
Exploring Evolutionary Coupling in Eclipse

Peter Weißgerber, Leo von Klenze, Michael Burch, Stephan Diehl
Computer Science Department

Catholic University Eichstätt
85072 Eichstätt, Germany

{michael.burch,peter.weissgerber}@ku-eichstaett.de,

research@leo-von-klenze.de,
diehl@acm.org

ABSTRACT
While software archives have been around for a long time,
they have been mostly used to store and reconstruct ver-
sions of a software system and to coordinate simultaneous
changes. Currently many researchers are investigating new
ways to exploit the information stored in software archives.
In this paper we present an Eclipse plugIn that visualizes evo-
lutionary coupling between files, i.e., how likely it is that two
files are changed together. The information is automatically ex-
tracted from the software archive and displayed as a pixelmap,
where each pixel represents a single coupling. The plugIn nicely
integrates with the rest of the Eclipse IDE and thus allows to in-
teractively explore the evolutionary coupling between different
files of a project.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
I.3.8 [Computer Graphics]: Applications

General Terms
Software archives, evolutionary coupling, co-change, soft-
ware visualization, software evolution, Eclipse

1. INTRODUCTION
Larger software systems are typically developed using con-
figuration management systems to keep track of the changes
to the source code and allow different developers to work on
the system at the same time. The resulting software archive
consists of the subsequent versions of each file of the system.

Based on the information stored in software archives, we can
compute the evolutionary coupling of files, as well as more
fine-grained software artifacts like classes or methods. Two
software artifacts are evolutionary coupled, if they have been
changed at the same time. The basic assumption here is that
the more frequently software artifacts have been changed
together, the stronger they are coupled. This is in contrast

eclipse Technology eXchange (eTX) Workshop San Diego, California

to the classical notion of coupling, which is based on one
artifact referencing the other.

In previous work we used evolutionary coupling to compare
the actual architecture of a software system to its evolu-
tionary one [6] and to recommend program changes to the
programmer [7]. We also developed a system called EPOSee
that provides various visualization techniques to visually explore
evolutionary coupling data [3]. Currently we are integrating
some of these visualizations into Eclipse. In the following we
describe EPOSpix, our Eclipse plugIn that displays evolution-
ary coupling data as a pixelmap. In Section 2 the visualization
technique itself and the interactive features of the plugIn are
explained. Section 3 provides some implementation details and
Section 4 discusses related work. Section 5 concludes the pa-
per.

2. VISUALIZATION
After processing the software archive we have for every pair
of software artifacts a, b the number of times they have been
changed 1 together Sa,b. We call this number the support
count of the coupling. We can now easily compute the con-
ditional probability that a is changed under the condition that

b was changed: Ca,b = P (a|b) =
Sa,b

Sb,b
. We call this proba-

bility the confidence that a change to b implies a change to
a. The matrixes S and C have the software artifacts as their
dimensions.

In the example in Figure 1 the artifacts are files. The exam-
ple shows the numerical values of the support count matrix
and in addition the confidence values by color coding. High
confidence values are shown as red pixels, low values as blue
pixels. White indicates that there is no coupling, i.e., the sup-
port count is zero. For example, the file GUI.java (respectively
Button.java) have been changed 4 (respectively 10) times in
total (values at the diagonal of the matrix). Three times the
two files have been changed together. The confidence that
Button.java is changed, whenever GUI.java is changed is
75%, whereas the inverse implication has only a confidence of
30%. In general, the strongest couplings are those that have
both high confidence and high support counts.

1We only consider here changes between versions checked
into the repository. Developers and projects heavily differ in
their policies and frequencies when they check new versions
into the repository.

10

3

3

4

high

low

support count = 0

Confidence

Button.java

Events.java

GUI.java

Filter.java

README

start.properties

3/4 = 75%

3/10 = 30%

B
u
tt

o
n
.j
a
v
a

E
v
e
n
ts

.j
a
v
a

G
U

I.
ja

v
a

F
ilt

e
r.

ja
v
a

R
E
A
D

M
E

st
a
rt

.p
ro

p
e
rt

ie
s

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

1

6

Figure 1: Pixelmap: Support, Confidence and Color
Coding

Figure 3 shows a screenshot of our Eclipse plugIn called EPOSpix.
It integrates the pixelmap visualization with the Eclipse IDE
and thus allows to interactively explore the evolutionary cou-
pling between different files of a project. Interactive features
of EPOSpix currently include:

Zoom At the highest resolution each coupling is represented
by a single pixel on the screen. The resolution can be
reduced, such that squares of pixels represent a single
coupling. As pixelmaps and in particular those at low
resolution tend to become large, scrolling is supported.

Mouse-Over Hints When the user moves the mouse cursor
over the pixelmap the following details about the coupling
currently below the arrow head of the cursor are shown in
the border at the bottom of the Eclipse IDE window: the
full path of the file on the vertical axis (the antecedent of
the implication), the full path of the file on the horizontal
axes (the consequent of the implication), the support and
the confidence of the coupling.

Crosshairs The crosshairs is displayed as a horizontal and
and a vertical green line2. The coupling at the inter-
section of both lines is currently selected. Both files
related to the coupling are highlighted in the package
explorer. If the user presses the right mouse button, a
pull-down menu appears which usually contains four file
names: the names of antecedent and the consequent of
the coupling the mouse pointer currently points at, as
well as the names of the antecedent and consequent of
the coupling which is currently selected by the crosshairs.
If the user selects a file in this menu, the file is opened
and shown in the editor. The crosshair can also be set
in the inverse way, i.e., the user can select to files in the
package-explorer or navigator view and the crosshair is
put at the corresponding position in the pixelmap.

Options The color of the pixels can either indicate the sup-
port count or the confidence. It is also possible to export
the pixelmap as graphics file. Furthermore, the user can

2If the corresponding file does not exist in the latest version
of the project, this is indicated by a yellow line instead of a
green line.

filter the couplings to be shown, by setting a minimal sup-
port count or confidence value. Thus filtering is typically
used to only show strong dependencies.

Figure 2: Pixelmap of the authors’ software project

In the pixelmap the files along the axes are sorted lexically in-
cluding their full path name. As a result files which are at the
same hierarchy level in the package hierarchy are close together.
As the package hierarchy typically reflects the architecture of
the system, we expect that related files are in the same level
of the hierarchy. Very closely related files even in the same
folder. Furthermore, we expect that files which are related are
also more often changed together than those that are unre-
lated. As we have shown in several case studies [6, 3], the fact
that related files are close together in the pixelmap and are
typically changed more often together becomes visible in the
pixelmap as mostly red squares along its diagonal, as can be
seen in Figure 2. In other word, files in the same directory are
more frequently changed together than files from two different
directories. More interesting are exceptions from this rule, i.e.,
files which are changed very frequently and do not correspond
to the same hierarchy level. We call such exceptions outliers.
If a software system has lots of outliers the developer should
possibly think of restructuring the whole system.

In such a hierarchically sorted pixelmap with a blue-red (cold-
hot) color scheme there are two important aspects:

The screenshot in Figure 3 shows the pixelmap of the wid-
gets package of Eclipse SWT. The coupling selected with the
crosshair is:

CTabFolderAdapter.java =⇒ ScrolledComposite.java

It has a support count of 12 and a confidence of 90%. In

The files of
the selected
coupling are
automatically
highlighted.

Crosshairs to select
individual couplings.
Files are highlighted
and can be loaded
into the editor below.

Various options
to select and filter
the data set and
to zoom in and out.

Details of the coupling
that the mouse cursor
currently points to.

Figure 3: Eclipse PlugIn: Pixelmap View

other words, this means that both files have been changed 12
times together and there is a probability of 90 percent that
when the file CTabFolderAdapter.java is changed also the
file ScrolledComposite.java has to be changed.

3. IMPLEMENTATION
Integrating the pixelmap visualization into Eclipse offered sev-
eral advantages, above all the possibility to select files in the
visualization and highlight them in the package explorer or load
them into the editor.

The plugIn was implemented as a view, i.e., a window within a
perspective in Eclipse. The view always shows the pixelmap of
the project currently selected in the package-explorer or navi-
gator view.

3.1 Implemented Interfaces
View inherit from the class org.eclipse.ui.views.ViewPart
and overwrite methods to interact with the IDE and imple-
ment certain interfaces. EPOSpix implements the interface
ISelectionListener and IJobChangeListener. The former
listens to changes in the package explorer, the latter to those

of the navigator. These listeners allow EPOSpix to put the
crosshair at the corresponding position when two files are se-
lected in those views.

When the user presses the right button, a menu pops up and
the user can select one of several files (as described above).
The file is then openend in in the editor by calling the Eclipse
API method openEditor.

3.2 Implementation of the Visualization
The visualization itself was originally implemented with AWT.
Instead of porting it, we decided to reimplement it in SWT,
because we were not quite satisfied with some of the design
decisions of our original implementation:

Drawing the Pixelmap The most important task in the
implementation is to draw the pixelmap. This is done
in the class PixmapCanvas which extends the SWT class
Canvas. PixmapCanvas stores all the couplings in the
pixelmap, the chosen color scale, the zoom factor, the
minimal support cound and confidence, as well as the
metric (support or confidence) that should be displayed.

The actual drawing works as follows: First, the com-
plete pixelmap is painted into an Image object which has
the same dimensions as the pixelmap, multiplied with
square of the zoom factor. This image is initialized with
the background color that represents zero in the selected
color scale. Then, we iterate over all binary couplings
with a support count respectively confidence larger than
the minimal support count respectively the minimal con-
fidence. For each such coupling the appropriate pixel (or
set of pixels, if the zoom factor is greater than 1) in the
image is drawn in the adequate color depending on the
selected metric and the selected color scale.

The PaintListener of the class PixmapCanvas just draws
the data of this image into the graphics context. The
drawback of this technique is that the complete image
has to be redrawn if the zoom factor, the selected metric,
or the selected color scale changes. The big advantage,
however, is that the redrawing process if the window with
the pixelmap is moved, raised, or resized, is very fast. We
assume that these operations occur much more frequent
than zoom factor, metrics, and color scale changes.

Scrolling Pixelmaps can become quite large, often a lot larger
as the space that is available on the screen, and zoom-
ing even increases this problem. Thus, our implementa-
tion must provide facilities to scroll the pixelmap on the
screen. For this, a PixmapCanvas object is embedded
in an instance of the SWT object ScrolledComposite.
This object automatically takes care that its content can
be scrolled along both axes, if it is larger than the avail-
able space on the screen.

Altogether, we found that it did not take much effort to im-
plement our visualization using SWT and integrate it into the
Eclipse IDE.

3.3 Accessing Coupling Data
To compute the evolutionary coupling data we use the eROSE
plugIn for Eclipse [4], the Eclipse plugIn version of our recom-
mendation system ROSE [7]. It stores all data (support count,
confidence) in a database (which can be an internal as well as
an external one) and provides several packages to access this
data. In essence, we only need to perform an SQL query to
retrieve all necessary data from that database.

4. RELATED WORK
The fact, that software archives contain a lot of so far unused
information was already noted by Ball et al. [1].

Several authors use the term co-change relation instead of evo-
lutionary coupling. The paper by Gall et al. is probably the first
work which relates this kind of information to the architecture
of a system [5].

Instead of using pixelmaps the coupling data can also be vi-
sualized using graph drawing techniques [2, 3]. In addition to
visualizing binary relations, our tool EPOSee can also visualize
N -ary relations and temporal relations between software arti-
facts, i.e., that some artifacts usually have been changed before
others.

5. CONCLUSIONS
EPOSpix is the first of our visualizations that we integrated
into Eclipse. We found that this integration allows us to bet-
ter explore software archives, as we can easily access software
archives and once we get the visualization, the files related by
a coupling can be inspected using the many features of Eclipse.

In the future we intend to also provide several other visualiza-
tions of the EPOSee tool as Eclipse plugIns.

6. REFERENCES
[1] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your

version control system could talk. . . . In ICSE Workshop
on Process Modelling and Empirical Studies of Software
Engineering, 1997.

[2] D. Beyer and A. Noack. Clustering software artifacts
based on frequent common changes. In Proceedings of the
13th IEEE International Workshop on Program
Comprehension (IWPC 2005), pages 259–268, Los
Alamitos, CA, 2005. IEEE Computer Society Press.

[3] M. Burch, S. Diehl, and P. Weißgerber. Visual Data
Mining In Software Archives. In Proc. ACM Symposium
On Software Visualization (SOFTVIS), St. Louis,
Missouri, U.S., 2005.

[4] eROSE — Recommender Plugin for Eclipse.
http://www.st.cs.uni-sb.de/softevo/erose/, 2005.

[5] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proc.
International Conference on Software Maintenance (ICSM
’98), pages 190–198, Washington D.C., USA, Nov. 1998.
IEEE.

[6] T. Zimmermann, S. Diehl, and A. Zeller. How history
justifies system architecture (or not). In Proceedings of
International Workshop on Principles of Software
Evolution IWPSE’2003, Helsinki, Finland, pages 73–83.
IEEE Computer Society Press, 2003.

[7] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445,
June 2005.

