
JScoper: Eclipse support for Research on Scoping and
Instrumentation for Real Time Java Applications ∗

Andrés Ferrari, Diego Garbervetsky, Victor Braberman, Pablo Listingart, Sergio Yovine
School of Computer Sciences. Universidad de Buenos Aires, Argentina. Verimag, France.

aferrari@dc.uba.ar, diegog@dc.uba.ar, vbraber@dc.uba.ar,plistingart@gmail.com, yovine@imag.fr

ABSTRACT
We present JScoper, an Eclipse plug-in which will help de-
velopers, researchers and students, to generate, understand,
and manipulate memory regions in scoped-memory manage-
ment setting. The main goal of the plug-in is to provide a
tool that will transparently assist the translation of Java ap-
plications into Real-time Specification for Java (RTSJ) com-
pliant applications. More accurately, its purpose is to enable
automatic and semi-automatic ways to translate heap-based
Java programs into scope-based ones, by leveraging GUI fea-
tures for navigation, specification and debugging.

Keywords
Eclipse plug-in, memory management, Real-time Java

1. INTRODUCTION
Current trends in the embedded and real-time software

industry are leading practitioners towards the use of object-
oriented programming languages such as Java. From a soft-
ware engineering perspective, one of the most attractive is-
sues in object-oriented design is the encapsulation of ab-
stractions into objects that communicate through clearly
defined interfaces. Because programmer-controlled memory
management hinders modularity, object-oriented languages
like Java provide built-in garbage collection, i.e. the auto-
matic reclaiming of heap-allocated storage after its last use
by a program.

However, automatic memory management is not used in
real-time embedded systems. The main reason for this is
that the execution time of software with dynamic memory
reclaiming is extremely difficult to predict. Therefore, in
current industrial practices the use of garbage collection in
real-time applications is simply forbidden. The typical al-
ternative approach is to have programs allocate all memory
during their initialization phase and free it upon termina-
tion. This leads to very inefficient memory use, usually re-

∗IBM Eclipse Innovation Grants 2004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

sulting in over-dimensioning physical memory requirements
at an unnecessary additional cost.

A automatic memory management techniques that meet
real-time requirements would clearly have a huge impact on
the design, implementation, and analysis of embedded soft-
ware. These techniques would prevent programming errors
produced by hazardous memory handling, which are both
hard to find and to correct. As a result, they would drasti-
cally reduce implementation and validation costs while con-
siderably improving software quality.

In order to overcome the drawbacks of current garbage
collection algorithms, the Real-Time Specification for Java
(RTSJ)[2] proposes the use of application-level memory
management, based on the concept of “scoped memory”,
for which an appropriate API is specified. Scoped-memory
management relies on the idea of allocating objects in re-
gions associated with the lifetime of a computation unit
(method or thread). Regions are deallocated when the cor-
responding computational units finish their execution [9, 6,
2, 5]. Unfortunately, the task of determining object scopes
is left to the programmer.

Some techniques have been proposed to address this prob-
lem by automatically mapping sets of objects with regions[3,
5]. These techniques typically use Pointer and Escape Anal-
ysis [8, 4, 1] to conservatively approximate object lifetimes.
Informally, an object escapes a method when its lifetime
is longer than the method’s lifetime, so it cannot be col-
lected when the method finishes its execution. In contrast,
an object is captured by the method when it can be safely
collected at the end of the method’s execution.

Our main goal is to provide developers with a tool that will
assist the translation of Java applications into Java Real-
time compliant applications. More accurately, the idea is to
enable translation of heap-based Java programs into scoped-
based ones, by leveraging GUI features for navigation, spec-
ification, translation, fine-tuning and debugging.

2. SCOPED MEMORY MANAGEMENT
The aim of the Real-Time Specification for Java

(RTSJ) [2] is to enable the development of real-time applica-
tions using Java. One of its most remarkable characteristics
is a new memory hierarchy which incorporates several kinds
of memory models: Heap memory (garbage collected), Im-
mortal memory and Scoped memory. Neither Immortal nor
Scoped memory use garbage collection. Objects allocated in
Immortal memory are never collected and live throughout
program lifetime. Scoped-memory management is based on
the idea of allocating objects in regions associated with the
lifetime of a runnable object. When a computational unit

1

finishes its execution, its objects are automatically collected.
This approach imposes restrictions on the way objects can

reference each other in order to avoid the occurrence of dan-
gling references. An object o1 belonging to region r refer-
ences an object o2 only if one of the following conditions
holds: o2 belongs to r; o2 belongs to a region that is always
active when r is active; o2 is in the Heap; o2 is in Immortal
(or static) memory. An object o1 cannot point to an ob-
ject o2 in region r if: o1 is in the heap; o1 is in immortal
memory; r is not active at some point during o1’s lifetime.

Heap Inmortal Scoped
Heap Yes Yes No

Inmortal Yes Yes No
Scoped Yes Yes if active

Table 1: Scoped-memory reference rules.

At runtime, region activity is related to the execution
of computational units (e.g., methods or threads). In a
single-threaded program, if each region is associated with
one method, then there is a region stack where the number
and ordering of active regions corresponds exactly to the
appearances of each method in the call stack. In a multi-
threaded program, where regions are associated with threads
and methods, there is a region tree whose branches are re-
lated to each execution thread.

In order to perform scoped-memory management at pro-
gram level, an API is proposed which differs from the RTSJ
one, described in [2], in three main points. First, in the pro-
posed API memory scopes are not bound to runnable ob-
jects. In this point, this API is closer to the RC library [6].
Second, the API does not specify the region where an object
will be allocated, but rather a set of regions corresponding
to methods in a prefix of the corresponding call stack. The
actual region where the object will be allocated at runtime is
left out to the implementation. To determine in which region
an object will be allocated we use a registering mechanism.
Basically, when regions are created, they are informed about
the set of creation sites (new statements) it will allocate.
When object instantiation is requested, the API allocates
the object in the last region the creation site was registered
in. Finally, there is no Immortal memory; instead, it is sim-
ulated by a “main” region with a global scope. The API is
shown in Table 2.

enter(r,lCSs) push r into the region stack and reg-
ister the creation sites it will allocate

exit() collect the objects in top region
newInstance(cs,c) create an object identified by the cre-

ation site cs of class c
newAInstance(cs,c,n) same but for arrays of dimension n

Table 2: Scoped-memory API.

3. ECLIPSE PLUG-IN: JSCOPER
The Eclipse Java Development Toolkit (JDT) is one of

the most popular and feature rich platforms currently avail-
able to Java developers. Because Eclipse is not only an IDE
but an extensible plug-in platform, it is the ideal framework
to use for the development of tools aimed at transforming
Java code. Currently there are few tools that can be used
to assist in the conversion of standard Java code to scoped-
memory code. An Eclipse plug-in called JScoper that fullfils
this purpose is presented in this paper. This is a tool that

can be used to support both automatic and semi-automatic
translation of heap-based Java programs into scope-based
ones. Although the resulting programs are not fully compli-
ant with RTJS (this will be supported in the future), they
also implement a scope-based memory management mech-
anism which replaces the garbage collector from the Java
Virtual Machine [5].

JScoper allows the user to visualize, debug and control
the transformation process. Its GUI facilities provide a user-
friendly way of gaining insight into the underlying concepts
of controlled memory management.

3.1 Usage and Features
JScoper makes use of three main windows: the Callgraph

Browser, the Scoped-Memory Java Editor, and the stan-
dard Java Editor provided with the Eclipse Java Develop-
ment Toolkit. It also features additional views that provide
alternative representations of the callgraph and memory re-
gions.

The CallGraph Browser is used for the visualization of the
code callgraph and creation sites corresponding to dynamic
memory allocation statements. It also has some editing ca-
pabilities: the manual creation of memory regions and the
movement of creation sites between different regions. These
editing features are meant to allow for manual adjustment
of the automated output of the tool.

The Scoped-Memory Java Editor is a source code editor
with syntax highlighting support for scoped-memory Java
code, as well as special marker icons which act as hyperlinks
between the different plug-in windows. These markers will
be discussed later.

The Java Editor is the standard editor provided with
the Eclipse JDT, with additional support for special marker
icons analogous to those of the Scoped-Memory Java Editor.

During a normal usage workflow, the user will start from
regular Java source code, use the integrated tools to iden-
tify the creation sites, perform escape analysis [4] (an op-
tional step) and generate the callgraph, and then exam-
ine the resulting graph in the Callgraph Browser window.
Memory region and creation site adjustments are possible
at this stage. The user may also switch between the three
editors (Callgraph, Instrumented and standard Java), using
special marker icons which link related memory allocation
sites. The final output of the plug-in will be stored as a se-
ries of XML files describing memory regions, creation sites
and callgraph of the source code. These files are described
with more depth in the following section, “Design and Im-
plementation”. The workflow consists of the following steps:

1. Start from Java source: this is the program the devel-
oper originally coded, with no concern for real-time is-
sues. Positioned in the package explorer of the Eclipse
Java view, the user must select the appropriate options
provided by JScoper in order to analyze the code and
memory regions (optional) and generate the callgraph.
This will create a series of XML files corresponding to
the callgraph, memory regions and creation sites, the
rtjava instrumented code file and a jscoper project
file which links all the previous files together.

2. Output visualization: the user can now examine the
result of the automated code analysis and instrumen-
tation. The Scoped-Memory Java Editor (figure 1,
right) is used to browse the instrumented code, which
is a file with extension rtjava. Instrumented Java

2

Figure 1: A side by side view of the two code editors. Left: the standard Java Editor. Right: the Scoped-
Memory Java Editor.

files contain an extension of Java code with special
scoped-memory related statements. This editor can
be used to switch to the relevant sections in the origi-
nal source code, for comparison purposes. In order to
allow this, there are special icons called markers that
connect dynamic memory allocation statements in the
original Java code with the corresponding statements
in the instrumented code. It also links the java and
rtjava files with the callgraph. The user is able to
inspect related locations in the original source code,
the instrumented code and the callgraph.

The code callgraph is represented visually in a directed
graph form (figure 2). Nodes represent Java meth-
ods and show their corresponding creation sites (dy-
namic memory allocation statements, like new). When
a Java method calls another, an arrow with a label
stating the line number is drawn to connect the corre-
sponding two nodes in the graph. Each creation site
lists the memory regions that capture it. Several fil-
ters that can reduce visual clutter and are useful to
inspect the code flow are provided: for example, it is
possible to trace a path from the root node (which
represents the initial caller method) to any selected
node in the graph, focus on the subgraph that spans
from any given node or hide the region information so
that only the code flow is shown. In addition, there
are two side views that can also be inspected: a hier-
archical tree view of the callgraph and a tree view of
the current memory regions. Image snapshots of the
callgraph may be exported at any time.

3. Manual adjustments: both the generated memory re-
gions and the creation sites location within those re-
gions may be manually adjusted. If the automatically
generated regions are not satisfactory (for example, be-
cause they are too conservative), they can be deleted,

modified or added at will using a region management
window which can be accessed both from the toolbar
and from a context menu. This manager also allows
the reassigning of creation sites to different regions (fig-
ure 3).

All intermediate files are persisted to disk storage and can
be inspected at any time with a text editor. JScoper can be
used to explicitly write the current state of region/creation
site mappings at any time.

Figure 3: The Region Manager.

3.2 Design and Implementation

3

Figure 2: The callgraph browser window. The view on the right shows a tree outline of the callgraph.

JScoper was developed for the 3.x series of the Eclipse
platform. Currently there is no support for versions 2.x or
earlier. It was developed and tested in Linux and Windows
XP. It has not been tested (yet) on other operating systems,
but it should work on any platform supported by Eclipse
and Java 1.4.x.

JScoper integrates 4 distinct modules which roughly cor-
respond to the editors described in the previous section,
“Usage and Features”: the Callgraph Browser, the Scoped-
Memory Java Editor, the standard Java Editor and the
Backend (which is actually a collection of different tools it-
self). This paper focuses on the frontend of the plug-in.

• The Callgraph Browser handles the visual representa-
tion of the program callgraph and allows the manual
editing of memory regions and creation sites. This
module uses an add-on for Eclipse called GEF, the
Graphical Editor Framework 1, which is used to imple-
ment the graphical editor following the Model-View-
Controller pattern.

• The Scoped-Memory Java Editor is used to inspect
and edit the instrumented source code. Special Eclipse
markers allow switching to and from creation sites in
the regular Java source code and also to the corre-
sponding nodes in the Callgraph Browser window.

• The Java Editor mimics the behavior of the standard
source editor included with the Eclipse platform, and
adds support for the special markers mentioned above.

• The Backend consists of a collection of tools that ac-
tually perform the code analysis, including a code in-
strumentator [5], a callgraph generator based on Soot
[7], an escape analysis and region inferrer [4] and a
creation sites finder.

1See the homepage at http://www.eclipse.org/gef/

A sketch of the plug-in model is shown in figure 4.
The original Code Model is the basis for establishing de-
rived models (and their corresponding views), namely, Call
Graphs and Creation Sites. The Point of View defines
the abstraction parameters used to obtain call graphs and
creation sites (e.g., root method for the analysis, whether
or not to include standard Java API creation sites, etc.).
The Region Model is a mapping from creation sites to sets
of regions, and it is used as the input for the instrumenta-
tion procedure that generates a Scoped Code Model. The
Object Lifetime Model is an escape analysis [4] represen-
tation and holds the relationship between creation sites, the
regions that contain them, and their paths within the call
graph. This model can be used to either automatically syn-
thesize a Region Model, and in the future it will also be used
to validate a manually created one. Each of these models has
a corresponding view in the plug-in, with the exception of
the Point of View (which is currently unimplemented) and
the Object Lifetime, whose graphical visualization, while
currently unavailable, will be a call graph coloring.

The interface between the plug-in modules comprises sev-
eral XML files. Assuming the original Java source file is
named MyClass.java, then the XML files are:

• The callgraph file, MyClassCallGraph.xml. This is
an XML that contains graph information in the form
of nodes (class methods) with items (creation sites)
linked to other nodes (method calls). Each node is
identified by a classname and a fully qualified method
name, and it has a list of all the “children” or nodes it
is linked to. Each child node represents a method that
is called from the parent method at the line number
specified by attribute line. Any arbitrary callgraph
may be represented and cycles are possible.

• The creation sites file, MyClassCreationSites.xml.
This is an XML that lists the line numbers of dynamic

4

Figure 4: Modules of JScoper

memory allocation statements within the Java source
code. A simplified version looks like this:

<CreationSites id="example.SimpleExample">
<CreationSite method="m0" line="26"/>
<CreationSite method="m0" line="27"/>
<CreationSite method="m1" line="29"/>
<CreationSite method="m1" line="32"/>

</CreationSites>

Method m0 in the class example.SimpleExample has
creation sites at lines 26 and 27, while method m1 has
its sites at 29 and 32.

• The memory regions file, MyClassRegions.xml (op-
tional). This is an XML that stores the assignment of
creation sites to scoped memory regions. There may
be more than one creation site within any given re-
gion. This file is optional; if it is not present when the
user tries to visualize a callgraph, JScoper will simply
generate default regions named after the correspond-
ing method for each orphan site. A simplified version
of this file has the following outline:

<Regions>
<Region id="R1" scope="SimpleExample.m0"

lineFrom="10" lineTo="28">
<CreationSite method="m0" line="26" instancesExp="x"/>
<CreationSite method="m0" line="27" instancesExp="x^2"/>

</Region>
<Region id="R2" scope="SimpleExample.m1"

lineFrom="29" lineTo="50">
<CreationSite method="m1" line="" instancesExp="2x"/>
<CreationSite method="m1" line="" instancesExp="x"/>

</Region>
</Regions>

A region description states its scope (essentially, the
classname and method where it is located), the line
numbers it spans and the creation sites which it con-
tains. Currently, regions cannot cross method or class
boundaries but there may be two or more regions
within a given Java method.

• The Java to Scoped-Memory Java file,
MyClassCSR.xml. This is an XML file (similar
to the one containing the creation sites) which
maps the line number of each creation site to the
corresponding line in the instrumented code.

There are two additional files which are not XMLs and
have special meanings:

• The instrumented code, MyClass.rtjava.
• The JScoper project file, MyClass.jscoper, which

links all the previous files together.

4. CONCLUSIONS AND FUTURE WORK
JScoper is an Eclipse plug-in that assists the auto-

matic translation of standard Java code to a RTJS-like
code. It provides a graphical call graph browser that
helps ease program understanding, supports the generation
and edition of memory regions, automatic code generation
and code visualization. JScoper can be downloaded from
http://dependex.dc.uba.ar/jscoper/download.html.

Future work plans include the implementation of debug-
ging facilities such as runtime browsing of active regions, vi-
sualization of object-lifetimes, region-sizes and scoping-rules
violations. It is also planned to include full RTSJ compati-
bility (automatic instrumentation and edition) and support
for automatic generation of memory size annotations [10].

5. ABOUT THE AUTHORS
Victor Braberman: Ph.D. in Computer Science and As-

sociate Professor in C.S. Department of UBA (Argentina)
working in modeling and verification of real-time and dis-
tributed systems. Diego Garbervetsky: Ph.D candidate
in Computer Science and Lecturer working in Programm
Analysis for Embedded Systems. Andrés Ferrari and Pablo
Listingart: M.Sc in Computer Science students and main
developers of JScoper. Sergio Yovine: Ph.D. in Computer
Science and full time researcher (CNRS) working in model-
ing and verification of real-time and distributed systems.

6. REFERENCES
[1] B. Blanchet. Escape analysis for object-oriented

languages: application to Java. In OOPSLA 99,
volume 34, pages 20–34, 1999.

[2] G. Bollella and J. Gosling. The Real-Time
Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[3] M. Deters and R. K. Cytron. Automated discovery of
scoped memory regions for real-time java. In ISMM
02, pages 25–35, 2002.

[4] S. Yovine G. Salagnac and D. Garbervetsky. Fast
escape analysis for region based memory management.

[5] D. Garbervetsky, C. Nakhli, S. Yovine, and
H. Zorgati. Program instrumentation and run-time
analysis of scoped memory in java. In RV 04, ETAPS
2004, Barcelona, Spain, April 2004.

[6] D. Gay and A. Aiken. Language support for regions.
In PLDI 01, pages 70–80, 2001.

[7] V. Sundaresan P. Lam E. Gagnon R. Vallée-Rai,
L. Hendren and P. Co. Soot - A Java optimization
framework. In CASCON 1999, pages 125–135, 1999.

[8] A. Salcianu and M. Rinard. Pointer and escape
analysis for multithreaded programs. In PPoPP 01,
volume 36, pages 12–23, 2001.

[9] M. Tofte and J.P. Talpin. Region-based memory
management. Information and Computation, 1997.

[10] D. Garbervetsky V. Braberman and S. Yovine.
Synthesizing parametric specifications of dynamic
memory utilization in object oriented programs. In
FTfJP 2005. Glasgow, Scotland, July 2005.

5

