more detailed description, some remarks should be
made.

(1) Few as possible requirements should be imposed onto the input geome-
try. This means, for example, that the method should still yield reason-
able results in the case of moderately warped polygons (a “moderately
warped polygon” is a polygon where the vertices do not lay in a plane,
but the distance between the vertices and a best-fit plane is not too
large).

(2) The method used here for recursively orienting all normal vectors
within an equivalence class assumes that the associated (piecewise
polygonal) surface is orientable. If this is not the case (e.g., if the
geometry models a Moebius ring), a priori orienting the normal vectors
cannot work.3 Instead, the much more elaborate method needs to be
used of orienting the normal vectors each time when computing the
vertex normals, that is, during pass 3 of the algorithm.

(3) Assuming that polygons may have nongeometrical attributes as well
(e.g., color, transparency, texture, . . .) it may make sense to strengthen
the meaning of îì in that f1 îì f2 only holds if f1 and f2 also have the
same attribute set. A similar way to strengthen the meaning of îì is by
imposing a maximum angle between the normal vectors of two adjacent
polygons for allowing normal vector averaging.

(4) As we observed before, the recursive construction of the equivalence
classes does not guarantee the absence of edges that are shared by
three or more faces belonging to the same equivalence class. This and
similar “pathological” cases are dealt with during the third pass of the
algorithm. Fortunately, pass 3 is much more local in nature than pass 2
in that it is concerned with vertices in isolation rather than with the
entire geometric structure. This means that the computational burden,
involved with checking for pathological cases, is mostly quite modest.

3.2 Some Definitions

To give a more detailed version of the preceding algorithm, it is convenient
to introduce some notation first. Algorithms are written in a combination of
C-language (extended with the listof-keyword) and conventional set-theory
notation. Some extensions that are used are as follows:

Let S be a set, then uS u denotes its number of elements;

3The second pass of the algorithm for constructing the equivalence classes, which also
computes a consistent orientation, can detect if the surface is nonorientable; if we are about to
assign a given orientation, say upwards, to a polygon that has earlier received the other
orientation (downwards), we conclude that the surface is nonorientable.

Phong Normal Interpolation • 403

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

Let L be a list (5 an ordered set), then L.i is the ith element, 0 # i #
uL u 2 1;
Looping over all elements of a set S and assigning these to the dummy
variable a is denoted by for (a [S);
Selecting an element of a set S and assigning it to a is denoted by a :[
S;
Joining two sets S1 and S2 while maintaining the order is denoted by
S1 t S2. This applies as well to lists.

The types that are used are:
vector (float x, y, z;) /* the 3D coordinates */
face (list of vertex vl;

vector n;
int s;)

/* vertices of this face */
/* the normal vector */
/* the number of the
* equivalence class to which
* this face belongs or
* 21 if this face has not
* yet been encountered */

vertex (vector p;
list of face fl;)

/* the location */
/* the faces f for which
* this vertex occurs
* in f.vl */

geometry (list of vertex vl;) /* the list of constituent
* vertices */

list of face fl;) /* the list of constituent
* faces */

It is assumed that one global variable g, of type geometry, holds the
complete model.

3.3 The Algorithm for Computing Vertex Normals

The algorithm is presented in a top-down fashion. At the highest level, it
consists of merely three function calls.

InputGeometry()
/* the data structure g is completely built;
* all faces f have the directions of the normal
* vectors f.n, apart from their signs;
* the f.s-attributes are all set to 21 */

BuildEquivalenceClasses()
/* all faces belong to an equivalence class;
* all normal vectors f.n are consistently oriented
* within each equivalence class */

OutputFaces()
/* all faces have been output, including the vertex normals. */

Implementing the first pass is rather straightforward; it is not given
explicitly here.
The second pass, BuildEquivalenceClasses(), looks as follows.

404 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

BuildEquivalenceClasses()
{

int i;
face f;

i 5 0;
for(f [g.fl)
if(f.s 55 21)
{

f.s 5 i;
BuildEquivalenceClass(f);
i 5 i 1 1;

}
}
/* Every face belongs to an equivalence class;
* for the faces in each equivalence class,
* the normal vectors are consistently oriented. */

Next, the recursive function BuildEquivalenceClass is introduced.

BuildEquivalenceClass(f1)
face f1;
int i;
{

vertex v;
face f2;

/* precondition: f1.s Þ 21 */
for(v [f1.vl)
for(f2 [v.fl\{f1})

/* f1 and f2 share vertex v */
if(uf1.vl ù f2.vl\{v} u5 1 ∧ f1 and f2 share an edge ∧ f2.s 5 21)

/* f2 *îì f1, but f2 has not yet been added to
* this equivalence class. Notice that not necessarily f2 îì f1:
* there may be more faces in the current equivalent class that
* share an edge with f1 and f2. */

{
Orient(f1, f2);
f2.s 5 f1.s;
BuildEquivalenceClass(f2);

}
}

The function Orient(f1, f2) computes the normal vector of f2. Of the two
possible normal vectors f2.n and 2f2.n, the one oriented consistently with
f1.n is chosen. This means that if f1 and f2 meet at a sharp angle, the dot
product (f1.n, f2.n) is less than 0; otherwise it is greater than 0. This
function can be implemented rather straightforwardly. Notice that Orient
is called at most once for every polygon. For simplicity, the check for a
nonorientable polygon mesh has been omitted in the preceding listing.

We observe that, in the case of a nonmanifold mesh, the assignment of
polygons to equivalence classes is nondeterministic. There seems to be no
obvious local criterion to choose, for a polygon, “the most adequate equiva-
lent class” in case of several possible equivalence classes. This ambiguity
typically occurs at an edge where three or more polygons meet. The
consequence of the ambiguity may be that a connected submesh of the

Phong Normal Interpolation • 405

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

nonmanifold mesh is oriented independently from the rest of the mesh,
although the submesh will be internally consistently oriented.

Next we arrive at the third pass of the algorithm: the function Output-
Faces. It looks as follows.

OutputFaces()
{

face f;
for(f [g.fl)OutputFace(f);

}

The function OutputFace outputs one face; it consists essentially of a loop
over the vertices of that face.

OutputFace(f)
face f;
{

vertex v;
Output(“polygon heading”);
for(v [f.vl)
{
Output(v.p);
Output(VertexNormal(v, f));
}

}

Finally, the function VertexNormal is, of course, the heart of the algo-
rithm: there the actual normal vector averaging takes place. If the geomet-
ric model were to consist of one single manifold (i.e., every edge is shared
by precisely two polygons), such a function would be trivial, now that pass 2
of our algorithm has computed a consistently oriented set of face normals.
In that case, one may want to continue reading from Section 4. In the
general case, however, we have to deal with several “pathological” cases.
Two of these cases are the configuration where an edge is shared by three
or more faces (of the same equivalence class) and the case where faces meet
in one vertex rather than in a complete edge (see Figures 2(a) and 2(b)).

The function VertexNormal operates by first building a list of candidate
faces for normal vector averaging, and next pruning this list while search-
ing for pathological cases.

VertexNormal(v, f1): vector
vertex v;
face f1;
{

edge e;
list of face fl;
int i, j, k, m, progress;
face f2;

/* the face list fl will hold the candidate faces for
* normal vector averaging, namely, all faces that surround v and that
* are in the same equivalence class as f1.
* The first candidate, of course, is f1. */

fl 5 {f1};
for(f2 [v.fl)

406 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

if(f1.s 55 f2.s)fl 5 fl t {f2};
/* Now the list fl of candidate faces for normal vector averaging is
* complete.
* Start checking if some faces have to be excluded from fl.
* The only faces fs that may stay are those that share an edge with
* one of the other faces in fl, and for which no third face exists
* in fl that is incident in this same edge.
* We define three segments in the list: elements fl.i with 0 # i , k
* have been checked and they have been approved for averaging.
* Elements fl.i with k # i , m have not been checked. Elements fl.i
* with m # i , ufl u have been rejected. Initially,
* k 5 1 (since we know that f1 is approved for averaging),
* and m 5 ufl u. The algorithm terminates either when k 5 m (i.e., when
* all elements have been checked) or when no other faces fl.i in the
* segment k # i , m exist that share an edge with one of the faces in
* the segment 0 # i , k. The first segment will be called the “OK-
* segment,”
* the second segment the “TODO segment,” and the third segment the
* “NON-OK-segment.” The algorithm proceeds by inspecting elements
* from the
* TODO-segment and moving them either to the OK-segment or to the
* NON-OK segment. Also, if none of the faces in the TODO segment can
* be decided upon, the algorithm terminates. The variable

Fig. 2(a)—top: Even though the polygon mesh corresponds to one equivalence class, normal
averaging should not take place in the vertices labeled “X”; Fig. 2(b)—bottom: Even though
the polygon mesh corresponds to one equivalence class, normal vector averaging in vertex “X”
should only take the polygons “1” into account; the normal vector in “X” due to polygon “2” is
different from the normal vector due to polygon “1”.

Phong Normal Interpolation • 407

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

* progress serves to monitor this last condition. */
k 5 1;
m 5 ufl u;
progress 5 1;
while(k , m ∧ progress 55 1)
{

progress 5 0;
j 5 k;

/* search the TODO-segment to see if we can move an element either to
* the OK-segment or the NON-OK segment */.

while(j , m)
{

if(fl.j shares an edge e with one of the fl.i in the OK-segment)
{

progress 5 1;
/* we will now decide if fl.j goes to the OK-segment or the NON-OK
* segment,
* but in any case, progress is made since we can reduce the TODO-

segment. */
if(there is an f3 in fl, other than fl.j and fl.i, that also shares e)
{

/* fl.j goes to the NON-OK-segment */
Swap(fl.j, fl.m 2 1);
m 5 m 2 1;

}else
{

/* fl.j goes to the OK-segment*/
Swap(fl.j, fl.k);
k 5 k 1 1;

}
}
j 5 j 1 1;

}
}
return(1/k (i50

k21 vl.i.n);
}

Note that each face and each vertex is only visited once. Hence this
algorithm has complexity O(number of faces 1 number of vertices).

4. WHY LINEARLY INTERPOLATING NORMAL VECTORS IS WRONG

Images that are generated by means of the traditional Phong shading
algorithm typically look very good provided the polygonal mesh is suffi-
ciently dense. For larger polygons, several conspicuous artifacts may arise.
The silhouette edge problem is probably the most notorious one, but also
the shading may be thoroughly wrong. This is remarkable, since the size of
the polygons is not an input parameter of the algorithm. Closer observation
shows that indeed it is not so much the polygon’s size but rather the rate of
change of the normal vectors over the surface that may cause shading
artifacts. Consider, for example, the configuration of Figure 3. Here a
surface is depicted with a zigzag profile. Applying the normal vector
averaging algorithm of Section 3 (or indeed any other sensible approach for
obtaining vertex normals for this surface) yields pairs of adjacent polygons

408 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

where the normal vectors do not vary at all over the surface, resulting in a
completely flat appearance. This is at odds with the appearance of the
silhouette. This would be even more conspicuous if the surface were to be
moving: in this case the visual cues from the varying intensity distribution
and the geometry of the moving silhouettes would be contradictory, which
would be highly confusing to the perception of a viewer. Apparently, cases
exist where the traditional linear interpolation of normal vectors is not
such a good idea. More specifically, in Section 4.1 a quantitative analysis
shows that, in fact, linear interpolation generally leads to inconsistencies
between the geometric representation of the surfaces and the illumination
distribution; Section 4.2 suggests a simple remedy.

4.1 The Diagnosis

Part of the problem is related to the fact that a polygon mesh, which is
supposed to approximate a curved surface, is actually discretely sampling
this surface. By taking the sample density sufficiently high, the shape
difference between the curved surface and the mesh can be made arbitrary
small. The illumination distribution then may be obtained by assigning a
constant illumination value to each polygon, and still the resulting illumi-
nation will look natural.4 Since this would require extremely high sampling
densities, and hence large data volumes and processing capacity, it is
advantageous to reduce the sampling density, while at the same time
compensating for the illumination artifacts (i.e., undersampling artifacts)
by some form of illumination interpolation. Gouraud shading is the sim-

4Assuming that Mach bands will vanish if the intensity discontinuities are sufficiently close to
each other and sufficiently small.

Fig. 3. A surface with a zigzag profile gives rise to unnatural normal vector assignment.

Phong Normal Interpolation • 409

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

plest of these compensation strategies, and it is adequate if the sample
density is sufficiently high to capture all local maxima (highlights) and
minima of the shading distribution over the polygon mesh.

When proposing increasingly more advanced illumination or normal
vector interpolation strategies, we have to be aware that we are, in fact,
aiming to reconstruct a surface from a discretely sampled version. Recon-
struction cannot add information, but at least we can try to come up with a
reconstructed surface that is consistent with the sampled data, that is, that
both interpolates the vertices of the polygon mesh and is perpendicular to
the normal vectors. In the remainder of this section we show that the linear
interpolation of normal vectors in Phong shading is not consistent in this
sense; in the next section we propose an interpolation method that is
consistent.

In order to facilitate the analysis, we assume for a minute that normal
vector averaging takes place in 2D rather than 3D. This means that a
normal vector is directly equivalent to a tangent vector (whereas in 3D a
normal vector is equivalent to a tangent plane). Consider normal vector
interpolation along an edge. Choose the coordinate system such that the
x-axis lies along the edge, and (without loss of generality) the edge extends
from x 5 0 to x 5 1. With f(x) we denote the tangent of the curve that is
perpendicular to the interpolated normal vector anywhere. Indeed, the
curved surface (here, the curve) that will cause the smoothly varying
reflection is given by

F~ x! 5 E
j50

x

f~j!dj.

Now the normal vectors (and hence f) are given for x 5 0 and x 5 1, say f0
and f1, respectively. The function f(x) therefore reads

f~ x! 5 f0 1 x~f1 2 f0!.

The curve should pass through (0,0) and (1,0) since we have chosen the
x-axis along the edge. Thus F(0) 5 F(1) 5 0. This yields:

0 5 E
j50

x

f0 1 j~f1 2 f0!dj.

Evaluating the integral on the right-hand side, we find

0 5
1

2
~f0 1 f1!,

for which case

F~ x! 5 f0x~1 2 x!.

410 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

We conclude from this that F(x) only exists if f0 5 2f1; in all other
cases there simply exists no curve (surface) that passes through the
vertices, is perpendicular to the normals in the vertices, and has a linearly
changing tangent (normal vector). So except for the case of mirror-symmet-
ric normal vectors in the two opposite vertices of an edge, there is no
surface that would yield the normal vector distribution used by traditional
Phong shading.5 Now let us study the consequence of this observation for
the resulting illumination distribution. The illumination distribution is a
function of the normal vector distribution, but in the case of diffuse
reflection and only one light source, this function is not necessarily bijec-
tive. In that case, all normal vectors n that yield the same values for the
dot product (n, l), where l is the direction of the light source, give rise to
the same illumination. However, with three or more light sources i with
different directions li there are in general no two different normal vectors
n1 and n2 such that for all i, (n1, li) 5 (n2, li). So if in that case the light
sources have different colors, the illumination distribution is indeed a
bijective function of the normal vector distribution. This means that the
fact that the Phong normal vector distribution does not correspond to any
possible surface leads to the conclusion that there is, in general, no surface
that would yield the illumination distribution generated by traditional
Phong shading. Since most renderers use linear interpolation, most of the
pictures we have been producing are simulating surfaces that cannot
exist!6 We investigate in the next section what alternative interpolation
scheme could be used.

4.2 The Remedy

Before turning to the 3D case, we first try to come up with an improved
interpolation scheme to cure the problem as observed in Section 4.1. We are
in search of a function f(x) with f(0) 5 f0 and f(1) 5 f1 subject to the
boundary condition

0 5 E
j50

1

f~j!dj.

There is, of course, a continuum of functions f that satisfies the preceding
requirements; an often successful approach consists of demanding that f

5Although we do not claim this observation to be new, we have not found any references to this
observation in the literature.
6One may question the impact of this observation. Remember that a polygon mesh is a discrete
sampling of a curved surface. With a high sample density, the normal vectors in the vertices
will be close to perpendicular, and hence both f0 and f1 will be close to 0, so the condition for
symmetry f0 5 2f1 is not violated very badly. Hence the inconsistency may not be too
conspicuous for dense polygon meshes.

Phong Normal Interpolation • 411

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

should have a minimal average curvature. This is formulated as

E
j50

1

ḟ2dj

is minimal.
(Here ḟ means differentiation with respect to j.) Using variational calculus,
the problem of finding such a function that meets the boundary conditions
is formulated as

dS E
0

1

~ḟ 1 eḣ!2dj 1 lE
0

1

~f~j! 1 eh~j!!djD 5 0.

The d means that the entire expression should be independent for changes
in the perturbation function h for arbitrary h with h(0) 5 h(1) 5 0 up to
first order in the small parameter e. The Lagrange multiplier l is a priori
unknown, but its values will be fixed by substituting f back into the
boundary conditions. Evaluating the integrals up to first order in e and
partial integration yield

E
0

1

~22f̈ 1 l!h~j!dj 5 0.

This only holds irrespective of the choice of h iff

f̈ 5 l/ 2

or

f~j! 5 a 1 bj 1 lj2/4.

The values of a, b, and l are readily obtained by the boundary conditions
for f and *0

1 fdj; the final result is

f~j! 5 f0 2 ~4f0 1 2f1!j 1 3~f0 1 f1!j2.

We conclude that the old linear interpolation scheme should be replaced
by a quadratic interpolation scheme; moreover, in the single case where the
linear interpolation worked (f0 5 2f1), the two interpolation schemes are
identical. Moreover, in the case where f0 5 f1 (i.e., the infamous example
from the introduction of this section where we considered the surface with
the zigzag profile), the result is

f~j! 5 f0~1 2 6j 1 6j2!,

412 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

that is, a parabola which is symmetric with respect to j 5 1/2. In other
words, the quadratic interpolant as suggested here results in a normal
vector bent in the opposite direction halfway, which nicely matches with
our intuition for a curved surface that has to fit with the zigzag profile.

Unfortunately, the previous results do not generalize seamlessly to 3D.
This is due to the fact that the boundary condition

0 5 E
j50

1

f~j!dj

cannot be formulated in terms of the normal vectors instead of the
tangents. We use an approximation instead, which we call the plane curve
approximation, which is based on the following observation. Consider a
parameter curve F(s), for 0 # s , 1. In 2D, the relation between a normal
vector and a tangent is given by

Sn. x
n.yD}1

dF.y

ds

2
dF. x

ds
2 .

Or, with D. x 5 F(1). x 2 F(0). x and similarly for D.y,

S E
0

1

n~s!ds, DD 5 0.

(Notice that D actually is the vector that represents the edge along which
normal vector interpolation has to take place.) This relation does not in
general hold in 3D, but it obviously does if the curve is planar. Our
approximation now holds that we assume the interpolation curves to be
sufficiently planar to use the preceding formula.

If we again adopt a quadratic interpolation scheme7 (which has been
shown to yield curves with minimal average curvature when the normals
happen to be coplanar), we have to solve for the vectors a and b in

n~s! 5 n0 1 as 1 bs2

by demanding that

n~1! 5 n1

7As with linear interpolation schemes, quadratic interpolation can be computed incrementally;
see, for example, Foley et al. [1990], p. 511–512.

Phong Normal Interpolation • 413

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

and

S E
0

1

~n0 1 as 1 bs2!ds, DD 5 0,

gives

a 5 n1 2 n0 2 b.

Eliminating a yields

~b, D! 5 3~n0 1 n1 , D!. (1)

This means that we are allowed to impose one additional constraint; again
we demand the average curvature to be as small as possible.8 So we
minimize

E
0

1

~n̈~s!!2ds

subject to the boundary condition (1). Again using a Lagrange multiplier
(this time called m), this results in the following expression for b to be
minimized:

2~b, b! 1 m~b, D 2 3~n0 1 n1 , D!!.

Demanding the derivative with respect to b vanish, yields

4b 5 2mD,

and substituting this back into 1 gives

m 5 23
~n0 1 n1 , D!

D2
,

and hence

b 5 3
~n0 1 n1 , D!

D2
D.

8This time, we demand the average curvature of the normal vectors to be minimal rather than
the average curvature of the curve proper. This has two reasons: in 3D the curve itself is not
easily accessible; and the sequel of the derivation otherwise would be somewhat more
involved. Of course, which optimization criterion is chosen is largely arbitrary.

414 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

This completes the derivation of the quadratic interpolation scheme for
normal vectors. Applying it again to the example with n0 5 n1 5 n with a
coordinate system such that D 5 (1, 0, 0)T gives for n(s). x:

n~s!. x 5 n. x~1 2 6s 1 6s2!,

again a symmetric parabolic behavior results where the interpolated nor-
mal vector in s 5 1/2 points in the x-direction, opposite to n. x. In Figure 4,
the difference between linear and quadratic interpolation of normal vectors
is shown for interpolating normal vectors over an edge.

Color Plate A (upper left) shows a flat shaded geometric model of an
extruded and rotation-swept zigzag profile. In the upper right image the
conventional linear interpolant has been used, whereas the lower left was
rendered with the quadratic interpolant of this section. Notice that the
straight silhouettes of course are still visible, since up to now we have not
changed the geometry. The lower right image shows the same object
modeled with curved patches, approximated by a dense polygon mesh.
Notice that the intensity distribution is rather similar to the distribution
obtained with quadratic interpolation. Similar results are depicted in Plate B.

Performance Issues of Quadratic Normal Vector Interpolation. Linear
normal vector interpolation requires the computation of an expression of
the form n0 1 as, where n0 and a are vectors and s is a floating point
number between 0 and 1. Since s is incremented in equal steps over a
scanline segment, this has been implemented as one vector addition, or
three floating point additions per pixel.

Quadratic normal vector interpolation requires the computation of an
expression of the form n0 1 as 1 bs2, where n0, a, and b are vectors, and
s is again a floating point number between 0 and 1. Using forward

Fig. 4. Some examples of normal vector averaging over an edge. Left: traditional linear
interpolation. Right: quadratic interpolation. The dashed curve indicates the profile of the
surfaces that should be simulated.

Phong Normal Interpolation • 415

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

differences, an incremental implementation requires two vector additions,
or six floating point additions per pixel.9

The three additional floating point additions per pixel for quadratic
interpolation instead of linear interpolation should be compared with the
other calculations that have to take place for one pixel. For a very simple
illumination model this is:

—normal vector normalization: six multiplications plus a square root;

9For sufficiently long scanline segments, the setup computation of about 12 multiplications for
one scanline segment can be ignored; on the other hand, for very short scanline segments, the
difference between linear and quadratic interpolation is hardly visible, so in that case linear
interpolation can be used after all.

Plate A. Upper left: Flat shaded polygons on a zigzag profile. Lower left: Quadratic interpola-
tion of normal vectors on a zigzag profile. Upper right: Traditional linear interpolation of
normal vectors on a zigzag profile. Lower right: Reduction of straight silhouettes using a dense
polygon mesh approximation of a curved patch model of the same object.

416 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

—diffuse illumination contribution: dot product (5 three multiplications)
plus three multiplications for the red, green, blue components;

—specular illumination contribution: dot product (5 three multiplications),
exponential plus three multiplications for the red, green, blue compo-
nents; and

—six additions to accumulate all illumination components.

If we count a floating point multiplication just as expensive as a floating
point addition, and exponential and square root calculation each as five
multiplications, we find the equivalent of 34 additions. So the three extra
additions are less than 10% of the computational effort per pixel. For every
additional feature (texture mapping, anti-aliasing, distance attenuation,
. . .) the relative overhead of quadratic normal vector interpolation drops to
an even smaller amount.

Plate B: Same as Plate A for another 3D object.

Phong Normal Interpolation • 417

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

5. SUMMARY AND CONCLUSIONS

We study topics that are closely related to Phong shading. First, we propose
an algorithm to obtain normal vectors in the vertices of a polygon mesh
that are suitable for normal vector interpolation. The algorithm does not
use any assumptions on the topology of the polygon mesh: it may consist of
one or more orientable or nonorientable manifolds, and nothing is assumed
about the relative orientation of the polygons. It runs in O(number of
polygons 1 number of vertices).

Second, a modification of normal vector interpolation is suggested. It
replaces the traditional linear interpolation by a quadratic interpolation.
Using forward differences for incremental computation of the quadratic
terms in the interpolant, this can be implemented within the control
structure of standard polygon scan conversion algorithms. In that case, the
overhead consists of three additions per shaded pixel. For sophisticated
rendering algorithms, including, for example, texture mapping and/or
environment mapping, experiments show that this is an increase of (esti-
mated) less than 5% processing time.10 If anti-aliased texture is used, the
overhead turns out to be less than 1% in our renderer. The most significant
benefit of quadratic normal vector interpolation is that polygon models of
curved surfaces may be coarser without the risk of inconsistencies between
the shape and the illumination distribution.

REFERENCES

ALLAN, J., WYVILL, B., AND WITTEN, I. 1989. A methodology for polygon mesh modeling. In
Proceedings of CG International 89 (Leeds, U.K., June 27–30), Springer-Verlag, New York,
451–470.

BISHOP, G. AND WEIMER, D. M. 1986. Fast Phong shading. Comput. Graph. 20, 4 (Aug.),
103–106.

BLINN, J. AND NEWELL, M. E. 1976. Texture and reflection in computer generated images.
Commun. ACM 19, 10 (Oct.), 542–547.

BLINN, J. 1978. Simulation of wrinkled surfaces. Comput. Graph. 12, 3 (Aug.), 286–292.
BOEHM, W., FARIN, G., AND KAHMAN, J. 1984. A survey of curve and surface methods in

CAGD. CAGD Comput. Aided Geom. Des. 1, 1, 1–60.
COOK, R. L. 1984. Shade trees. Comput. Graph. 18, 3 (July), 223–232.
DUFF, T. 1979. Smoothly shaded renderings of polyhedral objects on raster displays. Com-

put. Graph. 13, 3 (Aug.), 270–275.
FOLEY, J. D., VAN DAM, A., FEINER, S., AND HUGHES, J. 1990. Computer Graphics Principles

and Practice. Addison-Wesley, Reading, MA.
GOURAUD, H. 1971. Continuous shading of curved surfaces. IEEE Trans. Comput. C-206

(June), 623–629.
MALLET, J. L. 1992. Discrete smooth interpolation in geometric modeling. Comput. Aided

Des. 24, (April), 178–191.
NEWMAN, W. M. AND SPROULL, R. F. 1979. Principles of Interactive Computer Graphics.

McGraw-Hill, New York.
PHONG, B.-T. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6

(June), 311–317.
REQUICHA, A. A. G. 1980. Representations for rigid solids: Theory, methods, and systems.

ACM Comput. Surv. 12, (4) (Dec.), 437–464.

10Of course, this depends somewhat on the chosen implementation of the other shading
calculations and the hardware characteristics.

418 • C. W. A. M. van Overveld and B. Wyvill

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

ROGERS, D. F. AND ADAMS, J. A. 1976. Mathematical Elements for Computer Graphics.
McGraw-Hill, New York.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves. Comput. Graph. 19, 3
(July), 245–254.

WHITTED, T. 1980. An improved illumination model for shaded display. Commun. ACM 23,
6 (June), 343–349.

WYVILL, B. AND WYVILL, G. 1989. Field functions for iso-surfaces. Visual Comput. 5, 1/2
(March), 75–82.

Received December 1993; revised August 1995; accepted April 1997.

Phong Normal Interpolation • 419

ACM Transactions on Graphics, Vol. 16, No. 4, October 1997.

