
CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria1

CS 330 Lecture 18

� Chapter 5 Louden

� Outline

� The symbol table

� Static scoping vs dynamic scoping

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria2

Symbol table

� Dictionary associates names to attributes

� In general: hash tables, tree and lists
(assignment 3) can be used

� Lexically scoped language with block
structure

� C, Pascal, Ada, (Java, C++) etc.

� Needs stack like operation (entry-exit) from
block

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria3

Declarations

� Establishing binding

� int x; double f(int x);

� compound statements

� { }

� begin end

� class declarations

� scope of binding is the region of program
were a binding is maintained

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria4

C scope rules

� lexical score

� scope of binding is limited to the block in which
the associated declaration appears

� declaration before use rule

� scope hole

� visibility vs score

� scope resolution operator

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria5

Lexical Scope An example
1: int x;
2: char y;

3: void p(void)
 { double x;
 4: ...
 {
 5: int y[10];
 }
...
6: }

7: void q(void)
{
 8: int y;

}

9: main()
{

10: char x;
 ...
}

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria6

Symbol Table
Label 4:
x -> double local to p -> int global
y -> char global
p -> void function

Label 5:
x -> double local to p -> int global
y -> int array local to nested block in p -> char global
p -> void function

Label 6:
x -> int global
y -> char global
p -> void function

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria7

Dynamic vs Static Scoping
1: int x = 1;
2: char y = 'a';
3: void p(void) {
4: double x = 2.5;
5: printf(%c\n”, y);
6: { int y[10]; }}

7: void q(void) {
8: int y = 42;
9: printf(“%d\n”, x); p();}
10:
11: main() { char x = 'b';
12: q(); return 0;}

Line 11:
x -> char = b local to main -> int = 1 global
y -> char = a global
Line 12:
x -> char = b local to main -> int = 1 global
y -> int = 42 local to q -> char = a global
Line 9:
x -> double = 2.5 -> char = b local to main ->
int 1 global
y -> int 42 -> char a global

Static scoping output: 1 a
Dynamic scoping : 92(b) *(42)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria8

Problems with dynamic scoping

� Semantics are based on program execution
not reading

� static typing and dynamic scoping can't
coexist

� Maintaining lexical scope in interpreter hard

� Scheme, ML

� Dynamic scoping easier to implement

� APL, Snobol, (old Perl), (old LISP)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria9

Nested symbol tables

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria10

Name resolution & overloading

� ad-hoc polymorphism (the + operator) vs
parametric polymorphism (the list length
function)

� C++, Ada = overloading of operators,
functions

� Java = overloading of functions

� Haskell = overloading of operators,
functions plus new operators

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria11

How can overloading be done ?

� Extend lookup with calling context

� Still complex situations can arise max(2.5, 3)
?

� Java : only lossless coersion

� Different namespaces (Java, ML)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria12

The environment

� Bindings of names to locations

� Fortran – static environment

� Lisp - dynamic environment

� Most languages – combination

� Some names don't need location

� const int MAX = 10;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria13

Compilers vs Interpreters

� Compilers: symbol table what allocation
code to generate as declaration is processed

� Interpreters: symbol table and environment
are combined

� Typically globals are allocated statically,
locals dynamically

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria14

Stack

X

Y

X

A

Environment = linear sequence of
memory cells

what about if I call a function p
many times ?
Activation records

unused space

1

2

3

4

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria15

Pointers

� Is a storage location whose stored value is a
reference to another object

3

2

4

unused space

1

2

3

4

1

In C: int *x;

causes allocation of a pointer
variable, but NOT the allocation
of a object to which x points

Convention: 0 or NULL
Java: null, Pascal nil

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria16

More pointers

� *x = 2;

� the value pointed by x (a pointer variable) is 2

3

2

4

unused space

1

2

3

4

1

int *x;
x = 3;
*x = 2;

3

2

4

unused space

1

2

3

4

2

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria17

Anonymous pointers

� void* x; (anonymous pointer variable x)

� x = (int) malloc(sizeof(int));

� Allocate a block of memory that fits an
integer

� Dereferencing operator * (*x)

� Pointer type is also confusingly * (for
example int* or float*)

� free(x);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria18

Dynamic allocation – Heap

� Memory used for calls to malloc, free is
called the heap

� In C, C++ manual allocation is possible

� Java and ML don't allow allocation

� Static, Dynamic, Stack-based and Heap
allocation

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria19

Memory layout

stack

static global area

heap

Heap storage can be released
anywhere leaving “holes”. Simple
stack doesn't work. Functional languages
automatically manage the heap.
Java allows heap allocation but not
deallocation.

Manual control of the heap results
in very few cases in more efficient code
but invites all kinds of unsafe operations.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria20

Variables – Storage semantics

� Value can be changed during execution

� name – location – value

� x = y

x

y

5

10

x

y

10

10

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria21

l-value, r-value

	 x = y

	 x is the name of a location of a variable

	 y is the value of the variable named y

	 In ML distinction explicit:

 x := !x +1;

 x := !y;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria22

“Address of”operator in C

	 int x;

	 &x is the address of x and can be assigned to
a pointer;

	 For example:

int x;
x = 10;
int *y = &x;
int z = *y;
int k = &y; (what does this one do ?)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria23

The swamp of C

	 Address arithmetic (pointers can be added
subtracted like integers)

	 mixing dereferencing and address of
operators expressions and assignment can
lead to some very confusing and complex
situations

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria24

Pointer semantics

	 Assignment by sharing

	 Assignment by cloning
 done in Java by
 implicit pointers

*x = *y
(pointers under
under the hood)

x

y

5

10

x

y

5

1010

1010

clone

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria25

Value semantics – constants

� No location just a value

� Not necessarily known at compile time once
computed never updated

� Examples: ML, Single assignment C

� In Java, keyword final is used for constants
(gets only one final value) and static can be
used when value can be computed prior to
execution.

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria26

Function Definitions

� In virually all languages functions are
essentially constants whose values are
functions

� In ML: val square = fn(x:int) => x * x;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria27

Function Pointers in C

int gcd(int u, int v)
{

if (v == 0) return u;
 else return gcd(v, u % v);
}

/* function variable – pointer syntax necessary otherwise prototype */
int (*gcdv)(int, int) = gcd;

/* can be called */

gcdv(15,10)

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria28

Aliases

� Same thing bound to two different names at
the same time

int *x, *y;
x = (int *) malloc(sizeof(int));
*x = 1;
y = x;
y = 2; /* changes x although x doesn't appear in the assignment */
printf(“%d\n”, *x);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria29

Dangling references

� Location that has been dellocated from the
environment but can still be accessed

� pointer to a deallocated object:

int *x, *y;
x = (int *) malloc(sizeof(int));
*x = 2;
y = x;
free(x);
printf(“%d\n”, *y);

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria30

Garbage

 Eliminate dangling reference by never
deallocating

 Garbage only wastes memory doesn't
corrupt the program behavior

int *x;
...
x = (int *) malloc(sizeof(int));
x = NULL;

CS330 Spring 2003
Copyright George Tzanetakis, University of Victoria31

Garbage collection

� Lisp, Smalltalk, Java

� ML has a very efficient garbage collector

� There is a lot of interesting work in how to
implement garbage collectors – some of you
may learn about it when you write a
Compiler

