
Incomplete Resolution of References in Eclipse

Joseph J. C. Chang and Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

{jjcchang, walkerr}@ucalgary.ca

ABSTRACT
In the Eclipse JDT, the Java reference resolution rules are applied
as fully as possible, thereby either determining the unique target
for a given reference or signalling that the reference cannot be
resolved. However, a variety of development tasks require the
manipulation of code for which incomplete resolution of refer-
ences is both possible and useful. This paper motivates the need
for incomplete resolution during a software reuse-and-integration
task and the difficulties that result. A proof-of-concept imple-
mentation is described that is used as a basis for reuse tool support
and that can be used for other transformation tools.

1. INTRODUCTION
Modern software development depends heavily on the use of ref-
erences, e.g., to types and to methods. In programming languages
like Java, references can possess a degree of ambiguity when con-
sidered on a localized basis. For example, method names can be
overloaded; type names may lack full qualification;
polymorphism can render the target of an invocation unobvious.
Java provides rules so that any reference can be resolved to its
target. These rules require that a complete program be present;
unresolved references signal (semantic) programming errors.
However, a variety of development tasks—such as software
reuse—require the manipulation of code for which complete
resolution of references is either not possible or otherwise
inappropriate.

Despite its problems, software reuse via copy-and-modify remains
prevalent [10]. While research continues into modularization-
based approaches for software reuse (e.g., component-based sys-
tems [13], aspect-oriented software development [9,4], or Ba-
tory’s feature-oriented programming [3]), pragmatism suggests
that improved tool support for copy-and-modify is needed, at least
in the short-term.

A major obstacle to large-scale software reuse is the dependencies
that exist between a given module and the original environment
where it was located [6]. When developers perform copy-and-
modify reuse manually, they replace references to targets in the
old context, which have become invalid, with the most appropri-
ate ones in the new context. Tool support can help to ensure that
this is done consistently and accurately, similar to how refactoring

tool support can help to ensure that tedious and error-prone
refactoring modifications are done consistently and accurately.
While the Eclipse Java Development Tools (JDT) support many
development tasks effectively, its support for copy-and-modify
tasks is insufficient. Ultimately, the JDT treats references as be-
ing bound to particular targets; in the presence of code fragments,
references may not be resolvable or one may desire to rebind ref-
erences to other targets. Section 2 examines this issue in greater
detail through a motivational example.

Tool support for a copy-and-modify task can be provided via an
initial step of incomplete resolution of references. Incomplete
reference resolution takes into account only a specified portion of
a project, considering references that remain unresolvable within
that portion to be unbound. Section 3 details the technical prob-
lems involved in providing tool support for incomplete reference
resolution, our conceptual approach for overcoming these prob-
lems, and our proof-of-concept implementation of an incomplete
resolution mechanism as an Eclipse plug-in.

Of course, incomplete reference resolution is solely a foundation
upon which tools can be constructed. In the context of copy-and-
modify support, references that are determined to be unbound
from within a reused section of code can subsequently be bound
to targets in its new environment. There are a variety of ways in
which such rebinding can take place. In addition, other tasks and
their supporting tools can utilize incomplete reference resolution.
Section 4 describes these issues (and related work) in brief, but
details of the particular approach that we are pursuing [15,16]
largely lie beyond the scope of this position paper.

The contributions of this position paper are the identification of
incomplete resolution of references as a useful foundation for
non-meaning preserving transformations and the description of a
proof-of-concept implementation as an Eclipse plug-in.

2. MOTIVATION
A great deal of code reuse is still performed using a copy-and-
modify approach. Existing code is first copied into a new system,
and then modified to fit the new environment. This is an invasive,
error-prone and tedious process, especially in large and complex
systems.

The following example is intentionally simple to motivate how
the copy-and-modify approach is difficult to avoid given the
current reference resolution capabilities of Java and Eclipse. It
will also demonstrate a situation where incomplete reference
resolution can aid in the reuse of code between systems.

To appear at the OOPSLA 2005 Eclipse Technology Exchange
(eTX) Workshop. Suppose you have a ScrollingPanel compound widget that is

composed of two simple widgets, as shown in Figure 1.

public class ScrollingPanel {
 private Panel panel;
 private ScrollBar scrollBar;

 public ScrollingPanel() {
 panel = new Panel();
 scrollBar = new ScrollBar();
 }

 // ...
}

Figure 1: Code snippet from a compound widget for scrolling
panels.

The ScrollingPanel widget is currently part of a system where
both the Panel and the ScrollBar widgets are concrete classes.
Suppose that we wish to reuse this code in a different system,
where the widgets are not obtained by instantiation from concrete
classes but rather, are obtained through the use of the Abstract
Factory design pattern [5]. If we were to copy the
ScrollingPanel from WidgetLibraryA to WidgetLibraryB,
as shown in Figure 2, we would have to modify the Scrolling-
Panel to make use of the Abstract Factory pattern to retrieve the
two widgets.

Figure 2: ScrollingPanel.java from WidgetLibraryA is to
be reused in WidgetLibraryB.

If the scrolling panel is moved without modification from Wid-
getLibraryA to WidgetLibraryB, Eclipse displays Scroll-
ingPanel.java as shown in Figure 3. As indicated by the
lines underneath the Panel and ScrollBar object instantiations,
Eclipse and Java do not consider the code to be valid within the
context of WidgetLibraryB. In addition, Eclipse does not
provide automated refactoring support to make the code valid by

converting the existing code to use the Abstract Factory pattern,
according to the desired result shown in Figure 4. As a result, the
only way to make the ScrollingPanel work in WidgetLi-
braryB is by modifying the code manually.

Figure 3: ScrollingPanel.java after it is moved without
modification from WidgetLibraryA to WidgetLibraryB.

public class ScrollingPanel {
 private Panel panel;
 private ScrollBar scrollBar;

 public ScrollingPanel(WidgetFactory factory) {
 panel = factory.createPanel();
 scrollBar = factory.createScrollBar();
 }

 // ...

}

Figure 4: ScrollingPanel.java after it has been modified to
fit the environment of WidgetLibraryB.

Invasively modifying code in order to reuse parts of another sys-
tem is a problematic way to effect code reuse [10]. While the
manual modifications required to allow ScrollingPanel to
conform to its new environment can be performed with little diffi-
culty, such an approach would not scale well when dealing with
increasingly large systems. In the next section, we consider how
incomplete resolution of references can aid in such a copy-and-
modify task.

3. INCOMPLETE RESOLUTION OF
REFERENCES
Incomplete reference resolution does not take into account the
entire project being developed. Instead, resolution is performed
with respect to a resolution boundary. Inside a resolution
boundary, all references, including names and method
invocations, are interpreted and resolved using only the
information that resides within that boundary. Incomplete
resolution of references allows for the code within a specified
resolution boundary to be incomplete or inconsistent from the
global perspective (i.e., the perspective of the containing Eclipse
project). Unfortunately, neither Java nor the Eclipse JDT directly
supports this capability. They cannot perform reference resolution
using boundaries of different granularity; instead, their global
reference resolution attempts to resolve all elements to the

appropriate construct using whatever information is available in
the entire project.
The information provided by an incomplete reference resolver is
significantly less detailed than what can be provided by a global
reference resolver, whose outputs are associated with some actual
construct available in or from the project. However, a global
reference resolver may incorrectly tie a reference to an external
entity. In contrast, the resolutions produced by an incomplete
reference resolver do not falsely constrain the code within the
boundary.

3.1 Problems and Approach
Suppose that we have another scrolling panel class, as shown in
Figure 5, that was created in an environment similar to Widget-
LibraryA, except that both Panel and ScrollBar extend the
class Visual. Now, suppose we want to move this scrolling panel
class to WidgetLibraryB (the Visual class will not be moved
because WidgetLibraryB has its own way of displaying wid-
gets). We consider the problems one would encounter in this task,
below.

Figure 5: A different scrolling panel widget.

3.1.1 Name Resolution
Name resolution is performed differently by an incomplete and a
global reference resolver. For example, in Line 5 of Figure 5, the
Eclipse JDT will determine that the line is valid. It will determine
that the expression new ArrayList() will resolve to the class
java.util.ArrayList, and that this class implements the
java.util.List interface, making the assignment statement
valid.
The incomplete reference resolver requires a boundary in order to
proceed. For the example of Figure 5, let us set the boundary
around the class ScrollingPanel. Note that the import state-
ments are outside of the boundary, and therefore cannot be taken
into consideration when resolving references. The incomplete
reference resolver can function with incomplete information; it
considers Line 5 to be valid because it does not have the ability to
verify whether an assignment of ArrayList to a variable of type
List is invalid within the given boundary. As a result, _visuals
is merely resolved to the type List (not java.util.List). The

incomplete reference resolver does not and cannot obtain any
extra information about List, which makes incomplete reference
resolution more flexible (it can function with access to less
information), but less comprehensive.
The extra flexibility of the incomplete reference resolver shows
its value in Lines 8 and 9. Using the global reference resolver of
the Eclipse JDT, these lines would be considered invalid, as it is
known that Panel and ScrollBar are interfaces and, therefore,
cannot be directly instantiated. In contrast, the line is perfectly
valid for the incomplete reference resolver, with our specified
resolution boundary, as it does not know any details about Panel
or ScrollBar, and therefore cannot verify the correctness of the
line. Instead, it merely resolves these expressions to the best of its
ability; new Panel() resolves to the type Panel and new
ScrollBar() resolves to the type ScrollBar.
Additional tool support will enable these expressions to be
connected to the appropriate constructs within the new
environment. There are many ways that this can be done; Section
4 covers this topic in more detail.

3.1.2 Method Resolution
Further differences between incomplete reference resolution and
the Eclipse JDT global reference resolution can be seen when
resolving method declarations referenced from method
invocations. In the Eclipse JDT, the method invocation from Line
11 does not resolve to a Java element, as shown in Figure 6. This
is because, in WidgetLibraryB, there is no Visual class, so the
global reference resolver cannot determine how to match the
method invocation to the method declaration.
The incomplete reference resolver handles Line 11 of Figure 5
differently. Since there is no knowledge about the existence, or
lack thereof, of the Visual class, expressions merely resolve to a
name representing the type. It is apparent by the cast that the ar-
gument to the draw method is supposed to be of type Visual. As
a result, the incomplete reference resolver will be able to correctly
resolve the method invocation of Line 11 to the method declara-
tion of Line 15.

Figure 6: Reference cannot resolve to Java element.

3.2 Implementation
We have realized incomplete reference resolution as a proof-of-
concept component of an Eclipse plug-in for applying non-
meaning-preserving transformations to Java source code that is
incomplete.

In order to perform incomplete reference resolution, two main
inputs are required: a resolution boundary, such as a class or a
method; and the code within that boundary. The boundary can be
specified by providing the boundary name (i.e., the fully-qualified
path to the element representing the boundary) and the boundary
type (indicates whether the boundary surrounds a type or a
method). For example, if the boundary is to surround the method
resolve(Name name) in the class ReferenceResolver in the
package incomplete, the boundary name would be incom-
plete.ReferenceResolver.resolve(Name), and the bound-
ary type would be specified as a method boundary. This provides
the incomplete reference resolver with enough information to
unambiguously store the boundary information, as well as obtain
the code within the boundary.
The Eclipse JDT allows one to request bindings for many Java
elements. Unfortunately, it does not allow one to set the boundary
that will be used when bindings are resolved. They are always
resolved taking into account all of the information available from
the Eclipse Java project. As a result, there is no point in request-
ing bindings when Eclipse parses the Java code into an abstract
syntax tree (AST), as these bindings will not be consistent with
the resolutions produced with only the information internal to the
boundary.
A standard approach to the problem of resolving references to
types and method declarations within a boundary is to step
through the code and construct a symbol table using only the in-
formation that is within the boundary. Such an approach can be-
come quite complex; instead, it would be desirable to leverage
existing infrastructure provided by the Eclipse JDT to minimize
the amount of work required to achieve the same result.
While the bindings provided by the Eclipse JDT are not them-
selves useful, the AST and its support for the Visitor design
pattern [5] provide an easy way to traverse and analyze code that
has already been broken up into a set of objects representing the
Java source code. This set of objects is part of the Eclipse JDT
Core Document Object Model (DOM). The following sections
will show that this infrastructure provided by Eclipse will be very
useful in providing support for incomplete reference resolution.

3.2.1 Retrieving Boundaries
The ability to retrieve a boundary, which can be an Eclipse JDT
TypeDeclaration or MethodDeclaration, is an important
part of incomplete reference resolution. The Eclipse JDT API
provides access to objects representing a Java project, its pack-
ages, and its compilation units (.java files). From a boundary
name and a boundary type, it is possible to obtain the compilation
unit that corresponds to the boundary. This compilation unit is the
root of an AST that can then be traversed to find the appropriate
AST node that represents the boundary.
For example, given a boundary name like
pkg.MyClass.method(String) and a method boundary type,
the compilation unit pkg.MyClass can be found. That can be
traversed to find the method declaration represented by
method(String).

3.2.2 Expression Resolution
A necessary part of incomplete reference resolution is the ability
to resolve an expression to a type.

Many expressions are easy to resolve to types. For example, a
CastExpression will simply resolve to the type to which the
variable is being cast. By contrast, both simple and qualified
names are more complicated to resolve to types. The main com-
plication is that names can represent variables which must be
bound to types by taking into account the variable scoping rules
present in Java, but using only the information that is available
within the confines of the boundary.
Variables can be declared in many places, including within
blocks, as method parameters, and as field declarations. There are
multiple ways in which a variable can be declared, including as
part of a SingleVariableDeclaration, or a VariableDe-
clarationStatement. Subclassing the ASTVisitor provided
by the Eclipse JDT is an effective way of moving between the
types, methods, and blocks necessary to resolving variables.
Another difficult to resolve expression is the method invocation,
which is the subject of the next subsection.

3.2.3 Method Invocation Resolution
Incomplete reference resolution must include the ability to resolve
a method invocation to a method declaration. Method invocations
are made difficult to resolve by the potential for method
overloading. This means that a method cannot be uniquely
identified within a class solely by its name. Instead, both the
number and types of the arguments must be considered in order to
match a method invocation to its declaration.
The ASTVisitor provides a simple means of accessing all of the
method invocations and declarations within a boundary ASTNode.
This, and the ability to resolve expressions into types as described
in the previous subsection, allows the incomplete reference re-
solver to match a method invocation to a method declaration
within a boundary, if one exists.

4. DISCUSSION AND RELATED WORK
The idea of scoped binding resolution can be extended to include
more than just types and methods as potential boundaries. Reso-
lution boundaries can also be considered around fields, packages,
or arbitrary combinations of any of these [15,16]. Such additional
boundaries can aid in composing arbitrary sections of code into a
new context. Arbitrary boundaries are also reminiscent of the
notion of crosscutting concerns [9].
An alternative approach to composition of code exists in multi-
dimensional separation of concerns [14] with its attendant Hyper/J
tool and its more recent replacement, the Concern Manipulation
Environment (CME). CME is intended as a basis for composi-
tional tools, such as those supporting aspect-oriented program-
ming. The approach has a strong notion of declarative complete-
ness, i.e., that every reference can be fully resolved. In the con-
text of partial reuse of a system, this requires that constraints im-
posed by the old environment must be reconciled with those of
the new environment. Furthermore, declarative completeness can
only be provided in contexts where full resolution can be per-
formed, which is not the case with arbitrary code fragments. In
contrast, our incomplete resolution approach limits the constraints
to those imposed by the code being reused, and supports devel-
oper-oriented copy-and-modify operations.
We are implementing a tool, called IConJava [16], for composi-
tional transformations that utilize our incomplete reference reso-
lution approach. This tool takes as input the source code to be

composed and a description of the transformations to be per-
formed, in a specialized language. This approach is reminiscent
of declarative approaches to realizing refactorings [11], save that
the transformations we permit need not be meaning-preserving.
The alternative approach of interactive, step-wise transformation
is also possible, and would be more similar in nature to the refac-
toring support provided by the Eclipse JDT. An interactive ap-
proach is useful for simple sequences of transformations, but
more complex transformations that require debugging and that are
to be applied repeatedly are less practicable in the interactive
approach. Recent work by Henkel and Diwan [7] suggests that
intermediate solutions are possible, by recording the interactions
of a developer with Eclipse during refactoring tasks in a macro-
like fashion; a similar approach could be taken for non-meaning-
preserving transformations. Regardless of the point on the
spectrum that one chooses for the transformation tool, incomplete
reference resolution would provide beneficial support.
Balaban et al. [2] have presented a means for porting an applica-
tion from an old version of a class library to a new version. This
goal is easier to achieve than the integration of arbitrary code in
the absence of the complete original system, because both ver-
sions of the class library are available for analysis and there is an
assumption of greater consistency. However, their approach does
utilize type inference to improve the translation process, and a
similar approach would be useful in the support of incomplete
resolution of references. Each reference within a resolution
boundary provides a set of constraints on the entity that can sat-
isfy that reference. By building up a set of facts about each refer-
ence one can build a picture of the constraints that must either be
satisfied or transformed; this is effectively the notion of local type
inference [12]. We are working towards integrating a local type
inferencing approach with our toolset [8] to detect simple errors
by the developer, such as transforming a field access into a
method invocation on the left-hand side of an assignment.

Recent work by Ancona et al. [1] indicates the value of flexibility
beyond the compilation stage. They maintain the ambiguity of
unresolved references into a modified Java bytecode language, for
delayed resolution and composition. Their approach points to
another use for a tool supporting incomplete resolution of refer-
ences.

5. CONCLUSION
In this position paper, we have presented the notion of incomplete
resolution of references and motivated its usefulness in support of
a variety of tools, particularly ones involved in improved copy-
and-modify tasks. We have outlined the issues involved in pro-
viding such support and briefly described our implementation of
an Eclipse plug-in for this purpose. This plug-in is used as the
back-end for a transformation tool called IConJava that we con-
tinue to research; the plug-in could also be used as a back-end for
a variety of other tools involving composition. Although the idea
of incomplete reference resolution is motivated in this paper
through copy-and-modify code reuse, IConJava in particular is
intended to support stronger forms of evolution and reuse.

6. ACKNOWLEDGMENTS
We thank Reid Holmes, Shafquat Mahmud, Mark McIntyre,

Kevin Viggers, and our "anonymous" reviewers for their
comments on this paper. This work was supported in part by an
NSERC Discovery Grant.

7. REFERENCES
[1] Ancona, D., et al. Polymorphic bytecode: Compositional

compilation for Java-like languages. Proc. ACM SIGPLAN
Conf. Principles of Programming Languages, 26–37, 2005.

[2] Balaban, I., Tip, F., and Fuhrer, R. Refactoring support for
class library migration. Proc. ACM Conf. Object-Oriented
Programming, Systems, Languages, and Applications, 2005.
To appear.

[3] Batory, D. Feature-oriented programming and the AHEAD
tool suite. Proc. Int. Conf.Software Engineering, 702–703,
2004.

[4] Filman, R., Elrad, T., Clarke, S., and Akşit, M., editors. As-
pect-Oriented Software Development. Addison-Wesley,
2005.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns. Addison-Wesley, 1994.

[6] Garlan, D., Allen, R., and Ockerbloom, J. Architectural mis-
match. Proc. Int. Conf. Software Engineering, 179–185,
1995.

[7] Henkel, J., and Diwan, A. CatchUp!: Capturing and replay-
ing refactorings to support API evolution. Proc. Int. Conf.
Software Engineering, 274–283, 2005.

[8] Jaeger, S. ECO Design Description. Internal research
report, Software Modification Laboratory, Dept. of Com-
puter Science, Univ. of Calgary, October 2004.

[9] Kiczales, G., et al. Aspect-oriented programming. Proc.
European Conf. Object-Oriented Programming, 220–242,
1997.

[10] Krueger, C.W. Software reuse, ACM Computing Surveys,
24(2):131–183, June 1992.

[11] Mens, T., and Tourwé, T. A declarative evolution frame-
work for object-oriented design patterns. Proc. Int. Conf.
Software Maintenance, 570–579, 2001.

[12] Pierce, B.C., and Turner, D. N. Local type inference. ACM
Trans. Progr. Lang. and Syst., 22(1):1–44, January 2000.

[13] Szyperski, C., Gruntz, D., and Murer, S. Component Soft-
ware: Beyond Object-Oriented Programming. Addison-
Wesley, 2nd edition, 2002.

[14] Tarr, P. Ossher, H., Harrison, W., and Sutton, S. N degrees
of separation: Multi-dimensional separation of concerns.
Proc. Int. Conf. Software Engineering, 107–119, 1999.

[15] Walker, R.J., and Murphy, G.C. Implicit context : Easing
software evolution and reuse. Proc. ACM SIGSOFT Int.
Symp. Foundations of Software Engineering, 69–78, 2000.

[16] Walker, R.J. Essential Software Structure through Implicit
Context. Ph.D. thesis, Dept. of Computer Science, Univ. of
British Columbia, March 2003.

	INTRODUCTION
	MOTIVATION
	INCOMPLETE RESOLUTION OF REFERENCES
	Problems and Approach
	Name Resolution
	Method Resolution

	Implementation
	Retrieving Boundaries
	Expression Resolution
	Method Invocation Resolution

	DISCUSSION AND RELATED WORK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

