
One-Dimensional Linear Hybrid Cellular Automata: Their

Synthesis, Properties and Applications to Digital Circuits Testing

M. Serra, K. Cattell, S. Zhang, J.C. Muzio, D.M. Miller
Dept. of Computer Science

University of Victoria
Victoria, B.C., Canada

January 27, 2009

Abstract

The increasing use of linear hybrid cellular automata (LHCA) in VLSI design
and test and other applications for such purposes as pseudo random pattern genera-
tion has made it important for users to understand their design, use and properties.
In this tutorial paper, the background for cellular automata is explained, and a re-
cent synthesis algorithm with low complexity, which solves the problem of finding a
particular linear hybrid cellular automata, is described. LHCA have powerful concate-
nation and partitioning properties allowing several smaller maximal length LHCA to
be combined into a much larger maximal length LHCA. Their performance in this
regard is compared with linear feedback shift registers (LFSRs), which do not have
quite as much flexibility. The basis for LHCA being better generators than LFSRs
for testing delay type faults is explained by showing the richer nature of the transition
pairs generated by the LHCA. 1

1 Introduction

Recently, we have seen a large increase in both the interest in and use of linear hybrid cellular
automata (LHCA) in many areas of digital design, but especially in testing applications. In this
paper, we do not discuss all of the existing work on these finite state machines, but limit observes
to introducing the required background which potential users need before they can make effective
design decisions concerning the use of such devices. We give readers sufficient background to un-
derstand the areas where LHCA can be used effectively, how to design them, and why they perform
better than linear feedback shift registers (LFSRs) for certain applications (such as generators for
testing delay type faults in digital circuits).

The LHCA considered are linear finite state machines (LFSMs)[28] each composed of a one-
dimensional array of cells. Cells are only allowed to communicate with their immediate neighbors.
We only examine LHCA consisting of rule 90 and rule 150 cells since it is shown in [26] that this is
a necessary condition for the LHCA to have a maximum length cycle which is a desirable property
in most instances.

A fundamental problem for LHCA is whether there exists an LHCA for any given polynomial
over GF(2). If one does, we want to identify it. Some researchers (e.g., Das, et al. [11] and
Bardell [1]) have performed exhaustive simulation studies and have conjectured that there are two
LHCA for any given primitive polynomial. However, to our knowledge, no one has studied this
theoretically.

1This work was supported in part by research grants and a strategic grant from the Natural Sciences and Engi-
neering Research Council of Canada and by an equipment loan from the Canadian Microelectronics Corporation.
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In section 3, we introduce an elegant synthesis algorithm based on the Euclidean algorithm
which can easily determines an LHCA for any given irreducible polynomial of practical order (for
example, it took 10 CPU minutes on a SPARC 10 workstation to find a 1600-cell LHCA). As a
general result, Cattell and Muzio [8] have shown that for any given irreducible polynomial, there
exist two LHCA.

The partitioning problem concerns how an LFSM with maximum length cycle can be easily di-
vided into smaller LFSMs which also have maximum length cycles. Conversely, the concatenation
problem concerns how smaller LFSMs with maximum length cycles can be easily combined into a
larger LFSM which also has a maximum length cycle. LFSMs with superior partitioning and con-
catenation properties, i.e., those which are easily split and combined without loss of the maximum
length cycle, offer the most flexibility in VLSI design and test. Therefore, it is important to inves-
tigate such properties for a given LFSM. In section 4, we discuss partitioning and concatenation,
as well as some potential advantages of LHCA versus LFSRs in regard to these operations.

For many years, researchers (e.g., Bardell [1, 2], Hortensius, et al. [15, 14], and Wolfram [33])
have considered the evaluation of the effectiveness of test vectors generated by a given LFSM
(LHCA or LFSR). For the detection of faults with sequential behavior, Furuya and McCluskey in
[12] propose a method of assessing the two-vector testing capabilities of a given sequence of vectors.
For a 2n-cell LHCA, an approach is given in [23] to select an n-cell substate vector such that the
corresponding vector sequence has 22n transitions. In section 5, we extend the earlier work in [34]
to a general case in which, we concentrate on any k-cell substate vector and evaluate the number of
distinct k-cell (1 ≤ k ≤ bn/2c) substate vectors which produce the maximum number 22k distinct
transitions for any n-cell LHCA and LFSR with maximum length cycles. The derivation is based
on the concept of the partner set in [36, 35] rather than the evaluation of the rank for a specified
matrix as mentioned in [12].

In section 6, simulation studies of the ISCAS85 benchmark circuits provide evidence that our
analysis of transition properties presented is indeed a reasonable metric of the effectiveness of the
test vector generator. We also examine the use of an LHCA as a signature register, which is one
of the applications of LFSM in Built-In Self-Test. Finally in section 7, we summarize our major
results and set up a framework for future work.

To appreciate the material presented later in the paper, readers unfamiliar with the area should
consider the review of linear finite state machines, linear feedback shift registers, and linear hybrid
cellular automata which appears in the following section.

2 Preliminaries

In this section we give a brief theoretical background of linear finite state machines and their
algebraic context, and show their different representations. All arithmetic is performed in the
normal binary field GF(2), so that the + operation is addition modulo 2 (Exclusive-OR).

2.1 Linear Finite State Machines

For our purposes, a linear finite state machine M is comprised of n single-bit memory elements,
and a transition function. The value state of the ith memory element at time t is denoted s

(t)
i . The

state of M at time t is denoted s(t).
The transition function f determines the state of M at time t + 1 from the state at time t; that

is s(t+1) = f(s(t)). The next state function of a machine can be described graphically using a state
graph. For M to be linear means that f is a linear function from n-bit vectors to n-bit vectors, so
that

f(a + b) = f(a) + f(b)
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for any pair of states a and b. The transition function f can be specified as n functions f1, f2, . . . , fn,
where the ith function calculates the next state of cell i:

s
(t+1)
i = fi(s(t)).

The transition function f is linear if and only if each of the fi are linear.
The LFSM described above is autonomous, since it has no input. In the remainder of this paper,

wherever an LFSM is used, it means an autonomous LFSM, if not otherwise specified.
A basic result in linear algebra is that a linear transformation can be represented by a transition

matrix and that, conversely, such a transition matrix represents a linear transformation. Thus we
can use matrices to represent and analyze an LFSM.

If, for two square matrices A and B, there exists an invertible matrix P such that B = P−1 ·A·P ,
then A is said to be similar to B [28, page 306]. Moreover, two matrices represent the same linear
operator if they are similar to each other [20, page 155]. Of importance here is the result that if two
matrices are similar nonsingular state transition matrices, then their state graphs have identical
cycle structures and differ only in the labeling of the states [28, page 307].

From this theorem, we see that the problem of finding the cycle structure induced by a matrix
A reduces to the problem of finding the cycle structure for some matrix similar to A. Since the
matrix can represent an LFSM, the theorem gives us the freedom to select the machine of least
cost in an equivalence class.

The characteristic polynomial of an n × n matrix A is defined as det(xI − A) [28, page 310].
A polynomial of degree n which is not divisible by any polynomial of degree k, (0 < k < n), is
called irreducible [24, page 148]. An irreducible polynomial of degree n is primitive if it divides
xm− 1 for no m less than 2n− 1 [24, page 161]. The important consequence of the primitivity of a
characteristic polynomial is that the corresponding LFSM in its autonomous operation traverses all
possible 2n− 1 non-zero states, before returning to its initial configuration. This property, called a
maximum length cycle, is of importance in many applications (for example, signature analysis in
VLSI testing).

2.2 Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) [28] is an LFSM defined as a collection of storage elements
and XOR gates which perform addition over GF(2)

chained together and controlled by a synchronous clock. There are two configurations for the
LFSR: a Type I LFSR, which has the exclusive-OR gates between the cells, and a Type II LFSR,
which has exclusive-OR gates on the feedback path. We assume that shifting and numbering of
the cells are from left to right. For convenience, the Type I and Type II LFSRs are simply named
LFSR(I) and LFSR(II), respectively.

- - - - - -?⊕

s1 s2 s3 s4 s5

(a)

- - - - - -
6
⊕�

s1 s2 s3 s4 s5

(b)

Figure 1: (a) Type I LFSR and (b) Type II LFSR with characteristic polynomial x5 + x2 + 1.

Figure 1 shows the two types of LFSRs derived from the same characteristic polynomial x5 +
x2 + 1. The difference between them is the placement of the exclusive-OR gates. We can write
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a set of state transition equations for any LFSR. For example, the equations for the LFSR(I) of
Figure 1(a) are:

s+
1 = s5,

s+
2 = s1,

s+
3 = s2 + s5,

s+
4 = s3,

s+
5 = s4,

where si is the present state of the cell i and s+
i is the next state. Simply, we can evaluate the

next state as follows, with all operations being carried out over GF(2):

[s+
1 , s+

2 , s+
3 , s+

4 , s+
5 ]T = A · [s1, s2, s3, s4, s5]T ,

where A is a state transition matrix for the LFSR(I) of Figure 1(a) given by
0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

 .

Similarly, the state transition matrix for the LFSR(II) of Figure 1(b) is given by
0 0 1 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

The generating function p(x), corresponding to an LFSR, is called the characteristic polynomial.
This is also the characteristic polynomial of the transition matrix A. Both LFSRs in Figure 1 have
p(x) = x5 +x2 +1 as their characteristic polynomial. A nonzero polynomial coefficient implies that
a connection exists in the machine implementation, while a zero polynomial coefficient implies that
no connection exists. An LFSR is cyclic in the sense that, when clocked repeatedly starting from
a nonzero state, it traverses a fixed sequence of at most 2n− 1 different states (the successor of the
all zero state is itself). If all 2n − 1 nonzero states can be generated within the same cycle, it is
called a maximum length cycle. The characteristic polynomial associated with a maximum length
LFSM is primitive [3, page 77].

If it is desirable to extend the period of a sequence from 2n−1 to 2n, nonlinear feedback functions
are required [3, page 74]. Sequences generated by LFSMs are called pseudorandom sequences, since
they are periodic and deterministic, but they have many of the properties of random sequences.

2.3 One-Dimensional Linear Hybrid Cellular Automata

Cellular automata are LFSMs, defined as uniform arrays of identical cells in an n-dimensional space,
where cells are restricted to local neighborhood interaction and have no global communication.
There are 223

= 256 possible distinct cellular automata rules in one dimension with a three-cell
neighborhood. However, only the combination of linear rules 90 and 150 (see below), can yield an
LHCA with a maximum length cycle. This is a hybrid LHCA since all cells do not use the same
rule.

Figure 2 is an example of the type of machine being described. Each cell, labeled si, 1 ≤ i ≤ n,
can hold either 0 or 1, and at every clock cycle, it receives an input from its nearest neighbors, si−1

and si+1. The cells at the boundary of the array always receive a 0.
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Figure 2: A 5-cell one-dimensional LHCA with characteristic polynomial x5 + x2 + 1.

The computation rules 90 and 150 are defined as follows:

Rule 90 : s+
i = si−1 + si+1,

Rule 150 : s+
i = si−1 + si + si+1.

According to rule 90, the value of a particular cell i is the sum modulo 2 of the values of its two
neighboring cells on the previous time step t. Rule 150 also includes the value of cell i at time step
t. In general, we use a rule vector [d1, d2, . . . , dn] to represent an n-cell LHCA, where di is either 0,
if cell i uses rule 90, or 1, if cell i uses rule 150 for 1 ≤ i ≤ n. For the example of Figure 2 the rule
vector has the form [1, 1, 1, 1, 0].

For any LHCA, one can write the set of finite next state equations and the corresponding state
transition matrix. The characteristic polynomial of the state transition matrix is the characteristic
polynomial of the LHCA. For the example of Figure 2 the next state equations are

s+
1 = s1 + s2,

s+
2 = s1 + s2 + s3,

s+
3 = s2 + s3 + s4,

s+
4 = s3 + s4 + s5,

s+
5 = s4,

and the corresponding state transition matrix is
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0

 ,

which has characteristic polynomial x5 +x2 +1. This is primitive and hence the LHCA of Figure 2
produces a maximum length cycle.

2.4 Remarks

Both LHCA and LFSRs can be represented by transition matrices, for which characteristic poly-
nomials can be computed. The relationship between LFSRs and LHCA is stated in [26] as follows.
A one-dimensional LHCA and an LFSR with the same irreducible (or primitive) characteristic
polynomial are isomorphic, and the corresponding transition matrices are similar.

The consequence is that an LHCA and an LFSR, which are based on the same irreducible or
primitive polynomial, have the same behavior as LFSMs up to permutation of the order in which
the states appear, and the cycle structure of the states [28, page 307] is identical.

Figure 3 shows an LHCA and an LFSR with their corresponding transition matrices and their
characteristic polynomial. The cycle structure is also shown in the state transition diagrams. Since
this polynomial is irreducible, but not primitive, the states form four separate cycles, where state
0 always goes back to itself.

There are three different representations which are used interchangeably in polynomials and
their LFSR implementations: polynomials in a binary field, binary string representations, and the
LFSR implementation of polynomials. Each representation provides a convenient expression in a
corresponding domain, and can easily be transformed to either of the other two. A polynomial
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Figure 3: Transition matrices of an LFSR(I) and an LHCA.

can be directly mapped into an LFSR implementation, where the zero and non-zero coefficients
correspond to feedback taps of the LFSR; and it can also be mapped to a binary string, where the
non-zero and zero coefficients correspond to 1’s and 0’s, respectively. The reverse transformations
hold as well. In Figure 3, these transformations are shown on the left side.

For any given LHCA, it is easy to calculate the characteristic polynomial of its transition
matrix [26]. The mapping between an LHCA implementation and its binary form is also simple:
rule 90 and rule 150 cells correspond to 0’s and 1’s respectively and form the pattern of the main
diagonal of the transition matrix. This is also shown in Figure 3 on the right side.

Given a characteristic polynomial, three algorithms have been developed and implemented to
find its corresponding LHCA [26, 8, 25]. The most recent one in [8] applies the Euclidean algorithm
to compute the LHCA. It has a polynomial running time, which is sufficiently fast to generate LHCA
for polynomials of very large degree. In the following section, we introduce this algorithm.

3 Synthesis of Linear Hybrid Cellular Automata

With the increasing use of LHCA in practical environments, as well as the need for longer ma-
chines, it has become a major problem to find the corresponding LHCA for a given characteristic
polynomial. This situation does not arise for LFSRs, since the polynomial leads directly to the
implementation. In this section we give a brief outline of the new synthesis algorithm which pro-
vides a method to find the corresponding LHCA for any irreducible polynomial very quickly. This
effectively solves the synthesis problem for all practical purposes (for example, it took 10 minutes
on a SPARC 10 to find a length 1600 LHCA). The complete details of the synthesis algorithm are
contained in [8].

Initially, we show that the characteristic polynomial of an LHCA can be calculated efficiently,
using a recurrence relation. We discuss correspondences between the characteristic polynomials of
LFSRs and LHCA. It is interesting that one of the keys to the algorithm is the deduction of a relation
between the Euclidean algorithm (well-known in other areas, but not often relevant to VLSI) and
the computation of the characteristic polynomial of an LHCA. This provides the framework for the
synthesis and proof of existence of LHCA with irreducible characteristic polynomials.
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3.1 Correspondences between LHCA and LFSR Characteristic Polynomials

To find correspondences between the characteristic polynomials of LFSRs and LHCA, it is necessary
to know how to calculate the characteristic polynomial for a given LFSR (or LHCA). As discussed
in section 2, there is a 1-to-1 correspondence between LFSRs and polynomials of degree n. In
other words, we can easily determine a unique characteristic polynomial for a given LFSR and vice
versa. For a given n-cell LHCA [d1, d2, ..., dn], Serra, et al. [26] demonstrate that the characteristic
polynomial ∆n(x) for the LHCA can be calculated by an LHCA recurrence relation

∆k(x) = (x + dk)∆k−1(x) + ∆k−2(x), k ≥ 1 (1)

with initial conditions ∆0(x) = 1 and ∆−1(x) = 0. It is easy to understand the calculation procedure
from the following example.

Example 3.1 For the LHCA [1, 1, 1, 1, 0] in Figure 2, the characteristic polynomial is computed
by equation (1) as follows.

∆−1(x) = 0,

∆0(x) = 1,

∆1(x) = (x + d1)∆0(x) + ∆−1(x)
= (x + 1)1 + 0
= x + 1,

∆2(x) = (x + d2)∆1(x) + ∆0(x)
= (x + 1)(x + 1) + 1
= x2,

∆3(x) = (x + d3)∆2(x) + ∆1(x)
= (x + 1)x2 + (x + 1)
= x3 + x2 + x + 1,

∆4(x) = (x + d4)∆3(x) + ∆2(x)
= (x + 1)(x3 + x2 + x + 1) + x2

= x4 + x2 + 1,

∆5(x) = (x + d5)∆4(x) + ∆3(x)
= (x + 0)(x4 + x2 + 1) + (x3 + x2 + x + 1)
= x5 + x2 + 1.

Therefore, the characteristic polynomial of the LHCA is x5 + x2 + 1.

It can be seen that for a given n-cell LHCA, the calculation of the characteristic polynomial
requires n applications of equation (1). Each application involves the multiplication of a polynomial
by a degree 1 polynomial, and a polynomial addition. Since the multiplication can be performed
with a “shift” and an addition, the total number of operations required is (2n additions + n shifts).
In short, for a given n-cell LHCA, the corresponding characteristic polynomial can be calculated
in linear time.

To see whether there exists a 1-to-1 correspondence between LHCA and polynomials of degree
n, our task now is to determine whether there exists an n-cell LHCA for any given polynomial
of degree n. Before doing so, it is instructive to work out the numbers of different LHCA and
polynomials of degree n. In general, we have 2n different polynomials since each of the coefficients
can be 0 or 1. For the n-cell LHCA, we have 2n different choices because each of the n cells
can be selected in two ways: either rule 90 or rule 150. Using equation (1), we find that an
LHCA [0, 1, 1, 1, 1] has the characteristic polynomial x5 + x2 + 1 which is the same as that of the
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LHCA [1, 1, 1, 1, 0]. Moreover, there is no LHCA with a characteristic polynomial x2 + x, and
there are four LHCA all having a characteristic polynomial x6 + x5 + x4 + x3 + 1 (the LHCA are
[0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [1, 1, 0, 1, 1, 1] and [1, 1, 1, 0, 1, 1]). Thus, we have enough evidence to
state that in general

LHCA not1:1←→ polynomials 1:1←→ LFSRs.

Fortunately, if we restrict our attention to irreducible polynomials and machines with irreducible
polynomials, some structure becomes apparent. In this restricted setting, the situation is

irreducible LHCA 2:1←→ irreducible polynomials 1:1←→ irreducible LFSRs.

The 2-to-1 correspondence between LHCA and LFSRs with irreducible characteristic polyno-
mials is found by exploring the connection between the LHCA and the Euclidean algorithm. The
following sections show this connection, and translate the results from the domain of the Euclidean
algorithm to the domain of LHCA characteristic polynomials.

3.2 Synthesis Algorithm

The synthesis of an LHCA for a polynomial ∆(x) is the process of obtaining an LHCA that has ∆(x)
as its characteristic polynomial. The approach by Serra and Slater [25], based on a modification
for finite fields of the Lanczos tridiagonalization algorithm, is tractable for irreducible polynomials
with degree up to approximately 50. We describe a completely different approach to the synthesis
based on the Euclidean algorithm, which relies on the division algorithm. This method is much
faster and can be used to solve the synthesis problem for all practical purposes.

The division algorithm for polynomials states that for given polynomials a(x) and b(x) with
b(x) 6= 0, there exist unique polynomials q(x) and r(x) such that

a(x) = q(x)b(x) + r(x)

where deg(r(x)) < deg(b(x)) or r(x) = 0. The polynomial a(x) is the dividend, b(x) is the divisor,
q(x) is the quotient, and r(x) is the remainder.

For example, if a(x) = x5 + x2 + 1 is divided by b(x) = x4 + x2 + 1, we have

x5 + x2 + 1 = x(x4 + x2 + 1) + (x3 + x2 + x + 1).

That is, q(x) = x and r(x) = x3 + x2 + x + 1.
The essential observation is that the LHCA recurrence relation in equation (1) satisfies the

division algorithm, if we identify a(x) with ∆k(x) and b(x) with ∆k−1(x). That is, if we know
∆n(x) and ∆n−1(x), we can uniquely determine x + dn and ∆n−2(x). Then, applying the division
algorithm to ∆n−1(x) and ∆n−2(x), we can calculate x+dn−1 and ∆n−3(x). We may continue this
process until we have x + d1 and ∆−1(x) = 0.

In short, for a given irreducible polynomial ∆n(x), assuming we are able to find ∆n−1(x) (later
we discuss how to do this), by applying the division algorithm we can obtain a sequence of degree
1 quotient polynomials

x + dn, x + dn−1, . . . , x + d2, x + d1,

where dk (1 ≤ k ≤ n) is either 0 or 1. By taking the constant terms of these quotient polynomials
and reversing, we get

[d1, d2, . . . , dn],

which is a rule vector for an LHCA with the characteristic polynomial ∆n(x). The whole procedure
is illustrated in the following example.
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Example 3.2 Given a polynomial ∆5(x) = x5 + x2 + 1, we want the rule vector [d1, d2, d3, d4, d5]
for an LHCA with characteristic polynomial ∆5(x). Assume that we know ∆4(x) = x4 + x2 + 1.
First, we apply the division algorithm five times as follows.

∆5(x) = x5 + x2 + 1

= (x + 0)(x4 + x2 + 1) + (x3 + x2 + x + 1)

= (x + d5)∆4(x) + ∆3(x),

∆4(x) = x4 + x2 + 1

= (x + 1)(x3 + x2 + x + 1) + x2

= (x + d4)∆3(x) + ∆2(x),

∆3(x) = x3 + x2 + x + 1

= (x + 1)x2 + (x + 1)

= (x + d3)∆2(x) + ∆1(x),

∆2(x) = x2

= (x + 1)(x + 1) + 1

= (x + d2)∆1(x) + ∆0(x),

∆1(x) = x + 1

= (x + 1)1 + 0

= (x + d1)∆0(x) + ∆−1(x).

Now, we have got a sequence of degree 1 quotient polynomials

x + d5, x + d4, x + d3, x + d2, x + d1

which is
x + 0, x + 1, x + 1, x + 1, x + 1.

By taking the constant terms and reversing, we get

[d1, d2, d3, d4, d5] = [1, 1, 1, 1, 0]

which is the rule vector for the LHCA used in Example 3.1. The correctness of the calculation is
illustrated by Examples 3.1 and 3.2.

Note that we calculate ∆k(x) by applying the LHCA recurrence relation to x + dk, ∆k−1(x), and
∆k−2(x) for k from 1 up to n, whereas we determine unique x + dk and ∆k−2(x) by applying the
division algorithm to ∆k(x) and ∆k−1(x) for k from n down to 1. That is, the orderings of the
calculation are different.

In general, a sequence of applications of the division algorithm is summarized by

∆n(x) = (x + dn)∆n−1(x) + ∆n−2(x),
∆n−1(x) = (x + dn−1)∆n−2(x) + ∆n−3(x),

...
∆2(x) = (x + d2)∆1(x) + 1,

∆1(x) = (x + d1)1 + 0.

The computation as a whole is the Euclidean algorithm applied to the polynomials ∆n(x) and
∆n−1(x), and the division algorithm ensures that this computation is unique. Since the division
algorithm only uses one polynomial division operation and we need at most n applications of
the division algorithm in the Euclidean algorithm, then clearly, we can determine the quotient
polynomials in linear time, given that we know the ∆n−1(x) for the irreducible polynomial ∆n(x).
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It remains to discuss how to find the ∆n−1(x) for a given irreducible polynomial ∆n(x). Cattell
and Muzio [8] show that g(x) = ∆n−1(x) satisfies the following equation

g2(x) + (x2 + x)∆′n(x)g(x) + 1 ≡ 0 mod ∆n(x), (2)

where the polynomial ∆′n(x) is the formal derivative of ∆n(x), which is calculated in the same
manner as the derivative for integer-coefficient polynomials, but with modulo 2. For example,
given ∆5(x) = x5 + x2 + 1, we have

∆′5(x) = (x5 + x2 + 1)′ = 5x4 + 2x = x4.

Finding solutions to equation (2) involves solving a quadratic equation in the finite field GF(2n).
Though the formula for solving rational quadratic equations can not be used, there are well-known
techniques for this problem ([19, ?]). Once we compute the solution, we can apply the Euclidean
algorithm to derive the rule vector for the LHCA. In summary, the Euclidean algorithm and equa-
tion (2) provide a synthesis algorithm which produces LHCA for given irreducible polynomials.

The synthesis algorithm has been used in [7] to generate LHCA for each of the primitive poly-
nomials given in [3] (one of each degree up to 300). Table 1 contains a small subset of the results,
where the time column gives the total CPU time in seconds on a SPARC 10 workstation. The
largest LHCA synthesized consists of 1600 cells, which was calculated in 10 CPU minutes.

Polynomial Time LHCA

x20 + x3 + 1 0.2 [01101011100001010110]

x40 + x21 + x19 + x2 + 1 0.4 [1100110000011000000100010100000100110011]

x60 + x + 1 0.6 [1110011110100101110100001011110011010000

10111010010111100111]

x80 + x38 + x37 + x + 1 0.8 [0101011001000010000010100011001110111101

1110101011011101111000000100001001101010]

Table 1: Example running time of LHCA synthesis program.

Note that for any given irreducible polynomial, we can get two distinct solutions, both satisfying
equation (2). Referring to the work of Mesirov and Sweet in [22], Cattell and Muzio in [8] show
that for any given irreducible polynomial of degree n, there exist exactly two corresponding LHCA.
The rule vectors of the two LHCA are distinct, but reversals of each other.

3.3 Similarity Transforms between LHCA and LFSRs

We now give an explicit form for a similarity transform between the transition matrices of an LHCA
and an LFSR (The details can be found in [6]). To this end, the trace function of a polynomial
f(x), with respect to ∆(x) of degree n, is defined as

Tr(f(x)) = (f(x) + f2(x) + f4(x) + · · ·+ f2n−1
(x)) mod ∆(x).

The trace of f(x) is always either 0 or 1 for the irreducible polynomial ∆(x). For example, given
f(x) = x and ∆(x) = x5 + x2 + 1, we have

Tr(f(x)) = (f(x) + f2(x) + f4(x) + f8(x) + f16(x)) mod ∆(x)
= (x + x2 + x4 + x8 + x16) mod (x5 + x2 + 1)
= 0 mod (x5 + x2 + 1)
= 0.

On the basis of the trace function and materials discussed previously, we have the following
result. For any given irreducible polynomial ∆(x) of degree n, let Tca and Tsr be the corresponding
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transition matrices for an LHCA and an LFSR (Type I) respectively. The similarity transform
between Tca and Tsr is

Tca = P · Tsr · P−1,

where the matrix P is defined as

P =


Tr(x∆0) Tr(x2∆0) Tr(x3∆0) · · · Tr(xn∆0)
Tr(x∆1) Tr(x2∆1) Tr(x3∆1) · · · Tr(xn∆1)
Tr(x∆2) Tr(x2∆2) Tr(x3∆2) · · · Tr(xn∆2)

...
...

...
...

Tr(x∆n−1) Tr(x2∆n−1) Tr(x3∆n−1) · · · Tr(xn∆n−1)


where ∆k (0 ≤ k < n) means a polynomial ∆k(x) of degree k, which is evaluated by the LHCA

recurrence relation or the Euclidean algorithm mentioned previously.
The theory provided in this section is a key to deriving an explicit form for a similarity transform

between the transition matrices of an LHCA and an LFSR. For example, for the LHCA [1, 1, 1, 1, 0]
in Figure 2, we have the following transition matrix

Tca =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 0


with characteristic polynomial x5 + x2 + 1. By the theory in this section and the extension work
in [6], we can calculate the corresponding matrices P and P−1 of the LHCA as follows.

P =


0 0 1 0 1
0 1 1 1 0
1 0 1 1 0
1 0 1 0 0
0 1 0 1 0

 , P−1 =


0 1 0 1 1
0 0 1 1 1
0 1 0 0 1
0 0 1 1 0
1 1 0 0 1

 .

We can easily verify the similarity transform

Tca = P · Tsr · P−1,

where

Tsr =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0


which is the transition matrix of the LFSR(I) with characteristic polynomial x5 + x2 + 1 in Fig-
ure 1(a).

4 Concatenations and Partitions

In order to provide the required flexibility to designers working with Built-In Self-Test (BIST),
there is some interest in having a maximal length LFSR or LHCA which can be easily split into

11



smaller LFSRs or LHCA which are also maximal length. An investigation of these properties is
the primary thrust of this section. Our main interest lies in finding LFSRs and LHCA which can
be partitioned and/or concatenated and still maintain their primitivity. That is, we are interested
in maximum length LFSRs and LHCA which can be easily concatenated into another maximum
length machine, and in those which can be easily partitioned into two or more maximum length
machines. While we only discuss maximum length machines here, a comprehensive analysis of
the concatenation and partitioning properties of general linear machines can be found in [18, 29].
Rather than giving the formal, theoretical definitions of partitioning and concatenation, we explain
the concepts with the aid of Figures 4 and 5.

(150) (90)(150)(90)

0

0
LHCA−A LHCA−B

Figure 4: LHCA concatenation.

LFSR−A LFSR−B

S1 S2 S1 S2

Figure 5: LFSR concatenation.

Figure 4 shows the concatenation of two smaller LHCA with a controllable link between them.
In Figure 5 we have a similar concatenation of two smaller LFSRs with a controllable link between
them. Note the presence of the extra XOR at the join (in theory, this can be omitted, but in
that case the resulting machines which we discuss below would all be reducible, and so of little
interest). Here we concentrate solely on the primitive concatenation of primitive machines, and
on the primitive partitioning of a primitive machine (that is, all the partitions are primitive).
This means that there is a certain symmetry about the results which is not true in general -
in that two non-primitive machines may be concatenated to form a primitive machine, and a
non-primitive machine may be partitioned into two primitive partitions. The concatenation of a
polynomial of degree s with itself n times (n > 1) to form a polynomial of degree n × s is called
self-concatenation. It is called non-self-concatenation if the polynomial concatenates with one or
more different polynomial(s).

Example 4.1 The LFSR based on the polynomial x16 +x14 +x13 +x10 +x8 +x6 +x5 +x2 +1 (which
is primitive) can be partitioned into two length eight primitive LFSRs, both of which implement the
same polynomial x8 + x6 + x5 + x2 + 1. Alternatively, we can think of this as the self-concatenation
twice of the latter polynomial.

Obviously, we can either consider two smaller machines and concatenate them, or discuss the
longer machine and a partition of it into two smaller machines. If an LFSM of length n is partitioned
into two bit-slices of length r and s respectively, such that r + s = n, r = 1 or s = 1, then it is
called a degenerate partitioning. If an LFSM of length n is partitioned into two bit-slices of length
r and s respectively, such that r + s = n, 1 < r, s < n− 1, then it is called a proper partitioning.
Hence, an LFSM of length n has (n− 1) possible partitionings, two degenerate partitionings, and
(n− 3) proper partitionings.
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Degree Polynomial LFSR LHCA LHCA
Concatenation Concatenation

2 [111] - [10] 2,3,5,6,9,11,14

3 [1011] 2,3,9 [110] 4,16
[1101] 2,3,9 [001] 4

4 [10011] - [1010] 3,7,13,15
[11001] - [1101] 17

5 [100101] 3,12 [11110] -
[101001] 3,12 [01100] 3,9
[110111] 5 [10000] -
[111011] 5 [11100] 6,7
[101111] - [11000] 6,7
[111101] - [11001] 3,8,9

6 [1000011] 3,5 [011000] 10
[1100001] 3,5 [011010] 2,6,8
[1100111] 2 [101001] 2,4,6
[1110011] 2 [100000] 3
[1011011] - [101110] 9
[1101101] - [101010] 2,3,10

Table 2: Self-concatenation of degree 3 to 6 machines.

4.1 Concatenation

In general, concatenation can be examined from three different perspectives: the method of con-
catenation (self or non-self), the attributes of the resulting machines (primitive or not), and the
attributes of the participating machines (primitive or not).

Our only interest is the concatenation of the primitive machines. Only a comparatively small
number of primitive machines can be self-concatenated into a primitive machine, and in Table 2 we
list the primitive self-concatenations of primitive LFSRs and LHCA of degree 3 to degree 6, forming
machines of much longer lengths. The second column of each table lists all the primitive polynomi-
als of these degrees, which are used as the initial polynomial for concatenation (the polynomials are
represented by their coefficients, in decreasing degree order, so that [1011] is x3 + x + 1. The third
column, labeled “LFSR Concatenation”, gives the number of primitive self-concatenations of the
corresponding initial LFSR which result in primitive LFSRs. The fourth column gives the LHCA
realization for each of the polynomials (the polynomial itself immediately gives the LFSR realiza-
tion). The fifth column, “LHCA Concatenation”, gives the information of the self-concatenations
for LHCA. For example, for polynomial [101001] of degree 5, with an LHCA implementation of
[01100], the table shows that both three and twelve copies of the LFSR when self-concatenated give
primitive machines, while for the LHCA, three copies and nine copies, when self-concatenated, give
primitive machines. In all cases listed, both the initial and the resulting polynomials are primitive.
The information in column 3 comes from Bhavsar in [4]. The table itself is part of a much larger
set of results that are contained in [29].

4.2 Partitioning

The partitioning behavior of LFSMs, for all degree 2 to 16 primitive and irreducible polynomials,
are examined, with extrapolation of the results to higher degrees. The study is restricted to proper
partitionings. There are two properties of interest in evaluating the partitioning properties, namely

(1)) ATLOP: the number of degree n primitive polynomials which have AT Least One Partitioning
with both parts being primitive.

(2) PEPP: the PErcentage of the total number of Partitions where both parts are primitive.
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Degree Number of LFSR LHCA
Polynomials PEPP ATLOP PEPP ATLOP

4 2 0 0 50.00 1
5 6 33.33 4 16.66 2
6 6 22.22 4 27.77 4
7 18 16.66 10 18.05 11
8 16 12.50 10 12.50 8
9 48 9.72 22 12.15 27
10 60 8.57 26 11.42 40
11 176 6.81 80 8.59 91
12 144 6.32 70 7.40 78
13 630 5.42 276 6.38 311
14 756 4.93 336 5.73 378
15 1800 3.94 704 5.53 910
16 2048 4.15 904 4.81 1002

Table 3: The partitioning behavior of LFSRs and LHCA - primitive.

The partitioning behavior of LFSRs and LHCA of length up to 16 which implement primitive
polynomials is given in Table 3. Table 3 shows that, for increasing values of n up to 16, the
percentage of primitive partitions of both primitive LFSRs and LHCA decreases gradually as n
increases.

A comparative graph for primitive machines is shown in the two lower graphs of Figure 6.
The y axis is the logarithm of PEPP, while the x axis gives the length n of the machines or the
degree of the characteristic polynomials. The performance of the LHCA almost always exceeds
the performance of the LFSRs. Note that although primitive LFSRs and LHCA have primitive
partitions, the number of such partitions is quite small.

4.3 Modifications

Since there are a comparatively small number of primitive partitions of primitive LFSRs and LHCA,
we consider ways to improve the partitioning (or concatenation) behavior and show that better per-
formance for both LFSRs and LHCA can be achieved by allowing minimal hardware modifications,
which have very low cost. We define one modification to an LFSR as the introduction or the elimi-
nation of a nonzero term in its characteristic polynomial. Alternatively, we define one modification
in an LHCA as the reconfiguration of a rule 90 cell to a rule 150 cell or vice versa. All primi-
tive machines up to length 16 have been investigated (for similar results for irreducible machines,
see [18]). For each length (n = 4, 5, . . . , 16) the values of ATLOP and PEPP have been found,
allowing one modification. The partitioning behavior of primitive LFSRs and LHCA up to degree
16, when minimum modifications are allowed, is shown in Table 4.

Example 4.2 The LFSR with characteristic polynomial x16 + x10 + x9 + x7 + x6 + x + 1 can be
partitioned into two length eight LFSRs with characteristic polynomials x8 + x7 + x6 + x + 1 and
x8 + x2 + x + 1, respectively. Only the first LFSR is primitive. The introduction of the term x7 in
the non primitive partition (a change from 0 to 1) results in the polynomial x8 + x7 + x2 + x + 1,
which is primitive.

The better partitioning behavior with the introduction of one change is evident from the values
of PEPP and ATLOP shown in these tables. It is clearly illustrated in the two graphs of Figure 6.
The y axis is the logarithm of PEPP while the x axis gives the length n of the machines or the
degree of the characteristic polynomials.

We can draw the following conclusions from these results:
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Degree Number of PEPP PEPP ATLOP ATLOP
Prim. Polynomials LFSR LHCA LFSR LHCA

4 2 100 100 2 2
5 6 66.66 83.33 6 6
6 6 83.33 72.22 6 6
7 18 51.38 59.72 18 18
8 16 45.00 52.5 16 16
9 48 38.54 54.16 46 48
10 60 37.61 44.76 58 60
11 176 33.94 44.60 171 175
12 144 31.55 40.12 143 142
13 630 28.33 39.84 605 628
14 756 26.29 37.01 735 752
15 1800 24.45 35.16 1733 1787
16 2048 24.50 34.34 2011 2043

Table 4: The partitioning behavior of LFSRs and LHCA (primitive) with one modification.

(1) LFSRs and LHCA demonstrate significantly better performance when minimum modifications
are allowed. In practice, this behavior promises a great economy in hardware since it allows
the use of the same machine for more than one purpose.

(2) Without allowing modifications, LHCA behave slightly better than LFSRs. After the intro-
duction of minimum modifications LHCA are always superior to LFSRs. Intuitively, this is
because we can try more changes in LHCA. More specifically, in an LHCA of length n we are
able to try n changes, i.e., each of the n cells can be reconfigured either in rule 90 cell or in
rule 150 cell. However, in an LFSR of length n there are only n− 1 possible changes.

(3) The percentage of primitive partitions of primitive machines (PEPP) exhibits consistent be-
havior. It decreases as the machine length increases. It is anticipated that this behavior can
be extrapolated to longer length machines. The extrapolation is clearer if separate plots are
made of even and odd degree polynomials. In these cases, PEPP decreases linearly with the
increase in the machine length.

4.4 Applications

Given the possibility of concatenation and partitioning, as well as some potential advantages of
LHCA versus LFSRs, we summarize some of the applications in the area of VLSI design and test.

(1) The principle of concatenation allows efficient use of BIST resources, such as pseudo-random
pattern generator (PRPG), signature analyzer and CALBO/BILBO at function, chip, printed
circuit board or system level. It includes dynamic reconfiguration of the devices into different
lengths or for different functionalities. One such recent design can be found in [21].

(2) In a boundary scan environment, a chip may consist of several functional blocks with different
numbers of inputs and outputs. Concatenation can be used to reconfigure the boundary scan
cells into BIST circuitry to facilitate on-chip test of the functions.

(3) New ways to merge boundary scan with BIST of printed circuit boards (PCB) have been
proposed in many papers, e.g., [13]. This approach makes use of the hardware resource for
boundary scan as part of BIST circuitry, such that the total cost in boundary scan and BIST
is reduced. Using the principle of LHCA concatenation, the scheme in [13] can be improved
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Note: PEPP =
Pprim×100

(n−3)×prim(n)
. For theLFSRs, the value of PEPP for n = 4 is zero excluded from the graph.

Figure 6: LFSRs - LHCA: The improved percentage of primitive partitions.

by means of dynamic reconfiguration of the source and interior machines, avoiding the m-bit
delay in the original design.

(4) A recent application involves merging on-line checking, off-line BIST and boundary scan
circuits as one unit and provide all three kinds of testability [30]. In the on-line checking
mode, small 2 or 3-bit machine cells comprise the code generator for a self-checking circuit
designed with cyclic codes. When the system enters a test mode in order to execute off-
line testing with signature analysis, the machine cells are reconfigured by concatenation into
longer ones, providing a PRPG and a data compactor. Thus resources are shared between
two different testing schemes, one operating during the normal operation of the circuit, with
considerable saving in area overhead when compared with a design providing on-line and
off-line testing separately.

5 Two-Vector Transition Property

Numbers chosen at random are useful in a very wide variety of applications such as simulation,
sampling, numerical analysis, computer programming, decision making, and recreation [17]. In this
section, we consider pseudorandom number sequences, generated in a deterministic way using an
LFSR or LHCA, to be used as a BIST generator to apply to a circuit under test. It is important
to investigate the randomness of the sequences produced by the generators because it affects the
number of detected faults for a given fault model.

Knuth [17] introduces nine kinds of specific tests that have been applied to sequences. Unfor-
tunately, those tests are based on real or integer numbers. Therefore, it is not easy to decide on
the relationship between those tests and the testability for the given fault model in BIST.

When an LFSM is used as the generator in BIST, it is sequenced through a number of states
with each state serving as a test vector. Table 5 shows the test vectors produced by the LFSR(I)
and LFSR(II) of Figure 1, and LHCA of Figure 2. The test vectors produced cover all possible
nonzero states, beginning from a nonzero state. Thus, they are all maximum length cycles (with
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Time LFSR(I) LFSR(II) LHCA Time LFSR(I) LFSR(II) LHCA

0 00001 00001 00001 16 00110 00111 10001
1 10100 10000 00010 17 00011 00011 11010
2 01010 01000 00111 18 10101 10001 00011
3 00101 00100 01011 19 11110 11000 00101
4 10110 10010 11001 20 01111 01100 01100
5 01011 01001 00110 21 10011 10110 10010
6 10001 10100 01001 22 11101 11011 11111
7 11100 11010 11110 23 11010 11101 01111
8 01110 01101 01101 24 01101 01110 10111
9 00111 00110 10000 25 10010 10111 10011
10 10111 10011 11000 26 01001 01011 11101
11 11111 11001 00100 27 10000 10101 01000
12 11011 11100 01110 28 01000 01010 11100
13 11001 11110 10101 29 00100 00101 01010
14 11000 11111 10100 30 00010 00010 11011
15 01100 01111 10110 31 00001 00001 00001

Table 5: Test vectors produced by the LFSR(I), LFSR(II), and LHCA.

length 2n − 1 = 25 − 1 = 31). Moreover, since the LFSR(I), LFSR(II), and LHCA have the same
primitive characteristic polynomial, they produce the same output stream in each bit position,
flowing from each single cell of the generators [2], e.g., starting at 0 marked for state s1 in Table 5,
we can see that three sequences on s1 for the LFSR(I), LFSR(II) and LHCA are identical. Such a
property is called the correlation between the outputs of an LFSR (or LHCA), which is important
in understanding the pseudorandom behavior of the machine. These correlations are known as
structural dependencies.

In this section, we discuss two-vector transition property by observing a sequence of states with
each state encoding serving as a test vector produced by an LFSM generator. In the following
section, we show that the transition property is a useful measure for testing faults requiring a
pair of vectors. When testing for certain types of faults, appropriate pairs of vectors are required.
Consequently, the percentage of all possible transition pairs which are generated by subsets of the
LFSM is directly relevant to the likely fault coverage that results. This is examined further in
section 6. We start by defining the k-cell substate vector, and the corresponding transitions.

5.1 Transitions and Bounds

For a given n-cell LFSM state vector s = (s1, s2, . . . , sn), sp ∈ {0, 1}, 1 ≤ p ≤ n, a k-cell substate
vector w of s is defined by

w = (si1 , si2 , . . . , sik),

and a transition corresponding to w is defined as

〈(si1 , si2 , . . . , sik), (s+
i1

, s+
i2

, . . . , s+
ik

)〉,

where 1 ≤ ij < il ≤ n for 1 ≤ j < l ≤ k.
For notational convenience, w is used to denote a substate vector of s with cells which are not

in w. We count one transition even if (si1 , si2 , . . . , sik) = (s+
i1

, s+
i2

, . . . , s+
ik

) because it simplifies the
derivation of a general equation to evaluate the number of transitions for a given substate vector.

Example 5.1 For the three LFSMs in Table 5, if s = (s1, s2, s3, s4, s5) = (00111) and w =
(s1, s3, s4), then the transition corresponding to w is 〈(s2, s3, s4), (s+

2 , s+
3 , s+

4 )〉, which is

〈(011), (011)〉 for the LFSR(I) because s+ = (10111),
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Substate Vector LFSR(I) LFSR(II) LHCA
(s1, s2) 8 8 8
(s1, s3) 16 16 16
(s1, s4) 16 16 16
(s1, s5) 8 16 16
(s2, s3) 16 8 16
(s2, s4) 16 16 16
(s2, s5) 16 16 16
(s3, s4) 8 8 16
(s3, s5) 16 16 16
(s4, s5) 8 8 8

Table 6: An example of the number of the transitions.

〈(011), (001)〉 for the LFSR(II) because s+ = (00011),
〈(011), (101)〉 for the LHCA because s+ = (01011).

For any particular substate vector, we can count the total number of transitions for the given
substate vector for the LFSM. For example, for w = (s3, s4) of the LFSR(I) in Table 5, we have the
following transitions: 〈(00), (10)〉, 〈(10), (01)〉, 〈(01), (10)〉, 〈(10), (11)〉, 〈(11), (01)〉, 〈(01), (00)〉,
〈(11), (11)〉, 〈(00), (00)〉, giving a total of 8 transitions. Obviously, the maximum number of tran-
sitions in this case is 16 (four possible choices for the first vector of the pair, and four for the
second), so this generator only produces half of the maximum possible number of transitions for
this substate. The complete list of all the transitions for 2-cell substate vectors for the LFSMs from
Table 5 is given in Table 6.

As shown in Table 6, if we consider different k-cell substate vectors, there are some differences
between the numbers of distinct transitions generated by the LHCA and the LFSR. Before dis-
cussing details of transitions, it is instructive to know the following upper and lower bounds for
transitions [34].

Consider any n-cell LFSM vector generator with a maximum length cycle. Let F(k) be the
maximal number of distinct transitions corresponding to a k-cell substate vector w. We have

upper bound: F(k) ≤
{

22k, 1 ≤ k < dn/2e
2n − 1, dn/2e ≤ k ≤ n

lower bound: F(k) ≥
{

2k, 1 ≤ k < n
2n − 1, k = n.

It can be seen that for any k-cell substate vector w of an n-cell LFSM state vector s =
(s1, s2, . . . , sn) with k = bn/2c, if n is odd, the maximum possible number of distinct transi-
tions produced by w is 22k, and if n is even, the maximum possible number of distinct transitions
produced by w is 22k − 1 = 2n − 1 because the all zeros state is not included in the sequence
produced by the LFSM. Without loss of generality, when n is even and k = bn/2c, we assume that
w can produce 22k transitions in the best case.

It is proposed in [12] that transition coverage for k = bn/2c could be used as a universal metric
of transition capability of an LFSM for the following reasons. Assume a k-cell substate vector w
of s = (s1, s2, . . . , sn) can produce 22k transitions. Then it follows that

(a) Any m-cell substate vector of w can produce 22m transitions;

(b) Any m-cell substate vector, which includes w, of s can produce at least 22k transitions.
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5.2 Partners and Partner Set

In the next subsection, to compare the performance of the LHCA and LFSR concerning testing
faults requiring a pair of vectors, we derive the number of different k-cell substate vectors, which
have 22k transition capability, with k ≤ bn/2c for the LHCA and LFSR. A key to determining if a
given k-cell substate vector w has 22k transition capability is to check whether the corresponding
Tw has rank k (see [12]). However, to avoid computing the rank of Tw, we introduce the idea of a
partner set and show that the cardinality of this set gives us the rank of Tw.

Let w be a substate vector of a state vector s = (s1, s2, . . . , sn) for an n-cell LFSM. The next
state s+

i corresponding to si in w is given by

s+
i =

∑
sj∈Ki

sj , for some subset Ki ⊆ {s1, s2, . . . , sn}.

(Note that the subset Ki for a specific si depends on the transition matrix for the given LFSM.)
All such sj , which are not in w, are eligible partners for si.

In other words, partners are those states that are not in w, but have an immediate effect on
the next state function corresponding to the state in w.

In order to define the partner set, we need to make use of a maximal matching in a bipartite
graph [10], so we discuss this briefly. Let G = (V,E) be a bipartite graph with V partitioned as
X ∪ Y (Each edge of E has the form (x, y) with x ∈ X and y ∈ Y ).

(a) A matching of G is a subset of E such that no two edges share a common vertex in X or Y .

(b) A maximal matching in G is one that matches as many vertices in X as possible with vertices
in Y .

We use the concept of the maximal matching to define the partner set as follows.
Let w be a k-cell substate vector of a state vector and G = (V,E) be a bipartite graph with V

partitioned as X ∪ Y , where

V = {s1, s2, . . . , sn},
X = { si | si is in w },
Y = { sj | sj is in w },
E = { (si, sj) | si ∈ X, sj ∈ Y, and sj is an eligible partner of si }.

If M , M ⊆ E, is a maximal matching of G, then ps(w) = { sj | (si, sj) ∈ M } is a partner set of
w and |ps(w)| = |M |.

s1
s2

s3
s4

s5

Figure 7: An example for the maximal matching and partner set.

Example 5.2 For the LHCA shown in Figure 2, let w = (s2, s4). The next state functions for s2

and s4 are given by

s+
2 = s1 + s2 + s3,

s+
4 = s3 + s4 + s5.
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That is, K2 = {s1, s2, s3} and K4 = {s3, s4, s5}. By definition of the partner, the eligible partners
are s1 and s3 for s2, and s3 and s5 for s4.

A bipartite graph G for w is shown in Figure 7 with X = {s2, s4}, Y = {s1, s3, s5}, and
E = {(s2, s1), (s2, s3), (s4, s3), (s4, s5)}. The possible maximal matchings are {(s2, s1), (s4, s3)},
{(s2, s1), (s4, s5)}, and {(s2, s3), (s4, s5)}. Thus, the corresponding partner sets are {s1, s3}, {s1, s5},
and {s3, s5}.

It is shown in [36] that given a k-cell substate vector w of a state vector s = (s1, s2, . . . , sn)
for an n-cell LFSM (LHCA or LFSR) with a maximum length cycle, |ps(w)| = r ≤ k if and only
if rank(Tw) = r, i.e., w can produce 2k · 2r = 2k+r distinct transitions because for each value of
w (w takes 2k distinct values) there is 2r transitions. In particular, w can produce 22k distinct
transitions when r = k.

Example 5.3 For a 5-cell LFSR(II), as shown in Figure 1(b), by the concept of the partner set,
we select all 2-cell substate vectors, reported in Table 7, which produce 22×2 = 16 transitions. By
referring to Tables 6 and 7, we can see that the selections in Table 7 are correct and no other 2-cell
substate vector can be chosen to achieve 16 transitions.

Substate Vector w Partner Set ps(w) Notes
(s1, s3) {s5, s2} s5 is a partner of s1 and s2 is a partner of s3

(s1, s4) {s5, s3} s5 is a partner of s1 and s3 is a partner of s4

(s1, s5) {s3, s4} s3 is a partner of s1 and s4 is a partner of s5

(s2, s4) {s1, s3} s1 is a partner of s2 and s3 is a partner of s4

(s2, s5) {s1, s4} s1 is a partner of s2 and s4 is a partner of s5

(s3, s5) {s2, s4} s2 is a partner of s3 and s4 is a partner of s5

Table 7: An example of selecting cells and partners.

Based on the concept of the partner set, if we want to evaluate the number of transitions for
a given k-cell substate vector w of a state vector s = (s1, s2, . . . , sn) for an n-cell LFSM with
a maximum length cycle, we only need to construct a partner set ps(w), and then evaluate the
number of transitions 2k+r, where r = |ps(w)|. Since the LHCA and LFSR have straightforward
next state functions, it is easy to determine the partner set for the given substate vector w for
them. As a result, we can give general formulas for LHCA and LFSR.

5.3 Transition Properties for LHCA and LFSR

On the basis of the partner set, we can easily derive the number of different k-cell substate vectors,
which have 22k transition capability, with k ≤ bn/2c for the LHCA and LFSR. Here we state the
two key results for the LHCA and the simplified results for the LFSR. The comprehensive results
and the proofs of all theorems can be found in [36]

Consider an n-cell LHCA with a maximum length cycle. Let f1(n) be the total number of
distinct k-cell substate vectors which produce 22k transitions with k = bn/2c for the LHCA. We
have

f1(n) =

{
2f1(n− 2), even n and n ≥ 4,
2f1(n− 2) + f1(n− 3), odd n and n ≥ 5,

(1)

f1(1) = 1, f1(2) = 2, f1(3) = 3.

The key to the derivation is to determine the number of selections for w such that each element
in w has its own partner. For n = 1, 2, and 3, it is obvious.
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When n is even and n ≥ 4, if we select k cells, each of the rest of the k cells must be used as a
partner of an element in w. When n is odd and n ≥ 5, if we select k cells for w, we need k cells as
partners of w and have one cell which is neither included in w nor a partner.

It is easy to solve the recurrence relation in equation (1) as follows.

f1(n) =

{
2bn/2c, even n,

(bn/2c+ 2)2(n−3)/2, odd n.

For the general case, we have the following result. Let f2(n, k) be the total number of distinct
k-cell substate vectors which produce 22k transitions with k ≤ bn/2c for an n-cell LHCA with a
maximum length cycle. We have

f2(n, k) =

{
2f2(n− 2, k − 1) + f2(n− 1, k)− f2(n− 3, k − 1), k < bn/2c,
f1(n), k = bn/2c,

f2(n, 1) = n.

In a similar fashion, we can derive the numbers for the LFSR. Table 8 gives the general formulae
of the total number of distinct k-cell substate vectors achieving 22k transitions for the n-cell LHCA
and LFSR, where k = bn/2c. Note that the number of selections for the LFSR is the upper bound
because we have no general formula for any LFSR with a maximum length cycle.

LFSM Even n Odd n

LHCA 2n/2 (bn/2c+ 2)2(n−3)/2

LFSR(I)† n/2 + 1 (n2 + 3)/4
LFSR(II)† n/2 + 1 (n + 3)(n + 1)/8

†The selections are upper bounds.

Table 8: General formulae for the number of selections for LHCA and LFSR with k = bn/2c.

n k = bn/2c LHCA LFSR(I)† LFSR(II)† n k = bn/2c LHCA LFSR(I)† LFSR(II)†

5 2 8 7 6 6 3 8 4 4
7 3 20 13 10 8 4 16 5 5
9 4 48 21 15 10 5 32 6 6
11 5 112 31 21 12 6 64 7 7
13 6 256 43 28 14 7 128 8 8
15 7 576 57 36 16 8 256 9 9
17 8 1280 73 45 18 9 512 10 10
19 9 2816 91 55 20 10 1024 11 11
21 10 6144 111 66 22 11 2048 12 12
23 11 13312 133 78 24 12 4096 13 13
25 12 28672 157 91 26 13 8192 14 14
27 13 61440 183 105 28 14 16384 15 15
29 14 131072 211 120 30 15 32768 16 16
31 15 278528 241 136 32 16 65536 17 17
33 16 589824 273 153 34 17 131072 18 18
35 17 1245184 307 171 36 18 262144 19 19
37 18 2621440 343 190 38 19 524288 20 20
39 19 5505024 381 210 40 20 1048576 21 21
41 20 11534336 421 231 42 21 2097152 22 22
43 21 24117248 463 253 44 22 4194304 23 23
45 22 50331648 507 276 46 23 8388608 24 24
47 23 104857600 553 300 48 24 16777216 25 25
49 24 218103808 601 325 50 25 33554432 26 26

† The numbers are upper bounds on the number of selections because there is no general equation for all LFSR concerning the

number of different selections.

Table 9: Number of selections for the k-cell substate vector with 22k transition capability.
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In Table 9, we list the number of different k-cell substate vectors, which have 22k transition
capability, with k = bn/2c for the LHCA and LFSR from degree 5 to 50. It can be seen that for the
LHCA, the number of possible selections increases exponentially while for the LFSR the number
increases much more slowly. It is very clear from the theoretical results that the LHCA have a
much higher transition space than the LFSRs, and should consequently perform much better as
generators for stimulating faults requiring a pair of vectors. To investigate whether this is true in
practice, we consider experiments with the ISCAS85 benchmark circuits in the next section.

6 Applications in Built-In Self-Test

Built-in self-test(BIST) refers to those techniques where additional hardware is added to a design
so that testing is accomplished without the need for external special purpose testing hardware. A
widely accepted approach to BIST is to use a pseudorandom vector generator and a data compactor.
The generator produces the test vectors to be applied to a circuit under test and the compactor
reduces the response to these vectors to a single value (e.g., 16 or 32 bits) known as the signature.

LFSR are the predominant choice in the BIST literature, both for the test vector generator
and for the data compactor[3]. Recently, alternative test vector generators based on LHCA have
been considered and shown to be superior to the LFSR based generators, especially, for stimulating
faults with sequential behavior. LHCA have also been proposed as the data compactor in BIST.
We examine practical issues concerning the use of the LHCA, comparing with the LFSR.

6.1 Test Vector Generators

In BIST, to determine whether a given test vector generator is good, a practical measure is to see
how many faults considered can be stimulated when the given test vector is applied to a circuit
under test. In general, the LFSR and LHCA test vector generators offer virtually identical single
stuck-at fault coverage. However, the LHCA have substantial promise in BIST particularly for the
more complex fault models.

We review two classes of fault models, stuck-at and delay faults, and detection requirements
for these models. This is useful in understanding the importance of the transition property for the
test vector generator discussed in the previous section. Then, we provide empirical comparisons to
show that our analysis of the transition property presented in the previous section is a reasonable
metric of the effectiveness of the test vector generator.

6.1.1 Fault Models and Detection Requirements

Fault models allow us to define the types of faults considered and their behavior. In addition, fault
models allow us to represent the behavior of physical failures/defects. Fault models attempt to
cover the types of faults that can occur although they are not completely accurate in practice.

A single stuck-at fault assumes a circuit failure corresponds to one line of the circuit being
permanently fixed at 0 or at 1. A circuit with p lines has 2p possible single stuck-at faults. We do
simple fault collapsing on single gates, e.g., an input of an AND gate stuck-at 0 fault is equivalent
to the output of the gate stuck-at 0 fault.

A delay test of a combinational circuit in a clocked environment is defined to be a test of the
ability of the combinational logic to propagate data in time for clocking into the next stage of
latches [27]. Two different delay fault models, called the gate delay fault model and path delay fault
model, respectively, have been proposed and are frequently used. We are concentrating on the gate
delay fault model in this paper.

The delay faults considered are termed slow-to-rise and slow-to-fall faults. Let c1, c2, ..., cq be
the correct (expected) bit sequence for a line of a circuit over some time period. The delay faults
yield the sequence di, 0 < i ≤ q, defined as follows:
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(a) slow-to-rise

di =

{
1, ci−1 = 1 and ci = 1
0, otherwise

(b) slow-to-fall

di =

{
0, ci−1 = 0 and ci = 0
1, otherwise

where c0 = c1. A circuit with p lines has 2p potential single delay faults. Delay fault equivalence
rules have been partly considered in [32]. We remove slow-to-rise and slow-to-fall faults for the
NOT gate output and also remove slow-to-rise faults for NOR and AND gate outputs and slow-
to-fall faults for NAND and OR gate outputs since these can be shown to be equivalent to input
delay faults.

Delay faults cause combinational circuits to behave sequentially, and they can not be modeled
as classical (e.g., stuck-at) faults. Hence, they are called sequential faults.

A single delay fault on a given line g requires a pair of vectors for detection; the first to ‘set-up’
the value, and the second to ‘propagate’ the fault effect to a circuit output. When a pair of vectors
is applied, it produces one of four possible different sequences on the line g: 00, 01, 10, and 11. The
sequences 01 and 10 are used to detect slow-to-rise and slow-to-fall faults on line g since slow-to-rise
changes 01 to 00 and slow-to-fall changes 10 to 11 on the given line g. Note that only the second
vector is used to propagate the fault effect to the circuit output because the fault does not change
the first value produced by the first vector.

g
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Xn

f1
f2
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Figure 8: Simplified example for detecting delay fault.

Consider a circuit illustrated diagrammatically in Figure 8, where we are interested in detecting
a slow-to-rise fault on line g. First we need vector V1 to set 0 on line g, and then use vector V2

to propagate the effect of the fault through the shadow area to at least one of the m outputs. This
vector V2, of course, also detects a stuck-at 0 fault on line g. However, while both V1 and V2 are
n-cell vectors, that is, they assign values to all the input variables, in general not all of those inputs
are relevant (or even connected) to g. That is, only a subvector V′1 of V1 and a subvector V′2 of
V2 are actually used (it is obvious that |V′1| ≤ |V′2|). From the above discussion, we can see that
the transition property presented in the previous section is an appropriate metric for comparing
generators when stimulating faults requiring a pair of vectors.

6.1.2 Some Experiments and Discussions

Given that an LHCA has a much larger number of distinct k-cell substate vectors, k ≤ bn/2c,
which have 22k transition capability, than an LFSR, we would expect a higher fault coverage. We
use simulation experiments on the ISCAS85 benchmark circuits in [5] to observe the effectiveness
of test vectors generated by the LHCA and LFSR. The experiments are based on gate delay, i.e.,
slow-to-rise and slow-to-fall, fault simulation [32]. Comprehensive delay fault equivalence rules are
applied. A fault is detected if the output data stream in the presence of the fault differs from the
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output data stream in the fault-free case. All redundancies in the circuits have been removed by
the approach in [31], i.e., there are no untestable delay faults in the circuits since all stuck-at faults
are testable.

Circuit Number Undetected Faults for LHCA Undetected Faults for LFSR(II)
Name of Faults best (times) worst (times) median average best (times) worst (times) median average

C432nr 658 0 (73) 4 (2) 0 0.38 0 (2) 16 (1) 5 5.25
C499nr 844 0 (99) 1 (1) 0 0.01 0 (67) 2 (2) 0 0.35
C880 1305 0 (56) 5 (3) 0 0.74 1 (1) 30 (1) 12 13.61

C1355nr 2076 14 (1) 28 (2) 22 22.18 17 (1) 36 (1) 26 26.02
C1908nr 2468 0 (71) 18 (1) 0 0.99 1 (3) 35 (1) 11 11.81
C2670nr 2532 54 (2) 119 (2) 85 84.91 115 (1) 191 (1) 146 145.16
C3540nr 4290 0 (27) 155 (1) 2 10.51 21 (1) 250 (1) 70 88.01
C5315nr 7222 0 (91) 3 (1) 0 0.12 4 (2) 73 (1) 14 17.48
C6288nr 9987 0 (40) 11 (1) 1 1.21 9 (1) 28 (1) 18 17.82
C7552nr 9104 85 (2) 132 (1) 109 109.01 65 (1) 115 (1) 91 90.82

Table 10: A summary of delay fault simulation results for 100 different random connections.

The simulation results for delay faults are shown in Table 10. The results are collected by
performing the fault simulation using test sequences of length 102,000. We simulated each circuit
by using the LHCA ([37, 9]) and LFSR ([3]) test vector generators with degree corresponding to the
number of the circuit inputs. For each circuit, we used 100 different random connections between
the circuit inputs and the test vector generator outputs. In the table, we report the best (and the
number of times the best result is achieved in 100 random connections), worst (and the number of
times the worst result is achieved in 100 random connections), as well as the median and average
results with respect to the number of undetected faults. It can be seen that the LHCA have better
fault coverage than the LFSRs and have greater chances to cover all faults considered. For example,
for the LHCA, more than half of the 100 connections can detect all faults for circuit C880, whereas
for the LFSR, none of the 100 connections can achieve 100% fault coverage for circuit C880. Hence,
the simulation results provide evidence that our analysis of transition properties presented in the
preceding section is indeed a proper metric of the effectiveness of LHCA and LFSR test vector
generators.

From our analysis of the transition properties and the empirical results, it can be seen that
an LHCA has more potential to achieve a higher fault coverage for stimulating faults requiring a
pair of vectors. However, an LFSR still has the possibility of catching all faults considered, and
infrequently, it performs better, e.g., for circuit C7552nr (with 207 inputs) in Table 10, resulting
from the circuit topology and only a portion of the total cycle being generated. Thus, specific
knowledge of a circuit under test is useful while choosing a test vector generator.

6.2 Data Compactors

When we apply a particular test vector sequence to a circuit, we can get an output sequence
produced by the circuit. To determine whether a circuit under test is correct, an easy way is to
check whether the output sequence produced by the circuit is the same as that produced by the
fault-free circuit, when the same test vector sequence is applied. An advantage of this approach is
that any fault can be detected as long as it can be stimulated by the test vector sequence applied.
However, such an approach needs too much extra hardware (e.g., ROM) to store the “gold” output
sequence. An alternative way to store the “gold” output sequence is compaction of the “gold”
sequence into a relatively short binary sequence called a signature.

In general, an LFSR is used as a compactor to produce the signature [3]. Corresponding to
a circuit with a single output and a circuit with multiple outputs, there are a single-input LFSR
compactor and a multiple-input LFSR compactor, simply called MISR, respectively. Similarly, for
the LHCA, we have the single-input LHCA compactor and the multiple-input LHCA compactor,
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called MICA, respectively. Since the compactor has a fixed length (i.e,. the number of bits in
the LF/MISR or LH/MICA), the signature produced by the compactor for a faulty circuit may
be the same as the “gold” signature, i.e., aliasing is possible. It has been conjectured that a k-bit
signature register will exhibit a probability of aliasing on the order of 1/2k. Several papers have
appeared showing this to be the case under various error assumptions. The most general result
to date is due to Kameda, Pilarski, and Ivanov [16]. They show that the probability of aliasing
is asymptotic to 1/2k for a very general fault model. Their result is applicable to any linear data
compactor including an MISR and an MICA.

In our experiments with the ISCAS85 circuits[5] and others we find that either no aliasing or
that aliasing is indeed bounded by 1/2k. Aliasing is found to be less likely as the number of circuit
outputs increases. This is not surprising, since in this case, 2k is much greater than the size of
the fault set. Care must be taken with this observation since the ISCAS85 benchmark circuits are
rather small. However, the empirical evidence indicates that aliasing behaves as predicted in the
theoretical work.

6.3 Remarks

The most important observation from our experiments is that, while we noted significantly different
performance of LHCA and LFSR test vector generators in BIST with respect to sequential faults,
we found that no significant difference in the aliasing behavior of MISR or MICA data compactors,
regardless of the fault model. Our experiments thus indicate that fault coverage is a more significant
issue than aliasing in BIST and that LHCAs provide better coverage if sequential faults are of
concern.

7 Conclusions

We have outlined a solution to the open problem as to whether there exists an LHCA for any given
polynomial and how to find it. In particular, we have presented an elegant synthesis algorithm that
can easily produce the corresponding LHCA given any irreducible polynomial for all practical orders.
The similarity transform between the transition matrices of LHCA and LFSRs is an important
concept since it allows us to systematically analyze LHCA making use of the depth of knowledge
that exists about LFSRs. This approach has been used quite successfully in the VLSI test domain
and is of course well known in the area of coding.

The analysis of partitioning and concatenation provides an overview of how LHCAs (or LFSRs)
can be easily split or combined without loss of the maximum length cycle property. It is instructive
to have such knowledge when designing a circuit using LHCA or LFSR as testing stimulus sources.
The designer has considerable freedom in the choice of partition or concatenation. In this paper,
we only listed a few. Hopefully, these will not limit designers’ creativity in using the concepts of
the partitioning and concatenation.

From our experimental results on the ISCAS85 benchmark circuits, we saw that, in general, the
LHCA based test vector generator provides better fault coverage than the LFSR based generator
for sequential-type faults, e.g., delay and transistor stuck-open faults. Our analysis of transition
properties brings a general theoretical answer to the question as to why LHCA are better than
LFSR as BIST test vector generators for sequential-type faults. Our work on the choice of substate
vectors for LHCA or LFSR to achieve maximum transition count provides a necessary information
to determine the appropriate connection of the circuit inputs to the LFSM generator outputs in
order to maximize the fault coverage for sequential faults. The work of determining the proper
connection is a promising area for further research.

However, when doing this, we must understand that any method proposed which works in
principle for a set of small circuits does not necessarily mean that it works for the general case.
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Perhaps the choice based on random connections and simulation can easily achieve the expected
result (at least our preliminary studies indicate this to be so).

The main purpose of this paper has been to review the current state of knowledge regarding
LHCA and to relate same to the better known and, at least to date, more extensively studies LFSR.
We are not proposing that LHCA replace LFSRs, but rather suggest them as an alternative that
should be considered, with evidence that, at least in certain applications, there is some benefit to
be gained.
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