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ABSTRACT
Java provides a program-level exception handling mechanism in
response to error conditions (that are translated into exceptions by
Java VM). However, exception handling code is often widely scat-
tered throughout an application and untested. This paper presents a
program visualization tool ExTest that shows quite precisely all the
handlers for exceptions triggered by certain kinds of operations,
and for each of these handlers, all the witness paths of how the
operation would be triggered. Thus, ExTest helps programmers un-
derstand the exception handling behavior of Java programs and also
facilitates testing exception handling code.

1. INTRODUCTION
The Java programming language provides a program level ex-

ception handling mechanism in response to error conditions that
happen during program execution. Subsystem faults (e.g. disk fail-
ure, network congestion) are translated into exceptions (e.g. java-
.io.IOException) by the Java Virtual Machine[10]. Proper han-
dling of these exceptions in program code is important for reliabil-
ity and fault-tolerance in server applications built in Java.

An exception handling mechanism helps separate exception han-
dling code from code that implements functionalities during normal
execution. However, exception handling code that deals with cer-
tain kinds of faults is still widely scattered over the whole program
and mixed with other exception handling code, or even irrelevant
code, making it hard to understand the behavior of the program
under certain system fault conditions.

Moreover, exception handling blocks, especially those corre-
sponding to system faults, are often left untested, because they can
not be triggered by just tuning input data of the program. In our pre-
vious work[5], we proposed a white box testing metric for the ex-
ception handling behavior of the program. The underlying program
analysis together with a testing framework using fault injection[11]
were presented and empirically evaluated. Although very precise
analysis is used in identifying exceptions and their handlers (i.e.
exception def-uses), false positives can not be fully eliminated. It
�
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is a tedious and difficult job to identify the real false positives when
they can not be exercised during the test.

In this paper we present ExTest – a program visualization tool
built on top of Eclipse[7]. Based on the program analysis intro-
duced in [5], it groups together handlers that handle exceptions trig-
gered by a set of fault-sensitive operations1 . Thus ExTest facilitates
navigation of the program code that relates to exceptions triggered
by certain operations of interest. It also shows all program paths
via which these operations can be reached from some call site in
the try block, helping a user to understand the exception handling
structure, and to identify spurious exception def-uses.

The rest of this paper is organized as following: In Sec. 2 we give
a brief overview of exception def-use analysis that was introduced
in [5]. Sec. 3 shows the structure and the functionality of ExTest.
In Sec. 4 we discuss the related work in the area of understanding
and improving exception handling code in Java programs. Future
research work is discussed in Sec. 5.

2. BACKGROUND
In [5], we proposed a def-use testing methodology for exception

handling code, which is analogous to the all-uses metric of tradi-
tional def-use testing [12]. We repeat some of the key concepts
here: In a Java program, each fault-sensitive operation may pro-
duce an exception that reaches some subset of the program’s catch
blocks. We define exception-catch (e-c) links:
Definition ((e-c link):): Given a set � of fault-sensitive operations
that may produce exceptions, and a set � of catch blocks in a
program, we say there is an e-c link ���	��
� [5] between ����� and

���� if � may trigger 
 ; we say that a given e-c link is experienced
in a set of test runs � , if � actually transfers control to 
 by throwing
an exception during a test in � .

For an e-c link ���	��
�� , � can be seen as a def of an exception object
and 
 as the corresponding use. In the experiments conducted, we
selected � to contain all the native methods in JDK library that do
network or disk I/O. In the rest of this paper we make this assump-
tion unless explicitly stated otherwise. Note that the testing frame-
work is not dependent on the � selected. Currently only checked
exceptions are considered in the system.

Figure 1 shows the organization of our exception def-use testing
system. The static (compile-time) analysis, which calculates the
possible e-c links for a program, will be introduced shortly. The
dynamic (run-time) analysis monitors program execution, calls for
the fault injector to trigger an exception at an appropriate time, and
records test coverage. The compiler uses the set of e-c links to iden-

1A fault-sensitive operation is a throw statement, or a native
method that may be affected by some fault – a hardware or OS
failure – and produce an exception.



Tester Provided
Fault Set

Java Program

Instrumented ProgramFault Injector Experienced e−c links

Run Time

Possible e−c links

e−c link Analysis

Compile Time

Measured
Coverage

Figure 1: Exception def-use Testing Framework

tify where to place instrumentation that will communicate with the
fault injection engine during execution. This communication will
request the injection of a particular fault when execution reaches
the try-catch block of an e-c link. The injected fault will cause
an exception to be thrown upon execution of the fault-sensitive op-
eration of the e-c link. The compiler also instruments the code to
record the execution of the corresponding catch block. The tester
runs the program and gathers the experienced e-c links from each
run. The testing goal is to drive the program into different parts of
the code so that fault injection can help exercise all the e-c links
found in the program. Finally, the test harness calculates the over-
all coverage information for this test suite: experienced e-c links
vs. possible e-c links.

Next we introduce the static analysis that finds the possible e-c
links in a Java program. Two algorithms are developed: Exception-
flow and DataReach analysis [5].

Exception-flow is a dataflow analysis defined on the program call
graph. Each ����� is propagated along the call edges in the reverse
direction until some try-catch block 
 is met that encloses the
call site and catches the exception thrown by � ; thus an e-c link
������
� is recorded.
void readFile(FileInputStream f){

byte[] buffer = new byte[256];
try{

InputStream fsrc=new BufferedInputStream(f);
for (...)
c = fsrc.read(buffer);

}catch (IOException e){ ...}
}
void readNet(Socket s){

byte[] buffer = new byte[256];
try{

InputStream n =s.getInputStream();
InputStream ssrc=new BufferedInputStream(n);
for (...)
c = ssrc.read(buffer);

}catch (IOException e){ ...}
}

Figure 2: Code Example for Java I/O Usage
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Figure 3: Call Graph for Java I/O Usage

It is obvious that the precision of Exception-flow analysis is af-
fected by the precision of the call graph. But in practice even a
very precise call graph building algorithm introduces many infeasi-
ble e-c links. Figure 2 is an example of typical uses of the Java I/O
packages. Figure 3 illustrates the result of Exception-flow analysis
based on a fairly precise call graph of code in Fig.2: both fault-
sensitive operations DSK READ and NET READ can be propa-
gated to the try blocks in readFile and readNet, resulting in 4
e-c links. But by reading the code we can see that (DSK READ,
catch in readFile) and (NET READ, catch in readNet) are
infeasible.

We developed DataReach analysis to reduce the number of
infeasible e-c links produced. The intuition was to use data
reachability obtained using points-to analysis, to confirm control-
flow reachability. For example, continuing with Fig. 2, we
can prove SocketInputStream.read() is not reachable from
the call site fsrc.read() in method readFile, by showing
that during the lifetime of the call fsrc.read(), no object
of type SocketInputStream may be either loaded from any
static/instance field of some class/object, or created by a new state-
ment. In this way we can show that all the control-flow paths as-
sociated with this e-c link are not feasible, so that the infeasibility
of the e-c link from SocketInputStream.read() to the catch
block in readFile is proved. In general, DataReach tries to prove
the infeasibility of each e-c link output by Exception-flow analysis,
and only outputs those that it cannot prove to be infeasible. Our
experiments showed that DataReach improved the precision of the
system significantly; it reduced the number of possible e-c links
by 41% on average (compared to the most precise analysis without
DataReach) in 6 benchmarks used in [5].

3. VISUALIZATION TOOL — EXTEST
In addition to being used by the exception def-use testing system,

the information produced by these analysis, if carefully organized
and visually displayed in an integrated development environment
(IDE), can greatly facilitate both testing and program understand-
ing of the exception handling code. We developed an Eclipse plug-
in – ExTest, which invokes these analysis and organizes the output
data into tree views for this purpose.
Motivation

During the study, we found that exception handlers that deal with
certain kinds of faults are often scattered in the program and mixed
with handlers that handle other kinds of error conditions. For in-
stance, a catch clause that handles an I/O exception may appear
at each program point where some I/O channel is active. Each of
these catch clauses may handle I/O exceptions triggered by differ-
ent fault-sensitive operations (e.g. DSK READ or NET READ).
Worse, some of these catch clauses never handle any I/O excep-
tion: Suppose in the program containing the code in Fig. 2, there is
another method readString, shown in Fig. 42. The catch block
in this method handling I/O exception will never be triggered, be-
cause the code in the try block only reads from a string buffer in
the memory – no actual I/O operation involved. Yet the try-catch
structure is necessary for the program to compile.

If a programmer wants to learn this program’s behavior under
disk failure, she has to find all the catch clauses that may handle
exceptions that result from disk faults. Suppose a powerful lexi-
cal search tool with Java language knowledge as well as program
specific information (e.g. types) is available. Then she can eas-

2This program – a single Java class containing the main method
calling all of these three methods (also defined in this class) in
Fig. 2 and 4 – is used as the example in the following discussions.



void readString(String s){
String buffer = s;
try{
InputStream n =new StringBufferInputStream(s);
InputStream in=new BufferedInputStream(n);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

Figure 4: Unreachable catch Block

ily locate all the catch clauses that handle IOException or more
general types of exceptions, but she still has to manually inspect at
least all three try-catch blocks in both Fig. 2 and Fig. 4, instead
of just the one in method readFile that actually handles the ex-
ception result from disk failure. The problem becomes much more
severe in real Java server applications.

Using the analysis mentioned in Sec. 2, we can compute all the
potential e-c links of the program. Each e-c link ���	��
�� tells us the
fault-sensitive operation that triggers the exception and where it is
handled. Thus, we can help solving the above problem by group-
ing e-c links according to their � value. Since the number of fault-
sensitive operations that relate to disk I/O is small, one can just
browse e-c links starting with these operations to to get a good es-
timate of all the try-catch blocks that are related to disk I/O.

Ours is a program analysis which computes a safe approximation
of program behavior. False positives are unavoidable, which means
for some of the e-c links ���	��
�� , the exception thrown at � never
reaches 
 . It is up to the human programmer to decide whether
an e-c link is actually spurious. This is especially important for
exception def-use testing, because spurious e-c links can never be
exercised during any test. Our program analysis provides excep-
tion propagation path data for all e-c links. Displaying these paths
visually in Eclipse IDE helps to identify the spurious ones.
Tool Structure

Our program analysis is implemented as modules in the Soot
Java Analysis and Transformation Framework [9] version 2.0.1.
Upon user request, ExTest starts another process running Soot with
our modules enabled, and reads the output data of the Soot modules
after the process finishes.

In the Eclipse IDE, we want the users to be able to explore the e-
c links (e.g. browsing all the catch clauses and their relationships
with the fault-sensitive operations) as well as the witness paths that
demonstrate the feasibility of an e-c link. The data generated by
the Soot modules are organized in an XML file, which contains all
the e-c links found in the given program and information about the
paths – needed by ExTest to perform the intended functionality.
Browsing e-c links

Each record of an e-c link ���	��
� in the output data of our Soot
modules contains the following information: the ID of � , the po-
sition of 
 in source code and the call site(s) in the corresponding
try block which may lead to the execution of � . These e-c links
can be grouped in two ways: by � or by 
 . We implemented both
of them by means of two tree views in Eclipse: the Handlers view
and the Triggers view.

Figure 5(a) shows the Handlers view, where e-c links are
grouped by the try-catch blocks. These try-catch blocks are
further grouped by their definition positions: the methods, classes,
packages in which they are defined. Each try-catch block can be
expanded to show all the fault-sensitive operations that may trig-
ger exceptions reaching the catch. The last try-catch block in
the figure is highlighted and expanded. It is defined in package
iotest.mixed, class Mixed and method readFile. We can see
that one method call in the try block reaches a fault-sensitive op-
eration in the JDK: “DSK READ”.

(a) Handlers View

(b) Triggers View

Figure 5: Tree Views of e-c links

Figure 5(b) shows the Triggers view, where the e-c links are
grouped by the fault-sensitive operations. By expanding the
“DSK READ” operation we can see that only one try-catch
block in the program handles an exception thrown by read of a file.
So if a user is interested in program behavior under a disk fault, she
can just concentrate on this one catch block.

Thanks to the environment provided by Eclipse IDE, these two
tree views can be interactively explored. The try-catch block,
the statements in the try block that may lead to the fault-sensitive
operation, etc., can be opened and highlighted in the Java source
file editors, upon double click on the corresponding items in the
view. For example, in both views, we can see the actual code for
the try-catch block #0 by double clicking on the line.
Displaying All Paths for an e-c link

We also want to display the paths that show how � in an e-c link
���	��
�� can be reached from the try block that corresponds to 
 . Se-
lecting and displaying only one (the shortest) path for each e-c link
is not enough, especially with the presence of the false positives.
In order for a programmer to decide that an e-c link is spurious,
she has to make sure that all the control-flow paths from the cor-
responding try to � are actually infeasible. So it is necessary for
ExTest to display all these paths to be practically useful. But the
total number of paths may be exponential to the size of the pro-
gram [2]! Clearly, the approach of gathering and dumping all these
paths into an output file after the analysis finishes will not scale.
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Figure 6: Annotated Call Graph
Exception-flow analysis can record the propagation paths of each

����� by annotating call edges in the call graph. Figure 6 shows
the annotated call graph for the code in Figs. 2 & 4. Since the
set of fault-sensitive operations � is pre-selected according to the



fault set provided by the user (not depending on the program being
analyzed), the size of the annotated call graph is at most linear in
the size of the original call graph.

Recall that DataReach proves that some of the e-c links are infea-
sible by showing the infeasibility of the all the control-flow paths
of these e-c links. To be able to incorporate its results into the
annotated call graph, we modified DataReach so that for each e-
c link ���	��
� , the annotations of � on all the call edges associated
with ������
� are confirmed only if we cannot prove the infeasibility
of ���	��
� . During the output of the call graph, only the confirmed
annotations are written with the graph. In Fig. 6 confirmed annota-
tions are shown in bold face.

With the annotated call graph, the paths can be generated on de-
mand in ExTest. Suppose one user chooses to trace the paths of
some e-c link ������
� . ExTest can retrieve from the graph all the out-
going edges departing from the try block that are annotated with
� , and the target methods can be displayed to the user. Then the
user can choose to trace one of these methods, ExTest can retrieve
all the outgoing edges from that method that are annotated with �
and display the target methods of these edges. This process can be
repeated until the fault-sensitive operation � itself is reached.

Figure 7: Exception Propagation Path

Figure 7 is the expanded view of the last e-c link shown in
Fig. 5(b). Only one witness path was discovered by the analysis,
which precisely reflects the analysis result shown in Fig. 6.

However, we are not always so lucky in bigger programs; paths
in these programs can get very complicated, especially inside the
JDK library classes that make heavy use of polymorphism. Fig-
ure 83 shows part of the Triggers view displayed when browsing
e-c links in one of the testing benchmarks used in [5] – a FTP
server written in Java [18]. Witness paths of one e-c link are
partly expanded in the figure, with the fault-sensitive operation
SocketInputStream.read() highlighted.

As can be seen from the figure, the “fan out” of some of the nodes
along the paths is large (e.g., InputStreamReader.close()).
Furthermore, many of the methods appear more than once, which
indicates the possibility of recursion introducing a path with un-
bounded length. Since these paths are extracted out of a call graph,
expanding the second appearance of a method on a path brings ex-
actly the same set of children in the tree view. This is wasteful
and introduces unnecessary complexity into the view. Manually
identifying the recursion in a complex view like this is not trivial.
Therefore we have automated recursion detection in ExTest. As
shown in Fig. 8, many methods are annotated with “...” and they
are not expandable, which shows that the method has been called
recursively and further expansion is not necessary.

If we only show only one witness path of the e-c link– the nat-
ural selection would be the shortest one – the view can be greatly
simplified, but the real complexity of the problem would be hid-
den from the user: the user is not helped in identifying infeasible
3JDK 1.3.1 08 is used in the figure.

Figure 8: Exception Propagation Path

paths; however, expanding and highlighting the shortest path au-
tomatically among all paths may help in understanding the overall
program structure. We are now working on implementing this fea-
ture in ExTest.

4. RELATED WORK
This paper presents a tool to help understand and maintain the

exception handling feature of Java programs, based on exception-
catch link analysis. There is much previous research work in both
exception handling analysis and its usage in various software engi-
neering tools. Here we will discuss only the works that are most
closely related to the tool discussed in this paper4.

There are tools built to improve exception handling in programs,
for example avoiding exception handling through subsumption, or
finding unhandled exceptions for a given method. Jo et. al [8]
presented an interprocedural set-based [6] exception-flow analysis
for checked exceptions. A tool [3] was built based on this analy-
sis which shows, for a selected method, uncaught exceptions and
their propagation paths. It is unclear from the paper whether a cer-
tain path for each exception is selected and displayed, or if all of
the paths are displayed. Experiments show that this is more accu-
rate than an intraprocedural JDK-style analysis on a set of bench-
marks five of which contain more than 1000 methods. Robillard et.
al [14] described a dataflow analysis that propagates both checked
and unchecked exception types interprocedurally. Their tool Jex
illustrates the exception handling structure in application code. It
4More extensive discussion of related research results can be found
in the related work section of [5].



analyzes exception control-flow and thus identifies exception sub-
sumption. These analysis are less precise than ours. Their call
graph is constructed using Class Hierarchy Analysis (CHA), which
yields very imprecise results [4, 1]. Even if a fairly precise call
graph5 were provided for their analysis, the precision of the results
would be resemble those of Exception-flow analysis using the same
call graph. So they are not capable of identifying that the catch
clause in Fig. 4 can never be triggered.

Reimer and Srinivasan [13] introduced SABER, part of which
targets at a wide range of exception usage issues in order to im-
prove exception handling code in large J2EE applications. These
issues include swallowed exceptions, single catch for multiple ex-
ceptions, a handler too far away from the source of the exception
and costly handlers. Warnings are given to the programmer upon
recognizing one of these problems. Unfortunately, the underlying
analysis is not discussed.

Sinha and colleagues [17] proposed a tool (i) to visualize excep-
tion anomalies similar to those defined in [13] by using the static
analysis of [16], and (ii) to display exception-based test coverage
requirements related to those in [15]. The static analysis used for
call graph building for both of these tasks is based on CHA. Our
experiments in [5] on testing interprocedural exception handling
in moderately large benchmarks (e.g., 2080 methods, 278 classes)
showed that more than 97% of the e-c links found using CHA were
false positives. Thus, the analysis in [17] has been shown to be
too imprecise for practical use on real programs. In addition, it is
not clear how exceptions thrown within the Java JDK libraries are
accounted for in [17]; the empirical data reported for checked ex-
ceptions shows their usage is sparse and does not seem to include
exceptions thrown by the Java libraries and caught by the appli-
cation. These factors raise serious questions about the practicality
and scalability of the analysis in [17] and thus, the utility of the
proposed tool.

5. CONCLUSIONS AND FUTURE WORK
We present a tool that facilitates navigating code related to the

exception handling feature of Java programs, based on exception
def-use analysis [5]. We want to reveal all information needed to
the user, while carefully organizing the data to help browsing and
reasoning.

Despite of our current efforts, exploring program code based on
conservative static program analysis results can be difficult (see
Fig. 8). One way to alleviate the situation is to use more precise
analysis (but possibly more expensive) to reduce the size of the re-
sult data.

The current implementation of ExTest only displays the results
of the static analysis in [5]. Our next step is to add dynamic anal-
ysis results in to the views: testing coverage data of e-c links and
dynamic call graphs/trees. With these data, we can highlight e-c
links not covered during the test in the e-c link views (shown in
Fig. 5) to draw the user’s attention to these untested parts of the
program. Furthermore, when a user chooses to explore the paths of
a certain e-c link, with the dynamic call graph/tree, we can graphi-
cally show which of the edges are actually executed during the test.
On this view, the users might want to concentrate on the “fringe”
of the already executed edges, to see why the program is taking the
wrong “branch”. In this manner Extest will help the user either to
compose another test case or decide that edge is actually infeasible.
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