
Complex Code Querying and Navigation for AspectJ

J.-Hendrik Pfeiffer Andonis Sardos John R. Gurd
Centre for Novel Computing
School of Computer Science
The University of Manchester

Oxford Road, Manchester M13 9PL, UK

{pfeiffer, sardos, gurd}@cs.manchester.ac.uk

ABSTRACT
The ever growing size and complexity of software projects
demand good IDE support in order to assist the understand-
ing and navigation of source code during implementation
and maintenance. In the case of Aspect-oriented program-
ming, additional supporting IDE tools are needed to make
aspect-oriented structures explicit. However, existing tools
struggle to provide easy-to-use navigation facilities when the
size of the source code increases.

This paper describes Lost a query and navigation tool for
the AspectJ language, its integration with the eclipse IDE,
and initial experiences with using the tool. The described
tool not only provides features which are novel with respect
to current aspect-oriented programming tools but also at-
tempts to overcome deficiencies of existing code querying
tools.

Additionally, we briefly discuss the implementation of a
framework for code querying tools, which was created in
order to maintain high flexibility in implementing the code
querying tool presented here.

1. MOTIVATION
Aspect-Oriented Programming (AOP) [11] provides the

means to encapsulate so called crosscutting concerns in sep-
arate entities called aspects. Aspects contain the implemen-
tation of a crosscutting concern. In the terminology of the
popular aspect-oriented programming language AspectJ [4],
this implementation is called advice. Aspects also contain
a description (pointcut) of which places in the source code
(joinpoints) are affected (advised) by an aspect. The in-
creased modularity introduced through AOP has a number
of advantages, but increases the complexity of code under-
standing in the sense that when reading source code it might
not be clear whether or not it is advised by an aspect. Thus
additional tools, which provide AOP-specific information to
the programmer, are required.

Tools, aiding the comprehension of aspect-oriented pro-
grams, exist to address the problems caused by this complex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA 2005 Eclipse Technology eXchange (ETX) WorkshopOct. 16-20,
2005, San Diego, USA
Copyright 2005 ACM ...$5.00.

ity. However, if during the exploration of an aspect-oriented
program one is confronted with a task like the one shown
in Figure 1, one would have considerable difficulties solving
it with existing tools that support AOP (see Sections 1.1,
1.2). In order to address these difficulties, we developed the
Lost tool (Section 2).

“Find all methods whose name contains set or put,
which are advised by an aspect called formatChecker

but not by an aspect called policyEnforcer.”

Figure 1: An example task.

1.1 Existing IDE support for AspectJ
In this paper we focus on the AspectJ [4] language since

it is currently the most popular AOP language, which also
has the most mature tools supporting it.

The AspectJ Development Tools (AJDT) [2] offer integra-
tion of aspect-oriented elements into different views of the
eclipse IDE [7]. Since AspectJ enhances Java, the AspectJ
enhanced AJDT versions of the regular Java-based eclipse
views, such as editor, package explorer and outline, can be
used to make aspect-oriented elements visible. However,
these largely text-based views struggle with large programs,
since the size of these views grows with program size. The
advises list, showing which joinpoints an aspect advises, has
particular problems with regard to size, since one aspect
might advise a large number of joinpoints. Long list and
tree structures are difficult to comprehend, and navigating
them is tedious, especially, if one searches for specific infor-
mation, as required in the task in Figure 1.

In addition to this size problem, information is spread
across different views, which increases the likelihood that
users lose their orientation when they are forced to switch
views or combine information shown in different views. This
problem is not specific to AOP however, since eclipse lacks
a universal browser which is capable of showing all infor-
mation necessary while a user tries to navigate to a certain
part of the code. The JQuery tool [8] (see below) and the
AspectJ query tool Lost (Section 2) attempt to address this
problem by providing such a universal browser.

A possible general solution to the problem of overpopu-
lated views is filtering, which is facilitated by the Mylar tool
[10], for example. Mylar filters information according to a
“degree of interest” model, which is created during code nav-
igation, involving visiting or editing parts of the code. The
Mylar approach is quite successful in reducing the informa-
tion overload by connecting the view sizes to user activities.

But finding interesting parts of the code in the first place re-
mains difficult, since one might still have to navigate through
unfiltered views before the tool detects that something is in-
teresting and, therefore, should not be filtered.

In addition to text-based views, visualisations, such as
those found in [3], [1], [6], might provide essential informa-
tion for a certain task, but they either also struggle with
size or they might not be fine-grained enough for the level
of detail required by the task specified in Figure 1.

1.2 JQuery
An elegant method of combining and providing informa-

tion in one view is implemented in the JQuery tool [8].
JQuery, which is working on Java source code, is an eclipse
plug-in, which creates a database from the source code and
provides the means to query this database. After a query
has been started it is represented as a node in a hierarchical
tree with collapsible nodes, where the sub-nodes of a query
node represent the results of the query. This in itself does
not solve the above-mentioned problem of overpopulation
in a view, since a query might return a large number of re-
sults. But JQuery offers the possibility to refine the search
iteratively. This is done either by stating a new query, and
collapsing or deleting the old query nodes, or by selecting an
element in the tree, and performing a query on the basis of
this element. For example, one could first find all methods
with a certain name and then pick one of the results to see
where it is called from. This iterative refinement shortens
the list of results and maintains focus on the element on
which a query is performed, which, in turn, helps the user
to stay focused.

package(?P), child(?P,?CU), child(?CU,?M),

child(?M,?T), type(?T), name(?M,?name),

re_match(/^d/,?name)

Figure 2: A sample query in JQuery.

For stating queries, the user has a choice of a number of
simple predefined queries, but, for everything advanced, the
provided logic programming language (TyRuBa) has to be
used. The query in Figure 2 is an example of what queries
in JQuery look like; it means Find all packages which have a
class which contains a method whose name starts with “d”.
(In fact, the query does a bit more than just this, because
it creates some structure in the result tree.)

By formulating queries, and using iterative refinement if
necessary, users of JQuery can adapt the query to their needs
in certain situations, and gain much more power and flex-
ibility than they would have by using the Java search tool
built into eclipse.

Although the above description suggests that JQuery is a
useful tool, in practice it has two major disadvantages.

The main problem is the the way queries have to be for-
mulated, which diminishes the usefulness of JQuery. The
TyRuBa language, which makes use of predicates (see Fig-
ure 2), is fairly unintuitive for Java and AspectJ program-
mers, especially if they have no prior experience with logic
programming languages. The JQuery authors themselves
note (in [8]) that:

“. . . the logic query language was hard to use for
complex queries. This is true even for developers
reasonably familiar with the query language.”

In addition to the burden of learning a new, rather com-
plex language, which causes users to frequently consult the
documentation, the query language also forces users to men-
tally switch context from one programming paradigm (ob-
ject-oriented programming) to another (logic programming).
This switch is needed when changing focus from the object-
oriented source code under examination to the actual formu-
lation of a query. We believe this is not only time-consuming
and cumbersome, but also unnecessary. Initial results (Sec-
tion 3) support this view.

The second disadvantage is that JQuery is not easily ex-
tensible, since its design is tightly coupled to Java, and it is
therefore hard, if not impossible, to extend for use with As-
pectJ. Admittedly, this is only relevant to AspectJ program-
mers, and AOP support was not targeted by the JQuery de-
velopers. However, AspectJ programmers would specifically
benefit from enhanced tool support, since additional prob-
lems arise in the context of AOP. Examples of such problems
are: easy verification that a certain joinpoint really is advised
by a certain aspect, without having to navigate around the
code, or finding all methods which are advised by a certain
combination of aspects.

JQuery lacks features which are likely to enhance its us-
ability. For example, modern user interface features, such as
syntax highlighting and instant error feedback, would prob-
ably improve the ease of formulating a query, as well as
reduce the time spent on the formulation.

1.3 Summary
Retaining detailed information about a problem, such as

the example in Figure 1, cannot be done easily with existing
IDE tools, especially when the problem involves showing the
effect of certain combinations of aspects, or when a certain
aspect needs to be excluded from examination. This is ei-
ther because the tools do not have the means to formulate
advanced queries and display their result, or because they
do not support AOP. Moreover, the problems posed above,
such as the problem of overpopulated views, hamper the
professional development of aspect-oriented programs.

2. LOST
The AspectJ query tool Lost is an eclipse plug-in, which

seeks to enable better code navigation and exploration fa-
cilities for AspectJ, by addressing the shortcomings of other
IDE tools (Section1) in the context of AOP. Lost aims at
providing the beneficial features of JQuery, such as the uni-
versal browser view and iterative searches, to the AspectJ
programmer. At the same time it also tries to minimise
the disadvantages of JQuery. In this respect, Lost tries to
simplify the process of query formulation and to reduce the
time needed to learn the query language. It also attempts
to reduce the amount of initial training needed and the need
to refer to its documentation.

Figure 3 shows the Lost view in eclipse. It consists of
a query editor (1), where queries are formulated, a query
result browser (2), which is used for navigation, and the
element information area (3), which shows enhanced infor-
mation about elements selected in the browser. At the be-
ginning of the navigation process, the user selects a project
in the package and builds the Lost model, which can then
be queried.

Figure 3: The Lost view, including query edit area
(1), query result browser (2), element information
area (3) and error feedback (4).

2.1 Queries
The query edit area of Lost is used to formulate the queries.

We developed a simple query language for use with Lost,
which has some similarity to the Object Query Language
OQL [5]. In our view, a query language for AspectJ and
Java should be an object query language, in order to avoid
the problem of switching programming paradigms (see Sec-
tion 1.2), which disrupts the user’s workflow.

As an example for a query in the Lost language, consider
the JQuery example query in Figure 2, which translates to
the query in Figure 4 in the Lost query language. The latter
is much more familiar to a Java programmer, since it is
similar to the Java style of referring to classes and methods
and passing arguments. For reasons of limited space we

Figure 4: The Lost version of the query in Figure 2.

do not show the full syntax of the Lost query language, but
only a few examples. However, a programmer needs to know
only little, if anything, about the language, since an auto-
completion feature (see below) provides considerable help in
phrasing syntactically correct queries.

Lost also works on plain Java, as the query in Figure 4
shows, and it can be used instead of JQuery. However, our
main incentive was to provide complementary tool support
for AspectJ. Therefore, the Lost query language can also
query aspects and offers aspect-oriented queries, such as
advises or isAdvisedBy for aspects or the respective ele-
ments, such as methods and classes. This might be clarified
by considering the example given in Figure 1 (Section 1) and
the corresponding Lost query in Figure 5. Further aspect-
oriented queries, such as searching for pointcuts, all around
advices, or all aspects declaring a warning are possible as
well.

Figure 5: The Lost query for the problem in Fig-
ure 1.

In order to achieve the target of providing a query tool
that is intuitive to use and which requires little documen-
tation, Lost offers IDE features, such as syntax highlighting
(e. g. Figure 3), auto-completion, and instant error feedback,
which help in creating queries and are natural for eclipse
users to use, since they are also supported in standard eclipse
views. The error feedback mechanism is demonstrated in
Figure 3: the red underlining immediately highlights errors,
and, additionally, a tool tip (4) containing an error message
can be accessed by hovering the mouse over the small er-
ror icon which appears on the left hand side of the query
edit area. Furthermore, the user is neither allowed to use
erroneous queries (the query icon becomes disabled) nor to
store them as predefined queries (which can easily be done
for valid queries).

Even more important is the auto-completion feature, that
works in the same way as the auto-complete in eclipse edi-
tors. Using this feature, almost no knowledge of the syn-
tax of the query language is required by the user. For
example, when starting with a blank query, hitting Ctrl-

+Space would produce the select statement, hitting Ctrl-

+Space again would produce a list of elements which can be
queried (e. g. classes, aspects or packages). Auto-completion
also shows the allowed queries on a certain element and their
allowed arguments. Additionally, in an unfinished query,
like Aspect.hasName("st"), using auto-completion on "st"

would produce aspects which start with “st” as possible ar-
guments.

The only concepts of the language which perhaps need to
be learned are the way of referring to elements in the query
and the use of regular expressions in arguments. Referenc-
ing within a query might be needed to distinguish different
elements of the same type, e. g. two aspects Aspect[1] and
Aspect[2], within one query (Figure 5).

Note that, although we chose an object-oriented style for
the query language, it is not tightly coupled to Java and
AspectJ keywords. Most notably, it can also be used to
search the browser for queries made earlier, e. g. before a
particular date, or for comments attached to elements (see
below).

2.2 Browsing
The browsing and navigation to query results in Lost is

done in a collapsible tree structure (see Figure 3), similar to
the one introduced by JQuery. This tree is used to further
search and examine the results of a query, as well as to
navigate to the location of interesting elements in source
code (double clicking an element opens it in the associated
editor and moves to the corresponding location in the code).

Nodes in the browser can not only be expanded, collapsed
and deleted, they can also be integrated into the query in
the edit area (using this) or have comments added. As in
JQuery, queries are saved as nodes which have their results
in subordinated nodes. Old queries can, therefore, be re-
run or edited again. Furthermore, it is possible to expand
all nodes of the tree, or to zoom into a node with the go
into command, which makes the currently selected node the
root of the tree, thereby filtering all nodes which do not have
the selected node as an ancestor. This zooming in can be a
multi-stage process, but one can always zoom out, back to
the previous tree. The zooming described here reduces the
size of the visible tree structure, if necessary, which makes
navigation easier and also eases the effect of the problem of
vertical scrolling described in [8].

The tree can be expanded, if necessary, to a very fine-
grained level, where, for example, for-loops, advices or if-
statements are visible (see (2) in Figure 3, but note that the
elements are not fully expanded there). These fine-grained
elements can be queried and used in queries as well; it is, for
example, possible to find all after advices which contain an
if-statement which references a certain variable in its con-
dition. If, on the other hand, the level of detail provided
by Lost is too fine-grained, or the user is not interested in
certain elements, filters for these elements can be toggled
easily.

In addition to the above-described code exploration fea-
tures of Lost, the information area (see Figure 3) is available.
This area shows additional information about the element
selected in the browser. This information depends on the
type of element, and is organised under three different tabs.
The properties tab can contain information about the ele-
ment itself, e. g. return type and arguments for a method,
while the reference tab would show which other elements are
referenced by the selected element, and the back references
tab shows which other elements reference the selected ele-
ment. For a method, Calls and Called by would be included
in the associated reference tab. The properties tab always
includes a list of ancestors of the selected element. This list
is hyperlinked so that the information area of the respective
ancestors can be shown (as a separate entity, which allows
cascading exploration of the ancestors).

3. EVALUATION
In order to evaluate the usefulness of the query language

and the query formulation features, we undertook a simple
user study, in which we compared Lost against JQuery. For
the study we only evaluated the Java-based features of Lost,
because JQuery is not designed to handle aspect-oriented
programs. A more extensive user study is in progress (see
Section 5).

We asked three test persons (P1,P2,P3) to solve six tasks
with both JQuery and Lost. The tasks were ordered accord-
ing to complexity, ranging from simple (e. g. Task 1: “Find
all main methods”) to more complex (where Task 6 is the
task underlying Figures 2 and 4). All tasks were run on the
JHotDraw [9] source code and they were identical or similar
to the tasks set up in [8]. In order to minimise the effects
of working on the same task twice, they had to be solved in
alternating order, starting with Task 1 being processed with
Lost followed by JQuery, then Task 2 being processed with
JQuery first and then Lost, and so on.

In order to verify our aim of reducing the documenta-
tion and training needed, users were not given any docu-
mentation of Lost, apart from an introduction to the auto-
complete feature and where to put queries. In the case of
JQuery all essential functionality was explained, documen-
tation was made available and users were allowed to use
predefined queries.

P1 P2 P3
Task 1 Lost 3:00 1:13 0:40

JQuery >10:00 4:56 2:00
Task 2 Lost 4:25 1:30 0:25

JQuery >8:55 >5:00 0:40
Task 3 Lost 2:22 2:50 1:20

JQuery >6:43 >5:00 3:20
Task 4 Lost 1:30 2:15 1:57

JQuery >1:30 — >13:45
Task 5 Lost 3:33 >5:00 1:55

JQuery >3:48 — 3:00
Task 6 Lost 1:46 1:40 0:56

JQuery >1:46 >5:00 4:10

Table 1: Times (min:sec) needed by test persons P1,
P2, P3 to solve six tasks with Lost and JQuery.

The test persons are all experienced Java developers, who
know and use eclipse; P2 has some, and P3 has good, knowl-
edge of logic programming languages, while P1 has no such
experience. We measured the time that our test persons
needed for formulating a working query for each of the tasks;
these times are given in Table 1 (the response times of the
tools were not measured but they did not cause significant
delays). If a time in Table 1 is not given, the task was not
attempted; if a time is marked with “>”, the task was not
completed with a valid result (the test person either gave up
or was stopped).

The results in Table 1 clearly show that Lost is more suit-
able for querying Java code than JQuery. All test persons
spent significantly less time for formulating valid queries
with Lost than with JQuery, if they managed to solve the
given tasks with JQuery at all. Moreover, the rate of suc-
cess using JQuery correlates with the knowledge of logic
programming languages. This seems to be the reason why,

for the given tasks, only person P3 managed to make sat-
isfactory use of JQuery. The timing results also suggest
that the query language plays a significant role in a query
tool and needs careful design. Although only three persons
were involved in the study, the timings seem to confirm our
view that, in the context of Java programming, requiring
knowledge of a logic programming language as a basis for
successful querying might not be appropriate.

The test persons also complained about the insufficient
help provided by JQuery, although all resources were made
available, while they had no difficulties using Lost, even
though no accompanying documentation was provided and
almost no explanation of the tool was given in advance. We
are, therefore, confident that our initial target of minimising
the need for documentation and building an intuitive-to-use
use tool was met, at least with respect to the querying part
of Lost.

4. IMPLEMENTATION

4.1 CQT Framework
When we were planning the implementation of Lost (Sec-

tion 2) we wanted to be as flexible as possible for making fu-
ture changes. For this reason, the Code Query Tools (CQT)
framework was created, and Lost is just one implementa-
tion of the framework. The CQT framework encapsulates
features common to code querying tools and allows the at-
tachment of features which might be specific to a certain
tool.

That is why models for different programming languages,
for example, can be registered in the framework as compo-
nents. This can even happen dynamically, so that a run-
ning tool implementing the framework can be used for mul-
tiple programming languages. In addition to the model,
builders, which create a model of a project, need to be im-
plemented. It is also possible to export these models of a
project, and different export managers might be registered
with the framework. At the moment, an XML export mech-
anism is available.

Elements in the model of the framework have searchers
and renderers. The former allows us, for example, to add
new possible queries to a certain type of element if needed.
In the event that the query language of Lost leads to diffi-
culties, new parsers for other query languages can be added.
Finally, the way model elements appear is determined by a
renderer and new renderers can be added later.

The described hot spots of the CQT framework allow the
flexible creation and change of query tools for different pro-
gramming languages. At the moment, however, only the
necessary elements for Lost, such as models and builders,
for AspectJ and Java and the parser for the query language
of Lost are implemented.

4.2 Eclipse Integration
The CQT framework (Section 4.1) can be used for the

creation of stand alone tools, if the required information
providers, builders and renders are implemented. The Lost
(Section 2) is, however, integrated with eclipse as a plug-in,
which provides its own view. Additionally, it requires the
AJDT and AspectJ plug-ins to be installed, since it accesses
parts of the model built by them. Lost also opens files in
the editors provided by the AJDT in order to facilitate a
seamless integration. Furthermore, Lost makes use of the

Standard Widget Toolkit in order to provide its user inter-
face (Figure 3).

5. FUTURE WORK
At present, only initial results about Lost’s behaviour are

available and the implementation of the tool is not complete
(e. g. the way that regular expressions are used is likely to
be changed). Both deficiencies need to be addressed, but a
full comparison against state-of-the-art AOP and IDE tools
is work in progress. Depending on the results of this com-
parison, we might consider the integration of Lost with the
Asbro tool [6] in order to speed up navigation further. An-
other question which needs to be answered in a user study
is, in which situations querying is capable of doing better
than filtering approaches. Finally, it needs to be verified
that query formulation is not too costly in time, since there
is a trade-off between navigation of long lists and the time
taken to formulate good queries.

6. CONCLUSIONS
As software projects are getting more and more compli-

cated, query tools are likely to be an essential part of any
IDE. We have introduced a code querying and navigation
tool which not only widens the applicability of code querying
tools, by making their features available to aspect-oriented
programming, but also aims to overcome deficiencies in to-
day’s AOP support tools. Initial results suggest the tool
can meet its purpose, but further comparison to other AOP
support tools is necessary to fully establish its usefulness.

7. REFERENCES
[1] ActiveAspect. http://www.cs.ubc.ca/labs/spl/

projects/activeaspect/, 2005.

[2] AspectJ development tools.
http://www.eclipse.org/ajdt/, 2005.

[3] AspectJ development tools visualiser.
http://www.eclipse.org/ajdt/visualiser/, 2005.

[4] AspectJ. http://www.eclipse.org/aspectJ/, 2005.

[5] R. Cattell, editor. The Object Data Standard: ODMG
3.0. Morgan Kaufmann, 2000.

[6] Asbro. http://www.cs.manchester.ac.uk/cnc/
projects/asbro.php, 2005.

[7] Eclipse. http://www.eclipse.org/, 2005.

[8] D. Janzen and K. De Volder. Navigating and querying
code without getting lost. In Proceedings of the 2nd
international conference on Aspect-oriented software
development, pages 178–187. ACM Press, 2003.

[9] JHotDraw 5.3. http://www.jhotdraw.org/, 2002.

[10] M. Kersten and G. C. Murphy. Mylar: a
degree-of-interest model for ides. In AOSD ’05:
Proceedings of the 4th international conference on
Aspect-oriented software development, pages 159–168,
New York, NY, USA, 2005. ACM Press.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proceedings European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

