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Abstract

This paper discusses the behaviour of linear �nite state machines when partitioned into a

number of smaller machines or concatenated into longer ones. We examine linear feedback

shift registers (LFSRs) and linear cellular automata registers (LCARs) used in built-in self-test,

cryptography and coding theory. We examine the concatenating and/or partitioning of machines

which have a maximal length cycle structure to obtain longer or smaller ones maintaining this

property. We show that LCARs have better overall behaviour than LFSRs. We introduce some

minimum one-cell modi�cations which improve the number of concatenated or partitioned ma-

chines and maintain a maximal length cycle. The hardware cost is discussed.

1 Introduction

In this paper we discuss the behaviour of Linear Finite State Machines when concatenated to

themselves or to other machines to yield longer ones, or when partitioned into smaller machines.

We examine the most common implementation of general Linear Finite State Machines (LFSMs),

namely Linear Feedback Shift Registers (LFSRs) and Linear Cellular Automata Registers (LCARs).

Our primary interest is in partitioning machines with maximal length cycles into a number of

smaller machines which still maintain the maximal length cycle property. Conversely, we examine

the concatenation of machines with maximal length cycles to themselves or to other machines

with maximal length cycles, aiming to obtain arbitrarily longer machines which still maintain the

maximal length cycle property.

The initial motivation of this research comes from the application of LFSRs and LCARs in

the testing of digital circuits, and in particular in built-in self-test (BIST) and self-checking. In

this cases, LFSMs are used either as sources of pseudo-random pattern generators to supply test

1This work was supported by research grants from the Natural Sciences and Engineering Research Council of

Canada and an Equipment Loan Grant from the Canadian Microelectronics Corporation.
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vectors to the unit being tested, or as signature analyzers, to compact and evaluate the responses

to the test vectors. Di�erent portions of circuits may require di�erent machine lengths and LFSM

structures; similarly for board testing, where the boundary scan approach may give dynamic access

to each circuit separately. The examination of concatenation and partition of LFSMs allows greater


exibility to a designer, where resources can be dynamically recon�gured at di�erent lengths, still

maintaining essential properties, with resulting economy in testing hardware. For example, the

scan chain used in boundary scan might be easily recon�gured into a number of smaller registers,

each producing maximal length cycles. LFSMs are widely used in other applications, where their

concatenation and partition properties can be valuable. As examples, they are used in cryptography

for linear encryption and in coding theory for the generation of cyclic codes.

The goal is to provide theoretical and practical information about concatenation and partition

of LFSRs and LCARs. We give the theoretical background and we study systematically the be-

haviour of machines. Up to length 16, we examine all possible partitions into two non degenerate

submachines; we examine all concatenations of machines up to length 64, plus concatenations of

low-cost machines up to length 256. Tables of results and statistical evaluations are included. More-

over, in cases where the partitioning or concatenation does not lead to maximal length machines,

we provide simple one-cell modi�cations which increase the percentage of machines of the desired

type. The study shows that LCARs have better partitioning and concatenation behaviour than

LFSRs, and the minimum modi�cations suggested to the registers are of the same cost to both.

The extra hardware required for partitioning, concatenation and possible modi�cations is estimated

and experiments are given.

Much is known about linear �nite state machines in general; less has been researched about their

recon�guration properties. The original work for LFSRs originates with Elspas [6] and some more

practical implementations on a limited scale can be found in [2]. Initial results on partitioning can

also be found in [12] and practical applications of concatenation to BIST is presented in [27, 28].

Section 2 provides the background for LFSMs, their implementations and the representations

which are useful in di�erent contexts. Section 3 states the general de�nitions for partitioning and

concatenation, while section 4 and 5 provide the results for each respectively. In section 6 we

discuss the possible minimum modi�cations which can be useful to obtain maximal length cycle

machines. In section 7 we present design guidelines and their relative estimated cost in hardware,

while section 8 summarizes some recent applications of concatenation and partition.
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2 Background

In this section we give some theoretical background of linear �nite state machines, their algebraic

context, and show their di�erent representations.

A �nite state machine is an algebraic structure < S; I; Y;M; � >, where S, I , and Y are �nite

sets of states, inputs, and outputs, respectively, M (the next state function) is a mapping from

S�I into S, and � (the output function) is a mapping from S into Y [26, page 208]. We specify the

behavior of a �nite state machine by specifying its next state and output functions. The next state

function of a machine can be described graphically using a state graph. A function f : V ! V
0

is a

linear function from a vector space V into a vector space V
0

over the same scalar �eld K as V if,

for all c1 and c2 in K and all v1 and v2 in V

f(c1v1 + c2v2) = c1f(v1) + c2f(v2) [26; page297]:

For our purposes, the �eld is binary and the + operation is modulo-2 (XOR) addition. The linear

transformation describes the behaviour of a corresponding linear �nite state machine.

Thus a machine M is a linear �nite state machine (denoted as LFSM) if [26]

(a) the state space SM of M , the input space IM , and the output space YM are each vector spaces

over a �nite �eld K (we let the dimensions of the spaces be n, p and r, respectively); and

(b) for the state vector si; input vector ui; and output vector yi at time i, the next-state s+i and

the output of M are of the forms

M(si; ui) = s+i = A � si + B � ui

�(si) = yi = C � si

where A, B, and C, are matrices over K; si, ui, and yi are column vectors; and the matrix

operations are the usual matrix operations with arithmetic performed in the �eld K.

Here K is the binary �eld, the + operation is addition modulo 2 (XOR) and the relationship

between the state of the machine at time i and the state at time i+ 1 is linear. If the machine has

no input, it is called autonomous and ui is absent from the equations.

A basic result in linear algebra is that a linear transformation in a vector space can be repre-

sented by a matrix and that, in turn, such a transition matrix represents a linear transformation.

Thus we can use matrices to represent a linear �nite state machine and analyze it.

If two matrices A and B are square matrices for which there exists an invertible matrix P such

that B = P�1AP , then A is said to be similar to B [26, page 306]. Moreover, two matrices

A and B represent the same linear operator T if and only if they are similar to each other [14,
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page 155]. Of importance here is the result that if two matrices A and A
0

are similar nonsingular

state-transition matrices, then their state graphs have identical cycle structures and di�er only in

the labeling of the states [26, page 307].

From these results, we see that the problem of �nding the cycle structure induced by a matrix

A reduces to the problem of �nding the cycle structure for some matrix similar to A. Since the

matrix can represent a linear �nite state machine, the theorem give us the freedom to select the

machine of least cost in an equivalence class, knowing its state graph has the same cycle structure

as any similar state transition matrix.

The characteristic polynomial of a square matrix A is de�ned as �A(�) = det(�I�A) [26, page

310]. Such polynomial also gives a direct link to the linear machine corresponding to the matrix

A (see below). A polynomial p(X) of degree n which is not divisible by any polynomial of degree

k, where 0 < k < n, is called irreducible [22, page 148]. An irreducible polynomial of degree n

over a binary �eld is primitive and if, and only if, it divides Xm � 1 for no m less than 2k � 1 [22,

page 161]. The important consequence of the primitivity of a characteristic polynomial is that the

corresponding linear �nite state machine in its autonomous operation traverses all possible 2n � 1

non-zero states before returning to its initial con�guration. This property is of importance in some

applications such as testing.

2.1 Linear Feedback Shift Registers

A Linear Feedback Shift Register (LFSR) [26] is a �nite state machine de�ned as a collection of

storage elements and XOR gates which perform addition modulo 2, chained together and controlled

by a synchronous clock. An example of a four-stage shift register is shown in �gure 1, where the

symbol � represents XOR gates, and each box represents a memory cell. For any LFSR, one can

write the set of �nite state machine equations which describe the transition to the next state and

also the corresponding state transition matrix. For example, the equations for the LFSR of �gure 1

are:

s+0 = s3 s+2 = s1

s+1 = s0 � s3 s+3 = s2

where si represents the present state of cell i, and s+i represents its next state.

The corresponding state transition matrix follows from the set of equations such that:
0
BBBBBBB@

s+0

s+1

s+2

s+3

1
CCCCCCCA
=

0
BBBBBBB@

0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0

1
CCCCCCCA
�

0
BBBBBBB@

s0

s1

s2

s3

1
CCCCCCCA
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Figure 1: Type 1 LFSR.

The generating function f(x), corresponding to a LFSR, is called the characteristic polynomial.

This is also the characteristic polynomial of the transition matrix A. The LFSR in �gure 1 has

f(x) = x4 + x + 1 as characteristic polynomial. A nonzero polynomial coe�cient implies that a

connection exists in the machine implementation, while a zero polynomial coe�cient implies that

no connection exists. An autonomous LFSR of n cells is cyclic in the sense that, when clocked

repeatedly starting from a nonzero state, it traverses a �xed sequence of at most 2n � 1 di�erent

states (the successor of the all zero state is itself). If all 2n � 1 nonzero states can be generated

within the same cycle, it is called a maximum-length sequence . The characteristic polynomial

associated with a maximum length linear �nite state machine is primitive [1, page 77].

If it is desirable to extend the period of a sequence from 2n � 1 to 2n, nonlinear feedback

functions are required [1, page 74]. Sequences generated by linear �nite state machines are called

pseudorandom sequences, since they are periodic and deterministic, but they have many of the

properties of random sequences.

2.2 One-Dimensional Linear Cellular Automata Registers

Cellular automata are �nite state machines, de�ned as uniform arrays of identical cells in an

n-dimensional space. Cellular automata registers can be characterized by the following four prop-

erties:

(1) the cellular geometry;

(2) the neighborhood speci�cation, where cells are restricted to local neighborhood inter-

action and have no global communication;

(3) the number of states per cell;

(4) the algorithm to compute the successor state, called its computation rule, based on the

information received from its nearest neighbors.

For our purposes we are interested in one-dimensional cellular automata with a three site neigh-

bourhood, and linear computation rules. There are eight such rules, of which only two, rules 90

and 150 (see below), lead to non trivial machines. A Linear Cellular Automata Register (LCAR)
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is such a machine, and it is a hybrid LCAR if it uses both rules 90 and 150 (it can be proved that

any LCAR which yields a maximal length sequence must be hybrid [25]).

Figure 2 is an example of the type of machine being described. Each site, labeled si, 1 � i � k,

can hold either 0 or 1, and at every clock cycle, it receives an input from its nearest neighbors, si�1

and si+1. The sites at the boundary of the array always receive a 02.

0
0(90) (150) (90) (150)

s s s s1 2 3 4

Figure 2: A linear cellular automata register.

The computation rules 90 and 150 are de�ned as follows:

Rule 90 : s+i = si�1 � si+1

Rule 150 : s+i = si�1 � si � si+1

According to rule 90, the value of a particular site s+i is the sum modulo 2 of the values of its

two neighboring sites on the previous time step t. Rule 150 also includes the value of site si. If we

use '1' to denote a rule 150 cell and '0' to denote a rule 90 cell, then a LCAR can be represented

by a binary vector. For the example of �gure 2 the binary vector has the form < 0101 >.

For any LCAR, one can also write the set of �nite next state equations and the correspond-

ing state transition matrix. The characteristic polynomial of the state transition matrix is the

characteristic polynomial of the LCAR. For the example of �gure 2 the next state equations are

s+1 = s2 s+3 = s2 � s4

s+2 = s1 � s2 � s3 s+4 = s3 � s4

and the corresponding state transition matrix is A
0

A
0

=

0
BBBBBBB@

0 1 0 0

1 1 1 0

0 1 0 1

0 0 1 1

1
CCCCCCCA

with characteristic polynomial f(x) = x4+x+1. This is primitive and hence the LCAR of �gure 2

produces a maximum length cycle. This is also true of the LFSR in �gure 1 which has the same

characteristic polynomial.

2There are alternative possible boundary conditions that can be also considered (see [23]).
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2.3 Di�erent Representations

Both LCARs and LFSRs can be represented by transition matrices, for which characteristic poly-

nomials can be computed. The relationship between LFSRs and LCARs is stated as follows:

Theorem 1 [25] A LCAR and a LFSR with the same irreducible (or primitive) characteristic

polynomial are isomorphic, and the corresponding transition matrices are similar.

The consequence is that a LCAR and a LFSR, which are based on the same irreducible or primitive

polynomial, have the same behaviour as linear �nite state machines up to permutation of the order

in which the states appear, and the cycle structure of the states [26, page 307] is identical. This is

the case for the machines shown in �gure 1 and 2.

Example 1 Figure 3 shows a LCAR and a LFSR with their corresponding transition matrices

and their characteristic polynomial. The cycle structure is shown in the state transition diagrams.

Since this polynomial is irreducible, but not primitive, the states form four separate cycles, where

state 0 always goes back to itself.

There are three di�erent representations which are used interchangeably in polynomials and

their LFSR implementations: polynomials in a binary �eld, binary string representations, and the

LFSR implementation of polynomials. Each representation provides a convenient expression in

a corresponding domain, and can be easily transformed to either of the other two. A polynomial

P (x) can be directly mapped into a LFSR implementation, where the zero and non-zero coe�cients

correspond to feedback taps of the LFSR; and it can also be mapped to a binary string, where the

non-zero and zero coe�cients correspond to 1's and 0's, respectively (here we always keep the high

order coe�cients to the left in the binary string representation). The reverse transformations hold

as well. In �gure 3, these transformations are shown on the left side.

The situation is slightly more complex for LCARs. Given a characteristic polynomial, there are

three di�erent algorithms which are implemented to �nd its corresponding LCAR [3, 24, 25]. The

most recent one in [3] applies Euclid's greatest common divisor algorithm to compute the LCAR.

It has a polynomial running time, which is su�ciently fast to generate LCARs for polynomials of

very large degree.

Conversely, given a LCAR, it is easy to calculate the characteristic polynomial of its transition

matrix [25]. The mapping between a LCAR implementation and its binary form is also simple: rule-

90 and rule-150 cells correspond to 0's and 1's respectively and form the pattern of the main diagonal

of the transition matrix. This is also shown in Figure 3 on the right side. Figure 4 summarizes the

transformations above, and visualizes the relations among the di�erent representations.

7



90 150

Characteristic
   polynomial

9090

LCARLFSR

1 1 1 0

0 0 1 0

0 1 0 0

0 1 0 1

Transition matrix

0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1

Transition matrix

6

712

14

3

4

2

1

8

15

5

10 13

911

1

2

5

10

12

3

96

711

8

15

4

13

14

4 3 2P(x) = x   + x   + x   + x +1

0
0

<1 1 1 1 1> <0 1 0 0>

0 0

Figure 3: Matrices and cycle graphs.

Both LFSRs and LCARs can be used as pseudo-random pattern generators and signature

analyzers. Empirical results showed that a LCAR has better randomness distribution and hence

better fault coverage than an LFSR [10, 31, 33]. Further discussion on applications can be found

in section 8.

The easiest way to identify a LFSR is by its characteristic polynomial, abbreviated as a bit

string (so the LFSR implementing x3+x+1 is identi�ed by < 1011 >, for example). For a LCAR,

the simplest unique identi�er is the diagonal of the transition matrix, these bits also indicating

whether a cell implements rule 90 or rule 150. For example, in Figure 3, the LCAR implementing

x4 + x3 + x2 + x+ 1 is < 0100 >. These representations are used throughout this paper.

Without ambiguity we refer to a LFSR or LCAR which has a corresponding primitive charac-

teristic polynomial as a "primitive LFSR" or "primitive LCAR", and similarly for irreducibility.
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LFSR

Binary form Binary form

LCAR

Characteristic
   polynomial

(e.g. P(x) = x    + x +1)3

90 150150S1 S2 S3

<1 0 1 1> <0 1 1>

Figure 4: Representations for LFSR and LCAR.

3 Partitions and Concatenations: General De�nitions

The main interest lies in �nding structures which can be partitioned and/or concatenated and

still maintain certain attributes. Bhavsar [2] �rst introduced the idea of employing the principle

of bit-slicing to design LFSRs cost-e�ectively, but his study was restricted to the behavior of a

small number of polynomials. We treat all such machines in a uniform way with a combination of

theoretical and experimental results.

Since there is a direct 1 : 1 isomorphism between LFSRs and polynomials, Bhavsar [2] could

discuss the question of concatenation in terms of polynomials. This is not the case for LCAR,

and even for LFSR there are actually two possible concatenation structures to be considered.

Consequently, our de�nitions have to be tailored to match precisely the relevant machine structure.

De�nition 1 Let A and B be two LFSRs implementing polynomials A(X) and B(X) of degree

r and s respectively. A and B are concatenated to realize four distinct LFSRs of degree r + s as

follows:

CAB = xs(A(X) + 1) + B(X)

CBA = xr(B(X) + 1) + A(X)

DAB = xsA(X) + B(X)

DBA = xrB(X) +A(X):

The four possible concatenation structures given above arise because A can be placed either at
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+ +

+

+

+

+

+

C
AB

AB
D

+ +

C
BA

+ +

BA
D

LFSR B = X  +  X  +  1
4 2

LFSR A =  X  +  X  +  1
2

+

LFSR A LFSR B

LFSR ALFSR B

LFSR A LFSR B

LFSR ALFSR B

S1 S2 S3 S4 S1 S2

S3 S4

S1

S2

S3 S4

S1

S2

S3

S1 S2

S4

S1 S2 S3 S4

S2S1 S1 S2

S2S1 S2S1

Figure 5: LFSR Concatenation.

the right or left end of the composite machine and the link between the two machines can either

include an XOR or exclude it. In practice, the former is the more useful structure. Note that in

CAB; DAB; the machine A is physically positioned at the right hand end of the composite machine

(the \high order" end).

Example 2 Consider the LFSRs implementing the polynomials A = x2+x+1 and B = x4 + x2 + 1.

The polynomial DAB is formed as follows:

DAB = x4(x2 + x+ 1) + x4 + x2 + 1

= x6 + x5 + x2 + 1

This is illustrated in Figure 5.

De�nition 2 Let A =< a1; : : : ; ar > and B =< b1; : : : ; bs > be two LCARs of length r and s

respectively, and let A0 =< ar; : : : ; a1 > and B0 =< bs; : : : ; b1 > be their mirror images. A, A0, B

and B0 are concatenated to form LCARs of length r + s as follows:

CAB = < a1; : : : ; ar; b1; : : : ; bs >

10



CAB0 = < a1; : : : ; ar; bs; : : : ; b1 >

CA0B = < ar; : : : ; a1; b1; : : : ; bs >

CA0B0 = < ar; : : : ; a1; bs; : : : ; b1 >

CBA = < b1; : : : ; bs; a1; : : : ; ar >

CBA0 = < b1; : : : ; bs; ar; : : : ; a1 >

CB0A = < bs; : : : ; b1; a1; : : : ; ar >

CB0A0 = < bs; : : : ; b1; ar; : : : ; a1 >

It is clear than a LCAR < a1; : : : ; ar > and its mirror image < ar; : : : ; a1 > represent machines

with identical cycle structures, so the eight possible concatenations listed above can be reduced to

a maximum of four distinct machines with distinct cycle structures (each of the machines in the

pairs (CAB; CB0A0), (CAB0; CBA0), (CA0B; CB0A), (CA0B0 ; CBA) has the same cycle structure). Note

that the concatenation of two LCARs is a little simpler than that for LFSRs because the latter

may have to incorporate an extra XOR at the join.

Example 3 Consider the LCARs A =< 110 > and B =< 0100 > with characteristic polynomials

x3 + x+ 1 and x4 + x3 + x2 + x+ 1 respectively. Figure 6 illustrates the possibilities.

De�nition 3 If the LFSM formed by concatenation implements a primitive characteristic polyno-

mial, it is a primitive concatenation.

De�nition 4 The concatenation of single LFSM of degree s with itself n times (n > 1) to realize

a machine of length n � s is called self-concatenation. Otherwise a concatenation is non-self-

concatenation.

De�nition 5 A LFSM formed by the concatenation of two LFSMs, A and B, can also be parti-

tioned into the two machines, A and B.

De�nition 6 The partition of a LFSM C, of degree t, into two irreducible LFSMs A and B, of

length r and s respectively, such that r + s = t, is called an irreducible partitioning. Otherwise, it

is called a reducible partitioning.

De�nition 7 The partition of a LFSM C, of degree t, into two primitive LFSMs A and B, of

degree r and s respectively, such that r + s = t, is called a primitive partitioning. Otherwise, it is

called a nonprimitive partitioning.
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(150)

0

0

(90) (90) (90) (90)(150)

(150)

0

0

(90) (90) (90) (90)(150)

(150)

0

0

(90) (90) (90) (90)(150)

(150)

0

0

(90) (90) (90) (90)(150)

(150)

0

0

(90)(90) (90) (90)(150)

(150)
0

0

(90)(90) (90) (90)(150)

(150)

0

0

(90)(90) (90) (90)(150)

(150)

0

0

(90)(90) (90)(90) (150)

C
AB

C
AB’

CA’B

C
A’B’

C
BA

C
BA’

C
B’A

C
B’A’

(150)

(150)

(150)

(150)

(150)

(150)

(150)

(150)

LCAR A <1 1 0> LCAR B <0 1 0 0>

Figure 6: LCAR Concatenation.

12



It should be noted that primitive concatenation implies primitivity of the newly-formed polyno-

mial, while primitive partitioning means that both polynomials obtained from the partitioning are

primitive. The logic behind these seemingly inconsistent de�nitions is that in both cases, concate-

nation and partitioning, the attribute of primitivity is only related to the result of the operations

(primitivity of the resulting C in concatenation, and the resulting A and B in partitioning), while

the inputs (the polynomials A and B before concatenation, and polynomial C before partition-

ing) are not necessarily primitive. All de�nitions above apply equally to both linear �nite state

machines, LFSRs and LCARs.

De�nition 8 If a LFSM of length t is partitioned into two machines of lengths r and s respectively,

such that r + s = t, r = 1 or s = 1, then it is called a degenerate partitioning.

De�nition 9 If a LFSM of length t is partitioned into two machines of lengths r and s respectively,

such that r + s = t, 1 < r; s < t � 1, then it is called a proper partitioning.

Example 4 The degenerate partitions of length 6 �nite state machines are:

2 k 2 2 2 2 2

2 2 2 2 2 k 2

where \k" indicates the partition point. The proper partitionings are:

2 2 k 2 2 2 2

2 2 2 k 2 2 2

2 2 2 2 k 2 2:

Hence, a �nite state machine of length n has (n � 1) possible partitionings, two degenerate

partitionings, and (n� 3) proper partitionings.

Example 5 The LFSR based on the characteristic polynomial x16 + x14 + x11 + x10 + x8 + x6 +

x3 + x2 + 1 can be partitioned into two length eight primitive machines, both of which implement

the same polynomial x8 + x6 + x3 + x2 + 1.

Example 6 The LCAR based on the characteristic polynomial x16 + x12 + x11 + x8 + x7 + x6 +

x5 + x2 + 1 and represented by the binary vector < 0100010101010100 > can be partitioned into

two length eight primitive machines, which implement the polynomials x8 + x7 + x5 + x3 + 1 and

x8 + x7 + x3 + x2 + 1.
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4 Concatenation

There are two distinct approaches to studying the concatenation properties of linear �nite state

machines: �nd the mathematical basis of concatenation or use a simulation method. The concate-

nation of linear machines, both for LFSRs and LCARs, implies a composition of their respective

transition matrices. For example, in the concatenation of two LCARs, with A1 and A2 as transition

matrices, the direct sum is shown by the two transition matrices on the diagonal of the composite

matrix B, as shown below. The primitivity and irreducibility of the characteristic polynomial of

the resulting matrix B can not be deduced by the attributes of the characteristic polynomial of the

submatrices. Thus, it is investigated by simulation.

B =

0
B@

A1 0

0 A2

1
CA

Concatenation can be examined from three di�erent perspectives: the method of concatenation,

the attributes of the resulting machines, and the attributes of the participating machines.

There are four possible cases for the attributes of the participating linear machines which are

considered:

(1) Primitive-Primitive concatenation (PP),

(2) Primitive-Nonprimitive concatenation (PN),

(3) Nonprimitive-Primitive concatenation (NP), and

(4) Nonprimitive-Nonprimitive concatenation (NN).

The concatenation operations given above can be used repeatedly to combine any number of

machines. Obviously, there are many choices. Figure 7 summarizes the taxonomy of concatenation.

We assume that the root is level 1, then levels 2, 3 and 4 in turn represent the three perspectives

of the classi�cation: method of concatenation (self or non-self), attributes of resulting machine

(primitive ot not), and attributes of participating machines (primitive ot not), respectively.

Table 1 shows the primitive self-concatenations of primitive machines of degree 3 to degree 6,

forming machines up to degree 64. Both the initial and the resulting machines are primitive.

A subset of this table can be found originally in [2]. Table 1 includes reciprocal polynomials3of

the polynomials. Tables up to degree 256 can be found in the Appendix. When concatenating

3The reciprocal polynomial is de�ned as P (1=x) and its binary representation is the reverse image of the original

P (x).

14



Concatenation

Non-self Concatenation

Non-primitivePrimitive

PP PN NP NNNNNPPN
PP

Self  Concatenation

Primitive Non-primitive

PPPP NN NN

Figure 7: The taxonomy of concatenation.

Degree Polynomial LCAR LFSR LCAR

Concatenation Concatenation

2 111 01 - 2,3,5,6,9,11,14

3 1011 011 2,3,9 16

1101 001 2,3,9 4

4 10011 0101 - 3,7,13,15

11001 1011 - 17

5 100101 01111 3,12 -

101001 00110 3,12 3,9

110111 00001 5 -

111011 00111 5 6,7

101111 00011 - 6,7

111101 10011 - 3,8,9

6 1000011 000110 3,5 10

1100001 010110 3,5 2,6,8

1100111 100101 2 2,4,6

1110011 000001 2 3

1011011 011101 - 9

1101101 010101 - 2,3,10

Table 1: Self-concatenation of degree 3 to 6 polynomials.

15



polynomials, and their respective LFSRs, there are implications for the implementation, as the feed-

back taps must be adjusted appropriately (see section 7). Note that, for LFSRs, self concatenation

without an XOR at the join always leads to a reducible machine [6].

The study in LCAR concatenation has yielded a variety of tables, available from various techni-

cal reports and summarized below to correspond to the concatenation hierarchy shown in Figure 7.

(1) Primitive Self Concatenation.

This type of concatenation corresponds to the square box of Figure 7. Tables are

complete for lengths from 2 to 16. We list all primitive LCARs forming longer primitive

LCARs by self-concatenation up to length 64 [29]. As examples, the primitive LCAR

< 1010 > self-concatenates 3, 7, 13 and 15 times to form primitive LCARs of length

12, 28, 52 and 60 respectively; the length 8 primitive LCARs, < 11101110 > and

< 11110111>, self-concatenate twice and four times respectively to give length 16 and

32 primitives.

(2) Primitive and Irreducible Non-self Concatenation: low cost.

This type of concatenation corresponds to a subset of the 'PP' leaves in the self-

concatenation left side of Figure 7. Here:

i) the maximum length of the concatenated LCAR is 256;

ii) the resulting LCAR can be either primitive or irreducible;

iii) the initial LCAR are primitive and low cost.

A low cost primitive LCAR has a minimal number of cells with rule 150, which are the

most expensive in implementation (see also section 7). A complete list of minimal cost

LCAR up to degree 300 can be found in [4]. The low cost primitive LCAR of length 2

to 8, 10 and 12 have a maximum of 3 rules 150. For length 16, the minimal cost is 4

(none exist with 3). As an example, a subset of the tables in this category are listed in

the Appendix, as they are the most useful in applications.

(3) Primitive Non-self Concatenation.

Due to the very large number of possible concatenations of each length, the tables

generated are not exhaustive [29]. The circled diamond in Figure 7 represents the

concatenations in this category.

(4) Non-self primitive/non-primitive concatenation.

Tables here are not exhaustive and correspond to the circles in Figure 7.
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5 Partitioning

The partitioning behaviour of linear �nite state machines, for all degree 2 to 16 primitive and ir-

reducible polynomials, are examined, with extrapolation for higher degrees. The exhaustive search

is applied to primitive and irreducible polynomials with primitive partitioning and/or irreducible

partitioning respectively. It implies that both the original and the resulting machines are also prim-

itive and irreducible. The study is restricted to proper partitionings. The partitioning behaviour

is measured using two parameters:

(1) ATLOP: the number of degree n polynomials which each have AT Least One Partition-

ing with the desired property.

(2) PEPP: the PErcentage of the total number of Partitionings which have the desired

property.

For example, for primitive polynomials of degree n, a partition with the desired property is a

primitive partitioning, and hence PEPP is de�ned as

Pprim � 100

(n� 3)� prim(n)

where Pprim is the total number of (proper) primitive partitionings, and prim(n) is the total number

of primitive polynomials of degree n. The factor (n� 3) is used to subtract degenerate cases.

5.1 Partitioning of LFSRs

The partitioning behavior of LFSRs of length up to 16 which implement irreducible and primitive

polynomials is given in table 2. Table 2 shows that for increasing values of n up to 16 the percentage

of irreducible partitions decreases gradually until it reaches the lowest value of 6.21 for n = 16.

In terms of the number of machines of length n which have at least one irreducible partition

(ATLOP), the values vary. The results yield to similar observations for primitive polynomials.

Further discussion on improvements can be found below.

5.2 Partitioning of LCARs

The partitioning behavior of LCARs which implement irreducible and primitive polynomials is

reported in table 3. The percentage of irreducible partitions (PEPP) varies between 33.33% and

7.39%. From n = 7, the longer the machine length, the lower is the value of PEPP. In terms of the

number of machines of length n which have at least one irreducible partition (ATLOP), the values
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Degree Irreducible Primitive

PEPP Total ATLOP PEPP Total ATLOP

Number Number

4 33.33 3 1 0 2 0

5 33.33 6 4 33.33 6 4

6 14.81 9 4 22.22 6 4

7 19.44 18 10 16.66 18 10

8 18.00 30 22 12.50 16 10

9 11.30 56 32 9.72 48 22

10 11.39 99 55 8.57 60 26

11 9.67 186 112 6.81 176 80

12 9.02 335 206 6.32 144 70

13 7.87 630 356 5.42 630 276

14 7.46 1161 731 4.93 756 336

15 6.53 2182 1262 3.94 1800 704

16 6.21 4080 2393 4.15 2048 904

Table 2: The partitioning behavior of LFSRs - irreducible and primitive.
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Degree Irreducible Primitive

PEPP Total ATLOP PEPP Total ATLOP

Number Number

4 33.33 3 1 50.00 2 1

5 16.66 6 2 16.66 6 2

6 22.22 9 5 27.77 6 4

7 22.22 18 12 18.05 18 11

8 17.33 30 21 12.50 16 8

9 14.88 56 40 12.15 48 27

10 14.57 99 79 11.42 60 40

11 12.36 186 132 8.59 176 91

12 11.40 335 233 7.40 144 78

13 9.68 630 436 6.38 630 311

14 9.06 1161 801 5.73 756 378

15 8.60 2182 1504 5.53 1800 910

16 7.39 4080 2735 4.81 2048 1002

Table 3: The partitioning behavior of LCARs - irreducible and primitive.

again vary, with the lowest value of ATLOP for n = 4. In general, less than 80% of the irreducible

LCARs have at least one irreducible partition.

LCARs which implement primitive polynomials have similar performance which is shown in

table 3. In general, both for LFSRs and LCARs there is no value of n for which there is at least one

proper partition for each machine. However, LCARs have slightly better performance than LFSRs.

5.3 Discussion

The results using PEPP and ATLOP provide insight into the partitioning behavior of LFSRs and

LCARs and give rise to two hypotheses:

(1) Isomorphic LFSRs and LCARs exhibit di�erent partitioning behavior. LCARs appear

to have slightly better performance than LFSRs.

(2) Despite the fact that irreducible and primitive LFSRs and LCARs appear to have

irreducible and primitive partitions, the number of such partitions is quite small.

The evidence in support of the �rst hypotheses is clearer from the comparative graphs for irre-

ducible and primitive machines which are shown in the lower portion of �gures 8 and 9 respectively.
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The y axis is the logarithm of PEPP while the x axis gives the length n of the machines or the

degree of the characteristic polynomials. The performance of LCARs almost always exceeds the

performance of LFSRs.

The values of PEPP are more consistent, i.e., they decrease as the machine length increases.

The results imply that PEPP is a reliable parameter in indicating and evaluating the partitioning

behavior of linear machines. Moreover, it allows us to extrapolate the performance of machines of

length greater than 16. If the results for odd and even degree polynomials are treated separately,

PEPP with n > 8 decreases almost linearly. As a result, even for longer than length 16 machines,

one would expect that PEPP is likely to decrease as n increases. Considering that PEPP for n = 16

reaches the value 4.15%, it is likely to be very small for longer machines. For the application of

built-in self-test (BIST) for digital circuits, it would be more 
exible if the same long maximal

length cycle machine could be partitioned into maximal length submachines. This could allow

the use of the same machine for other purposes, and hence achieve better utilization of the BIST

hardware. However, the decrease of PEPP as n increases means that it becomes increasingly harder

for a designer to �nd a machine which has the desired primitive (or irreducible) partition. This

leads to question whether we can achieve better performance of LFSRs and LCARs, and whether

we can improve the partitioning behavior of these machines just by allowing minimum modi�cations

in the design. Some answers are provided below.

6 Improvements and Comparisons

Examining the partitioning and concatenation behavior, it appears that LCARs have slightly better

performance than LFSRs. However, for both machines the percentage of irreducible or primitive

partitions is small. With regards to concatenation, there are many possible self-concatenations

of the primitive polynomials. However, from degree 2 to 8, there are only 13 primitive polyno-

mials leading to a total of 23 possible primitive self-concatenations to form primitive LFSRs up

to degree 64 [29]. Adding the corresponding reciprocal polynomials, we double the two numbers

above, and have 26 primitive polynomials with primitive self-concatenations and 46 primitive self-

concatenations from the 26 initial ones. On the other hand, there exist 58 initial primitive LCARs

with primitive self-concatenation, from length 2 to 8, and 110 possible primitive self-concatenations

from the initial LCARs. The mirror image (corresponding to the reciprocal of a polynomial) of

a LCAR is considered as a distinct LCAR. In spite of the fact that there are equal number of

initial primitive polynomials and primitive LCARs at any degree, LCARs provide a richer set of

self-concatenable machines that maintain primitivity.
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This led us to investigate ways to improve the partitioning (or concatenation) behavior. We

demonstrate that better performance for both LFSRs and LCARs can be accomplished by allowing

minimum hardware modi�cations. Experimental results are presented to substantiate this claim.

We de�ne one modi�cation to a LFSR as the introduction or the elimination of a nonzero

term in its characteristic polynomial. Alternatively, we de�ne one modi�cation in a LCAR as the

recon�guration of a rule 90 cell to a rule 150 cell or vice versa. All irreducible and primitive

machines up to length 16 have been investigated. For each length (n = 4; � � � ; 16) the values of

ATLOP and PEPP have been found, allowing one modi�cation.

More speci�cally, for each irreducible machine all the proper partitions are examined. If there

exists a partition where one bit-slice is irreducible and the other one is reducible, then, we try

one modi�cation in the reducible part. The goal is to achieve a partition where both bit-slices are

irreducible. However, if there exists a partition where both bit-slices are reducible, no modi�cation

is allowed since we restrict ourself to only one modi�cation. Obviously, one could allow more than

one modi�cations to minimize area overhead.

Similarly, for each primitive machine all the proper partitions are examined. In cases where

a partition has only one primitive bit-slice, we try one modi�cation in the other nonprimitive

part. The goal is to achieve a partition where both bit-slices are primitive. The restriction of one

modi�cation does not allow us to try any change if both bit-slices are nonprimitive.

Example 7 The LFSR with characteristic polynomial x16 + x10 + x9 + x7 + x6 + x + 1 can be

partitioned into two length eight machines with characteristic polynomials x8+ x7+ x6+ x+1 and

x8+x2+x+1, respectively. Only the �rst bit-slice is primitive. The introduction of the term x7 in

the non primitive partition (a change from 0 to 1) results in the polynomial x8 + x7 + x2 + x + 1,

which is primitive.

Example 8 The LFSR with characteristic polynomial x16+x12+x11+x10+x7+x6+x5+x3+1

can be partitioned into one primitive machine with x8 + x4 + x3 + x2 + 1 and one non primitive

with x8 + x7 + x6 + x5 + x3 + 1. By eliminating the term x6 (a change from 1 to 0), the primitive

machine is formed with x8 + x7 + x5 + x3 + 1.

Example 9 The LCAR with characteristic polynomial x16+x14+x12+x11+x10+x9+x5+x4+

x2 + x + 1 is represented by the binary vector < 0110000010100000 > and can be partitioned into

one primitive machine < 01100000> with characteristic polynomial x8+ x4 + x3+ x2+ 1 and one

non primitive < 10100000 > with x8 + x5 + x4 + x3 + x2 + x + 1. By changing the seventh cell

(from the left) from rule 90 to rule 150 we obtain a new primitive bit machine < 10100010 > with

characteristic polynomial x8 + x7 + x5 + x3 + 1.
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Example 10 The LCAR with characteristic polynomial x16+x15+x14+x11+x10+x6+x5+x4+

x3 + x + 1 is represented by the binary vector < 1000011001100000 >. By modifying the �rst cell

from rule 150 to rule 90, the LCAR can be partitioned into two primitive machines, < 00000110 >

and < 01100000 > with the same characteristic polynomial x8 + x4 + x3 + x2 + 1.

We evaluate the performance of these machines using again PEPP and ATLOP.

The partitioning behavior of irreducible and primitive LFSRs up to degree 16, when minimum

modi�cations are allowed, is shown in tables 4 and 5, respectively, columns 3 and 5.

An examination of the results in these tables yields the following observations:

(1) Irreducible and primitive LFSRs exhibit better partitioning performance when minimum

modi�cations are allowed.

(2) Almost all irreducible LFSRs have at least one irreducible partition (ATLOP). For all

these machines, up to degree 9 there is at least one partition with the desired property.

For higher degrees, up to 16, the number of irreducible LFSRs which do not have

irreducible partitions varies between one (for n = 10) and 18 (for n = 16).

(3) All primitive LFSRs up to degree eight have at least one primitive partition (ATLOP).

For higher degrees up to 16, the number of primitive LFSRs which do not have any

primitive partitions varies between one (for n = 12) and 65 (for n = 15).

(4) One modi�cation results in larger values for PEPP. The percentage of irreducible par-

titions starts from 100% for n = 4 and gradually decreases to 33.52% for n = 16. The

corresponding value before any modi�cations, was 6.21%. Similarly for primitive parti-

tions PEPP is equal to 100% for n = 4 and gradually decreases to 24.50% for n = 16.

Without any modi�cations, PEPP was 4.15%.

The partitioning performance of irreducible and primitive LCARs up to degree 16 after the

introduction of one modi�cation, is reported in tables 4 and 5, respectively, columns 4 and 6.

Observations which can be derived from the tables are:

(1) The better partitioning behavior of LCARs with the introduction of one modi�cation

is evident from the values of PEPP and ATLOP shown in tables 4 and 5.

(2) Out of the 8795 irreducible LCARs of degree less than or equal to 16, there is only one

which done not have irreducible partitions. For every other irreducible LCAR, there

always exists at least one irreducible partition.
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Degree Number of PEPP PEPP ATLOP ATLOP

Irred. Polynomials LFSR LCAR LFSR LFSR

4 3 100.00 100.00 3 3

5 6 66.66 83.33 6 6

6 9 74.07 81.48 9 9

7 18 61.11 66.66 18 18

8 30 54.00 56.00 30 30

9 56 50.59 60.71 56 56

10 99 47.47 55.84 98 99

11 186 44.35 55.64 186 186

12 335 41.45 50.34 330 335

13 630 38.98 50.12 628 630

14 1161 37.34 47.57 1154 1160

15 2182 35.17 45.91 2176 2182

16 4080 33.52 44.08 4062 4080

Table 4: The partitioning behavior of LFSRs and LCARs (irreducible) with one modi�cation.

(3) There always exists one primitive partition for each primitive LCAR up to degree 10.

For higher degrees up to 16, the number of primitive polynomials which do not have

primitive partitions varies between one (for n = 11) and �ve (for n = 16).

(4) PEPP exhibits higher values, as it equals 100% for n = 4 and it gradually decreases

to 44.08% for n = 16. Similarly, for primitive partitions, PEPP is equal to 100% for

n = 4, decreasing to 34.34% for n = 16. Without any modi�cations, the corresponding

values of PEPP for n = 16, are 7.39% and 4.81% for irreducible and primitive LCARs,

respectively.

The better partitioning behavior with the introduction of one change is evident from the values

of PEPP and ATLOP shown in these tables. This is shown further in the comparative graphs of

�gures 8 and 9. The y axis is the logarithm of PEPP while the x axis gives the length n of the

machines or the degree of the characteristic polynomials.

Figures 8 and 9 allow us to support the following arguments concerning the partitioning per-

formance and behavior of LFSRs and LCARs:

(1) LFSRs and LCARs demonstrate signi�cantly better performance when minimum mod-

i�cations are allowed. In practice, this behavior promises a great economy in hardware
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Degree Number of PEPP PEPP ATLOP ATLOP

Irred. Polynomials LFSR LCAR LFSR LFSR

4 2 100 100 2 2

5 6 66.66 83.33 6 6

6 6 83.33 72.22 6 6

7 18 51.38 59.72 18 18

8 16 45.00 52.5 16 16

9 48 38.54 54.16 46 48

10 60 37.61 44.76 58 60

11 176 33.94 44.60 171 175

12 144 31.55 40.12 143 142

13 630 28.33 39.84 605 628

14 756 26.29 37.01 735 752

15 1800 24.45 35.16 1733 1787

16 2048 24.50 34.34 2011 2043

Table 5: The partitioning behavior of LFSRs and LCARs (primitive) with one modi�cation.

since it allows the use of the same machine for more than one purposes.

(2) Initially, LCARs behave slightly better than LFSRs. After the introduction of minimum

modi�cations LCARs are always superior to LFSRs. Intuitively, this can be explained

by considering the fact that we are allowed to try more changes in LCARs. More

speci�cally, in a LCAR of length n we are able to try n changes, i.e., each one of the

n cells can be recon�gured either in rule 90 cell or in rule 150 cell. However, in an n

length LFSR there are only n � 1 possible changes.

(3) Initially and after minimum modi�cations, the percentage of irreducible or primitive

partitions (PEPP) exhibits consistent behavior. It decreases when the machine length

increases. This lead us to the conclusion that even longer than length 16 machines

demonstrate the same partitioning behavior. This argument is more evident if separate

plots are made where even and odd degree polynomials are treated separately. In these

cases, PEPP decreases linearly with the increase in the machine length.

In general, the experimental results strongly support the fact that the partitioning behavior of

LFSRs and LCARs can be improved signi�cantly with low implementation cost. Moreover, it is

indicated that LCARs provide better performance, and hence more implementation options, than

24



Figure 8: LFSRs - LCARs: The improved percentage of irreducible partitions.

LFSRs. The comparative graphs for LFSRs and LCARs after one modi�cation are shown in the

top portion of �gures 8 and 9.

7 Design Principles

LFSR and LCAR implementations are of importance in a number of applications including digital

testing. Modi�cations to original designs of the linear machines are required to support the dy-

namic recon�guration, through the introduction of additional hardware. We present here various

implementation structures of LFSRs/LCARs and discuss their silicon costs.
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Figure 9: LFSRs - LCARs: The improved percentage of primitive partitions.
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Degree Minimum-cost Minimum-cost

primitive polynomial primitive LCAR

2 111 10

3 1011 001

4 10011 1010

5 100011 10000

6 1000011 100000

7 10000011 0010000

8 101100011 01100000

9 1000010001 100000000

10 10000001001 0100001000

11 100000000101 00001000000

12 1000001001101 001000100000

13 10000000011011 0000100000000

14 101100000000011 10000000000000

15 1000000000000011 000000100000000

16 10000000000001101 0000101000000000

Table 6: Minimum cost LFSRs and LCARs

7.1 Low Cost LFSRs and LCARs

A n-stage LFSR implementing a degree n polynomial requires m � 2 XOR gates, corresponding

to m non-zero coe�cients, where m <= n + 1. A n-cell LCAR requires one XOR gate for each

site, with these being a two- or three-input gate depending whether the rule is 90 or 150. The

two boundary cells only require a two-input XOR if they use rule 150. LFSRs with minimum m

and LCARs with the minimum number of rule 150 cells are desirable to reduce the hardware cost.

Table 6 lists a selection of primitive polynomials and LCARs with the minimum number of \1"

coe�cients from degree 2 to 16, where column 2 is reprinted from [1] and column 3 is from [29, 32].

It can be seen from the table that the lowest cost primitive polynomials are trinomials (having

three terms), and pentanomials (having �ve terms), requiring 1 or 3 XOR gates respectively in

their LFSR implementation. There are no primitive trinomials of degree 8 or degree 8n for any

n [8]. The low cost primitive LCARs all have at most two cells with rule 150.

LCARs in general require more XOR gates than LFSRs. However, it should be noted that

routing is not taken into consideration here. In practice, long feedback loops in LFSRs may require

the use of larger XOR gates, hierarchical drivers or wider and thicker metal line segments. The

cost of the feedback routing grows linearly with the number of stages. The detailed comparison of

the hardware cost of the two machine structures can be found in section 7.3.
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7.2 Concatenation and Partitioning Circuitry

In this section, we �rst discuss the cost of concatenation or partitioning circuitry at logic and circuit

levels. Then, we estimate the hardware cost of the minimum LFSR/LCAR modi�cation.

7.2.1 Logic Level

Global broadcasting forms an essential part of LFSRs. The feedback connection of a LFSR runs

across its length and connects at least the output of the last cell to the input of the �rst. Given two

LFSRs, there are four possible ways to concatenate them, as de�ned in section 3 and illustrated in

Figure 5. Note that these concatenations can be expanded logically to more than two machines. The

concatenations DAB and DBA always lead to a longer LFSR implementing a reducible polynomial

and, thus, without a maximal length cycle [6].

Since communication in a LCAR implementation is restricted to nearest neighbours, two LCARs

can be concatenated directly side by side. This is de�ned in section 3 and illustrated in Figure 6.

Direct concatenations are logically simpler for LCARs and provide more choices.

7.2.2 Circuit Level

Figures 10 and 11 show the con�guration circuitry required for an LFSR and an LCAR, respectively.

When signal PART is high, the twomachines are disconnected and work independently; when PART

is low, the concatenated machines are constructed. In practice, the concatenation of LFSRs is even

more complex. If one concatenates two long LFSRs, the driving capacity of the last stage cell in

the newly constructed LFSR could be crucial to the system performance. Solutions to this problem

can be either to design a special driver for it, and/or use thick metal line or to allow the system to

run at lower speed. Obviously, LCARs do not share this problem.

7.2.3 Hardware Required for Modi�cations

In section 6, we show that the partitioning performance of LFSRs/LCARs can be enhanced by

allowing one modi�cation of the original machines. This section is devoted to the estimation of the

hardware overhead required for such a modi�cation.

For an LFSR, the hardware required to implement a change from 0 to 1 and a change from 1

to 0, is shown in �gures 12 and 13, respectively. Notice that the change from 0 to 1 requires one

extra AND gate and one XOR gate. However, the change from 1 to 0 does not require an extra

XOR gate. As a result, one would consider the latter modi�cation as preferable in terms of area

cost.
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Figure 10: Dynamic recon�guration of a LFSR
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Figure 12: Type 1 LFSR: The linear machine which implements the reducible polynomial x3+ 1 is

recon�gured, after the modi�cation, to a maximal length machine with characteristic polynomial

x3 + x+ 1; change from 0 to 1.
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Figure 13: Type 1 LFSR: The linear machine which implements the reducible polynomial x4 +

x3 + x+ 1 is recon�gured, after the modi�cation, to a maximal length machine with characteristic

polynomial x4 + x3 + 1; change from 1 to 0.

The proposed hardware design which supports minimum modi�cations for LCARs is shown in

�gures 14 and 15. Figure 14 shows the hardware required to recon�gure a rule 90 cell to a rule 150

cell. Two extra gates are needed: one AND gate and one XOR gate. However, as can be seen in

�gure 15, the reverse change, implies only one extra AND gate, and thus is preferable. Notice that

the minimum modi�cations require the same hardware for both LFSRs and LCARs.
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Figure 14: LCARs: A rule 90 cell which is recon�gured to a rule 150 cell after the modi�cation.
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Figure 15: LCARs: A rule 150 cell which is recon�gured to a rule 90 cell after the modi�cation.
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7.3 Overall Hardware Overhead: an Experiment

As an experiment, using OASIS4for the measures, we consider three di�erent primitive LFSRs and

three di�erent primitive LCARs, all of length 16. The goal is to partition them into two length

eight primitive machines, with or without modi�cations. The LFSRs are: < 10100110101001101>,

< 10000011011000011 > and < 10001110011101001 >; the LCARs are < 0100010101010100 >,

< 0110000010100000> and < 1000011001100000 >. The cost of the recon�guration hardware for

the three LFSRs is 5.8%, 21.6% and 18.8% respectively, where the second and third machines need

one modi�cation to maintain primitivity. The corresponding increase for the LCARs is 0.8%, 0.4%

and 2.6%, where the second and the third machines need one modi�cation to maintain primitivity.

Thus the percentage of hardware overhead for recon�guration is lower for LCARs.

However, the length 16 LCARs are about 40% more expensive than the LFSRs of the same

length in terms of the initial implementation cost. Since the area overhead is calculated as a

percentage of the exact silicon area occupied by the original machine, (either LFSR or LCAR), it

is expected that the cost of recon�guration circuitry is smaller for larger size, and hence practical

length, machines. The same margin of hardware increase is also reported on CALBO (cellular

automata logic block observation) and BILBO (built-in logic block observation) designs [11]. The

cost of the BIST resources can be reduced by using low cost XOR gates [21], and carefully designed

layouts.

Overall, the hardware cost of LFSR and LCAR is still very low, compared with other BIST

circuitry in implementation. One has to evaluate tradeo�s of better performance (as PRPG and

delay fault detection) and area overhead. If used in the context of boundary scan, the di�erence in

area between LFSRs and LCARs is not signi�cant since the boundary scan cells are placed in the

unused area next to the I/O pads.

8 Applications

Given the principles of LFSR/LCAR concatenation and partitioning, we outline some of their direct

applications.

In testing applications, it is often desirable to con�gure dynamically built-in self-test (BIST) re-

sources, such as pseudo-random pattern generators (PRPG), signature analyzers and BILBOs/CALBOs,

into di�erent lengths and/or functional blocks. Concatenation and partitioning of LFSRs/LCARs

permit e�cient use of the hardware resources and reduction of the overall hardware overhead for

4Open Architecture Silicon Implementation Software, by the Microelectronic Center of North Carolina.
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testing [16, 28].

Applications of boundary scan testing have been extensively studied in the past two years

and concatenation and/or partitioning of linear machines can play an important part. The recent

developments reported in the literature can be categorized as follows.

(1) Applications of the boundary scan testing standard to digital systems of all kinds can

be found in [5, 18, 19]. Solutions to some of the traditional problems possessed by

boundary scan, such as speed limits of scan-in test patterns and the depth of scan

paths, have attracted particular attentions of design engineers and researchers.

(2) The utilization of the hardware resources for boundary scan to implement conventional

BIST circuitry is an important topic [7, 13, 17]. It facilitates on-chip testing, reduces

the overall silicon cost and improves fault detection and system reliability.

(3) The combination of boundary scan testing with other testing techniques is also quite

successfull [9, 15, 30, 28]. For instance, in [9], boundary scan and probe card technology

are coupled with electrical programmable substrates to test multiple-chip module based

image processing computer, during and after assembly. Lubaszewski and Courtois merge

the boundary scan and the UBIST [20] to support the manufacturing, �eld maintenance

and concurrent error detection [15]. Another recent application involves utilizing on-

line, o�-line BIST and boundary scan resources through the cyclic redundancy checking

and provides dual testability [28].

In the applications above, concatenation and partitioning of LFSRs/LCARs and register-based

devices can be used for dynamic con�guration, provide 
exibility of hardware resources and facilitate

on-chip testing at di�erent levels of manufacturing and maintenance processes.

Linear �nite state machines are also used extensively in two other �elds: cryptography, for the

encryption of messages, and coding theory, for the generation of cyclic codes. In both cases, the

possible dynamic recon�guration of machines which maintain the maximal length cycle property

can be very useful, as it provides a range of outputs with the minimal hardware resources. For

instance, messages can be encoded dynamically choosing di�erent lengths of machines, and thus

di�erent cyclic codes. The hardware cost remains �xed at the length of the largest machines, which

would be used anyway, while the error masking can be decreased by varying the encoding.
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9 Conclusion

With the increasing use of LFSMs in many applications, there are often situations where a number

of machines of di�ering lengths are required within the same system. There are clearly advantages

to being able to easily recon�gure a single larger machine to several smaller ones as required. Since

it is frequently the case that all the required machines must be maximal length, it is important

that this property is retained in any partitioning or concatentation of such LFSMs.

In this paper, we investigate the concatenation and partitionig properties of the two most

frequently used LFSMs, namely LFSRs and LCARs. A detailed theoretical analysis of the relevant

properties is accompanied by a systematic evaluation of the concatenation and partitioning of

such machines for almost all the practical sizes that are required in typical systems today. All

concatenations of machines up to length 64 are examined, as well as concatenations of of low-cost

machines up to length 256. The results of complete study of the partitioning of all irreducible

machines up to length 16 are included, from which we can extrapolate the frequency with which

an arbitrary partitioning of a primitive machine will result in two primitive partitions. Since the

frequency of this is quite low ( and decreasing as the length increases), we give a low cost method

of providing a minor modi�cation to the register to increase the number of primitive partitions.

An analysis of the design principles, and the use of low-cost LFSRs and LCARs and the impact

at both the logic and circuit level is included as well as a discussion of the comparatively low

overall hardware overhead which results. The results of a detailed experiment using OASIS on three

di�erent primitive LFSRs and three di�erent LCARs, all of length 16, are included. Overall, the

hardware cost of using either LFSRs or LCARs in a system is quite low, and the extra hardware

required for the 
exibility of having the property that a register can be easily recon�gured to

di�erent length maximal registers is very low.
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