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Abstract. This letter is a supplement of the table of the minimal cost one-dimensiona linear hybrid cellular
automata with the maximum length cycle by Zhang, Miller, and Muzio [IEE Electronics Letters, 27(18):1625-1627,
August 1991].
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1 Introduction

Recently, one-dimensional linear hybrid cellular automata (LHCA) [ 1], [2] have been considered as alternatives to

linear feedback shift registers (LFSRS) [3] for VLSI design and test, and in particular for Built-In Self-Test (BIST)

[4]. When used as a test vector generator, an n-degree LFSR or LHCA with a primitive polynomial over GF(2) is

desired since it yields a maximum length cycle. That is, the LFSR or LHCA in an autonomous mode of operation
traverses all possible (2' —1) non-zero states before returning to its initial non-zero state.

The LHCA considered are linear finite state machines (LFSMs), each composed of a one-dimensional array of cells.
Cells are only able to communicate with their immediate neighbors. We examine only LHCA that consist of rule 90
and rule 150 cells, since it is shown in [2] that this is a necessary condition for the LHCA to have a maximum length
cycle. The complete details of LHCA can be found in [1], [2].

In general, we should minimize the hardware cost of an LFSR or LHCA implementation. Fortunately, we can easily
get ann-degree primitive LFSR with minimal cost for any practical use in BIST, since the minimal weight primitive
polynomials of degree through 500 are contained in [3], [5]. The LFSRs are obtained via the one to one
correspondence between n-degree LFSRs and polynomials of defjrékis letter, we extend the table in [6], using

an alternative method to produce the minimal-cost maximum-length LHCA. These LHCA, from degree 151 to 500,
were not previously known.

2 Method and Result

The algorithm of determining whether a givedegree LHCA has a maximum length cycle is as follows.
(a) Compute the characteristic polynomial of the LHCA using the recurrence relation in [2];
(b) Check if the characteristic polynomial is primitive; if so, the LHCA has the maximum length cycle.

For each degree, we first generate all of the LHCA with a single rule 150 cell. If this is not successful, we then
generate all of the LHCA that have a pair of rule 150 cells. For each degree, the search is stopped at the first LHCA
with the maximum length cycle. This search has never failed, meaning that for each degree up to 500, there is an
LHCA with the maximal length cycle that has either one or two rule 150 cells.
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The following table gives the maximum length LHCA with the minimal cost, one of each degree up to 500. For the
completeness, we reproduce the table in [6] (the LHCA of degree 1 through 150). The entries in the table indicate
which cells use rule 150. For example, the entry

100 2 7

represents a rule vector for an LHCA of degree 10

[0,1,0,0,0,0,1,0,0,0],
where '1’ denotes rule 150 and 'O’ denotes rule 90. That is, the LHCA has 10 cells’, where cells 2 and 7 use rule 150
and the rest use rule 90.
Neither of the steps used in the algorithm to obtain the results is difficult. The recurrence in [2] alows the
characteristic polynomial of an n-degree LHCA to be calculated with a linear (in n) number of polynomial
operations. The polynomial, which has degree n, isthen checked for irreducibility. Thisis done because
(a) if the polynomial isnot irreducible (i.e., itisreducible), thenit is not primitive, and
(b) irreducibility checking is significantly easier than primitivity checking.
The prime factorization (2" —1) is required to determine whether a polynomial is primitive. Once these factors are
known, the check for primitivity is straightforward, but may require a large number of polynomial operations. See [7]
for a complete discussion of determining irreducibility and primitivity. A total of approximately three CPU days on
a SPARC 10 cornputer is required to complete the table presented in this letter.

3 Conclusion

The proposed algorithm for determining whether a givelegree LHCA has the maximum length cycle has been
used to produce the minimal cost LHCA of degree up to 500 included in the letter. The contributed results will be
useful for researchers working in the areas of VLSI design and test as well as other applications.

We have seen from the experimental results that for each dedr&®0), there exists amcell LHCA with the
maximal length cycle that has at most two rule 150 cells. We conjecture that this is true in general.
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Deg. | LHCA |Dey. |LHCA |Deg. | LHCA |Deg. | LHCA |Deg. | LHCA | Deg. | LHCA
@ 1 | (50 1 |01 |1 20 | (151) 27 | (20) |1 26 | (25)) 1

@) 1 | (52 |2 29 | (102) 3 | (152 20 | (202) 24 | (252 |4 31
®) 1 | (53 1 | (103 15 | (153 13 | (203) 7 | (253 93
@ [1 3 [z 9 | (104 |2 40 | (159 66 | (204) | 1 103 | (254) 1

(5) 1 | (55) 17 | (105) 1 | (155) 1 | (205 57 | (255) 55
(6) 1 | (56) |4 14 | (106) 30 | (156) | 2 24 | (206) |1 71 | (256) |1 127
@ 3 | (57) 9 | (107) 19 | (157) 33 | (207) |1 130 | (257) 49
® [2 3 |9 17 | (108) |1 35 | (158) 1 | (208) 74 | (258) |1 181
) 1 | (59 |4 15 |(109) |1 4 | (159) 61 | (209) 1| (259 21
(100 [2 7 |®0) |2 38 | (110 13 | (160) | 1 151 | (210) 1 | (260) |4 89
(11) 1 | (61) |1 10 | (111 27 | (161) |1 116 | (211) 17 | (261) 1

12 [3 7 |(® 5 (112 |2 5 | (162 73 | (212) |2 169 | (262) | 3 189
(13) 5 | (63 31 | (113) 1 | (163) |1 24 | (213) |1 56 | (263) %
(14) 1 | (64 |3 5 | (114) 22 | (164) 26 | (214) 590 | (264) | 2 173
(15) 3 | (65 1 | (115 41 | (165) |3 130 | (215) 29 | (265) 69
(16) |1 15 | (66 |1 19 | (116 16 | (166) 72 | (216) |4 26 | (266) 46
17 5 | (67) 15 | (117) 33 | (167) |1 60 | (217) 53 | (267) 103
(18 [1 17 | (9 8 | (118) 30 | (168) | 1 113 | (218) 50 | (268) |1 73
(19) 3 | (69) 1 | (119 1 | (169) 81 | (219) 49 [(269) |1 210
200 [2 3 | (70 |1 37 | (1200 |3 73 | (170) 22 | (220) 47 | (270) 81
@) [1 10 | (7)) 17 | (121) 5 | 17n) 37 | (221) 1 | (271) 5

(22) 5 (72 |6 5 | (122 14 | (172) 3 | (222 |2 12 | (272 |3 109
(23) 1 | (73 9 | (123 51 | (173) 1 | (293 9 | (273 1

48 [8 12 | (74 1| (129 21 | (174) 16 | (224) 64 | (274) |2 29
(25) 9 | (75 7 | (125 13 | (175 |2 71 | (225) 33 | (275) 103
(26) 1 | (76 |2 22 | (126) 20 |(176) |1 45 | (226) |1 33 | (276) 81
@n |1 20 | (77) |3 44 | (127 15 | (177) |1 22 | (227) 100 | (277) |1 72
(28) 3 | (78 |1 41 | (128 |1 29 | (178) |1 79 | (229) 6 | (279) 44
(29) 1 | (79 9 | (129 49 | (179) 1| (229 21 | (279) 69
(30) 1 | (80) |1 71 | (1830) |1 27 | (180) 19 | (230) 1 | (280 |2 47
(31) 11 | (8)) 1 | (13) 1| (18)) 81 | (231) 1 | (28) 1

@) [1 15 | (8) |1 69 | (132 18 | (182) 34 | (232 93 | (282) |3 19
(33) 1 | (83 1 | (133) |1 4 | (183) 1 | (233 1 | (283 35
B8 [1 19 | (89) 36 | (134) 26 | (184) | 2 163 | (234) | 1 145 | (284) 49
(35) 1 | (8) |1 46 | (135) 1 | (185 61 | (235) 69 | (285) | 1 208
(36) 6 | (86) 1 | (13) |1 97 | (186) | 1 125 | (236) 61 | (286) | 2 167
(37) 9 | (87) 13 | (137) |1 132 | (187) 45 | (237) 33 | (287) 109
(38) 7 | (89 5 | (139) 28 | (18%) | 2 10 | (239 3% | (288) |1 61
(39) 1 | (89 1 | (139 11 | (189) 1| (239 1 | (289 101
(40) 8 | (90) 1| (140 8 |(190) |2 8 | (240) |3 7 | (290) 112
(41) 1 | (9) 15 | (141) 25 | (192) 1 | (241) |1 162 | (291) 97
(42) 19 [ (92 |3 71 | (142 5 | (192 |3 111 | (242 4 | (292 5

(43) 3 | (99 33 | (143) 35 | (193) 9 | (243) 1 | (29 1

@) [4 26 | (99) 42 | (144) 13 | (194) 14 | (244) |2 49 | (294) |1 79
(45) 9 | (%) 1 | (145 |1 46 | (195) 19 | (245) 1| (29) 57
@6) |2 10 | (%) 6 | (146) 1 | (19) 32 | (246) 20 | (29) 2

(a7) 13 | (97) |1 8 | (147 |1 136 | (197) 65 | (247) |1 102 | (297) | 3 84
(48) 15 | (98) 8 | (149) 8 | (198) |1 145 | (248) | 1 185 | (298) 111
@9) [1 10 | (99 13 | (149 |1 108 | (199) 41 | (249) 81 | (299) 1

(50) 11 | (100) |1 67 | (150) | 2 102 | (200) 11 | (250) |1 217 | (300) | 1 251




Deg. | LHCA | Deg. | LHCA | Deg. | LHCA | Deg. | LHCA | Deg. | LHCA | Deg. | LHCA
(301) 8L |(335) |1 12 | (369 |1 74 | (403) 179 | (437) 5 | (@70 |2 185
(302 | 2 105 | (336) | 4 35 | (370 75 | (404) 68 | (439) 187 | (472) |2 212
(303) 1 | (337) |1 100 | (371) 1 | (405) 117 | (439) 171 | (473) 1
(304) |4 130 | (338) | 1 41 | (372) | 1 257 | (406) 116 | (440) | 4 135 | (474) 61
(305) 73 | (339) |2 9 | (313 5 | (407) 95 | (441) 1 | (a75) 45
(306) 1 | (340) |2 37 | (374) | 2 313 | (408) | 2 239 | (442) 138 | (476) 25
(307) 123 | (341) 145 | (375) 1 | (409) |4 97 | (443) 1 | @) |1 266
(308) 14 | (342) 69 | (376) 62 | (410) | 3 181 | (444 184 | (479) 86
(309) 1| (383 %9 | (377) 149 | (412) 1 | (445) 197 | (479) |1 140
(310 |1 43 | (344) 13 | (378) |2 12 | (412 185 | (446) | 1 443 | (480) | 8 239
(311) 7 | (345) 49 | (379) 33 | (413) 1| (447) 223 | (481) 225
(312) |1 295 | (346) 32 | (380) |4 102 | (414) | 4 137 | (448) |1 153 | (482) | 1 285
(313) 57 | (347) 13 | (381) |1 44 | (415) | 1 276 | (449) 209 | (483) 1
(314 |3 41 | (348) |1 25 | (332 138 | (416) | 1 219 | (450) | 2 137 | (484) | 3 237
(315) 123 | (349) 117 | (383) 77 | (417) 129 | (451) 11 | (485) |1 272
(36) |1 25 | (350) |2 63 | (384) | 1 215 | (418) 36 | (452) 29 | (486) |1 181
(317) |2 127 | (351) |1 64 | (3% 161 | (419) 1 | (453) 1| (487) 159
(319) 16 | (352) |1 145 | (386) 1 | (420) |1 323 | (454) 18 | (489) 188
(319) 21 | (353) 97 | (387) |1 176 | (421) | 1 108 | (455) 31 | (489) 109
(3200 |3 79 | (354) 24 | (388) | 1 339 | (422) |1 21 | (456) | 2 209 | (490) | 2 287
(321) 97 | (355) 69 | (389) 89 | (423) |2 221 | (457) | 1 220 | (491) 1
(322 |2 74 | (356) 40 | (390) |2 56 | (424) | 2 80 | (458) oL | (492) 15
(323) 1 | (3 73 | (391) |1 252 | (425) 37 | (459) 19 | (493) |1 184
(324) 19 | (359 9 | (392 173 | (426) 1 | (460) 32 |(494) |2 3
(325) 33 | (359) 1 | (393 33 | (427) |2 91 | (461) | 1 90 | (495) 1
(326) 1 | (360) |1 97 | (394) 59 | (428) 184 | (462) 138 | (49) | 3 69
(327) 25 | (361) |1 282 | (3%5) | 1 86 | (429) 1 | (463) 33 | (497) |1 200
(329) 80 | (362) |2 154 | (396) | 1 113 | (430) | 3 93 | (464) 82 | (498) 63
(329) 1| (383 51 | (397) 113 | (431) 1 | (465 |1 202 | (499) |1 174
(330) 1| (364) 27 | (398) 1 | (432) |1 49 | (466) 90 |(500) |2 78
(331) 21 | (365) 85 | (399) 61 | (433) 45 | (467) 9%

(332 |1 65 | (366) |1 65 | (400) 198 | (434) 86 | (468) | 2 378

(333) |1 52 | (367) 93 | (401) 185 | (435) | 2 281 | (469) 113

(334) 104 | (3698) 139 | (402) 154 | (436) 17 | (470) 1

! Here, we number the cells 1 to n from left to right. In fact, we can get another configuration by the reversal [1].




