
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

Constructors & Destructors

� Constructing – Destructing and Classes in
C++

� USE CLASSES TO REPRESENT CONCEPTS

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Destructors

� Free resources

� Automatically called

� Variable goes out of scope

� Delete object in free store

� constructor/destructors

class Name { const char *s};

class Table {
Name* p;
size_t sz;

public:
Table(size_t s = 15)

 { p = new Name[sz=s]; }
 ~Table() { delete [] p; }
 Name* lookup(const char *);
 bool insert(Name *);
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Construction and Destruction

� Constructor of local variable executed each
time the thread of control passes through
the declaration

� Destructor executed each time the local
variable's block is exited

� Destructors for local variables are executed
in reverse order of their construction

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

Constructor/Destructors

� Class objects are constructed from the
bottom up: first the base, then the members,
and then the derived class itself.

� They are destroyed in the opposite order:
first the derived class, then the members,
then the base

� Members/bases constructed in order of
declaration – destructed in reverse

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Copy and assignment
constructors

Rule of thumb: everytime you have pointer members you need one

Thing(const Thing&); // copy constructor
Thing& operator=(const Thing&); // assignment constructor

Hint: if you want to prohibit assignment/copying make these functions
private

copy constructor needs only to allocate necessary resources
assignment operators must first cleanup then allocate resources

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Assignment operator

String& String::operator=(const String& s)
{

if (&s != this) { // IMPORTANT FREQUENTLY OMMITTED
 delete [] data;
 data = new char[strlen(s.data)+1];

 strcpy(data,s.data);
 }
 return *this;
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Class hierachies

� protected, private, public

� virtual (can be overriden by derived classes)

� virtual = 0; (just interface)

� A form of polymorphism

� To get polymorphic behavior member
function must be virtual and objects
manipulated through pointers or references

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

A classic example
class Employee {
 string name; ...
public:
 Employee(const string& name, int dept);
 virtual void print() const; // provides “default” behavior
 // which derived classes can
 // can modify
}

class Manager: public Employee {
set<Employee*> group;

public:
Manager(...);

 void print() const; // can define derived specific print function
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Derived Classes

� Important to provide virtual destructor for
any class that can be a base class

� When anyone ever executes a delete
expression on any object of type B* that
actually points to an object of type D

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Surrogate classes

class Vehicle {
public:

virtual double weight() const = 0;
 virtual void start() = 0;
};

class RoadVehicle: public Vehicle {....}
class Automobile : public RoadVehicle

We want to have a container of Vehicles of different kinds :
Vehicle parking_lot[1000]; // this doesn't work

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

Why it doesn't work

Automobile x = /* */
parking_lot[num_vehicles++] = x;

This converts x to a Vehicle by slicing it (removing all members
not found in the Vehicle class). The truncated object is copied
which is not what we want.

In fact we have said that parking_lot is a collection of Vehicles,
not a collection of objects derived from Vehicle

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

The classic solution
Vehicle* parking_lot[1000]; // array of pointers

Automobile x;
parkin_lot[num_vehicles++] = &x;

Works but has two disadvantages:

1) If pointer is to a local variable danger of loosing that memory

Solution: parking_log[num_vehicles++] = new Automobile(x)
copy objects, free objects pointed two
Disadvantage: burden of dynamic memory management

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

More problems
Even with explicit copying and freeing this works only when we
know the static type of objects we wish to install in parking lot.

For example:
if (p != q)
 { delete parking_lot[p];
 parking_lot[p] = parking_lot[q];
 } // will not work they will point to the same object

if (p != q) {
delete parking_lot[p];

 parking_lot[p] = new Vehicle(parking_lot[q]);
} // doesn't work creates slicing truncated object

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Clone (virtual copy) function

class Vehicle {
public:

virtual double weight() const = 0;
virtual void start() = 0;
virtual Vehicle* clone() const = 0;
virtual ~Vehicle() {};

}

Vehicle* Truck::clone() const
{

return new Truck(*this);
}

Goal: way to create copies
of objects whose type we do
not know at compile time

The way to do anything in
C++ with objects of unknown
type is to use a virtual
function

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Surrogate class

� Something that acts like a Vehicle, but
pottentially represents an objects of any
class derived from Vehicle

� USE CLASSES TO REPRESENT CONCEPTS

� Each surrogate will stand for an object. The
object will persist exactly as long as the
surrogate is associated with it.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria16

Implementation

class VehicleSurrogate {
public:

VehicleSurrogate();
VehicleSurrogate(const Vehicle&);
~VehicleSurrogate()
VehicleSurrogate(const VehicleSurrogate&);
VehicleSurrogate& operator=(const VehicleSurrogate &);

private:
Vehicle *vp;

};

VehicleSurrogate::VehicleSurrogate(): vp(0) {}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria17

Implementation (cntd)

VehicleSurrogate::VehicleSurrogate(const Vehicle& v):
vp(v.clone()) {}

VehicleSurrogate::~VehicleSurrogate() {delete vp; }
VehicleSurrogate::VehicleSurrogate(const VehicleSurrogate& v) :

vp(v.vp ? v.vp->clone() : 0 {}
VehicleSurrogate&
VehicleSurrogate::operator=(const VehicleSurrogate& v) {

if (this != &v) {
delete vp;
vp = (v.vp ? v.vp->clone() :0);

 }
return *this;

}
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria18

Some more details

double VehicleSurrogate::weight() const
{

if (vp == 0)
throw “empty VehicleSurrogate.weight()”;

 return vp->weight();
}

Functions of the base Vehicle class must be redirected that way

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria19

What have we achieved ?

VehicleSurrogate parking_lot[1000];
Automobile x;
parking_lot[num_vehicles++] = x;

same thing as:
parking_lot[num_vehicles++] = VehicleSurrogate(x);

When parking lot deleted all copies are deleted.

Some problems: copies can be costly for large objects (use counts are
a possible solution)

