
ConcernMapper:
Simple View-Based Separation of Scattered Concerns

Martin P. Robillard and Frédéric Weigand-Warr

School of Computer Science
McGill University

Montreal, QC, Canada

{martin,fwwarr}@cs.mcgill.ca

ABSTRACT
We introduce ConcernMapper, an Eclipse plug-in for experiment-
ing with techniques for advanced separation of concerns. Con-
cernMapper supports development and maintenance tasks involv-
ing scattered concerns by allowing developers to organize and view
the code of a project in terms of high-level abstractions calledcon-
cerns. ConcernMapper is also designed as an extensible platform
intended to provide a simple way to store and query concern mod-
els created through a variety of approaches. This paper describes
the user interface and internal architecture of ConcernMapper, and
demonstrates how to write extensions for it.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques; D.2.6
[Software Engineering]: Programming Environments; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms
Design, Documentation, Experimentation

Keywords
Separation of concerns, concern mapping, concern modeling, aspect-
oriented software development

1. INTRODUCTION
An old tenet of software engineering tells us to design software

systems to achieve “separation of concerns”. This guideline is per-
fectly clear when heard a comfortable distance away from source
code. Unfortunately, when we get down to details, troublingques-
tions arise: What is a concern? (Is this design decision really a
concern?) Who is this a concern for? (Current developers? Future
maintainers? Users?) Will this always be a concern? (Are you
really sure?)

Clearly, it is not possible to separateall concerns that may be
of present or future interest to the various stakeholders ofa soft-
ware project. As a consequence, although the decompositionof a

OOPSLA Eclipse Technology Exchange 2005

software system into modules can often be “good” in general,it is
rarely “perfect” for a given software modification task. Typically,
the code to understand and change in the context of a software
modification task will cut across a number of modules (classes,
files, etc.), and may participate in the implementation of various
concerns (requirements, design decisions, etc.) Since previous re-
search indicates that modifying the implementation of concerns
whose code is not localized leads to particular challenges for soft-
ware developers [6, 8], we are investigating techniques to allow de-
velopers to modify software systems in a way that naturally aligns
with their concern of interest.

To provide a simple foundation for our research program on ad-
vanced separation of concerns, we developed an Eclipse plug-in
to support a simple way to model concerns in source code. Our
plug-in, ConcernMapper,1 was developed with two goals in mind.
First, we wanted ConcernMapper to support our daily software de-
velopment activities by providing a simple way to model concerns.
In an academic environment, where projects can experience ahigh
personnel turnover and where a lot of the development is experi-
mental, we wanted to provide Eclipse users with a very simpleway
to associate code with concerns in order to collect, share, and reuse
this type of knowledge. As a second goal, we were interested in
developing a simple platform for research on advanced separation
of concerns. Many techniques can be used to automatically infer
code that might be of interest to a developer, and there are count-
less ways to present this information back to developers. How-
ever, these ideas have one common denominator: they involvethe
association of code with high-level concerns. In designingCon-
cernMapper, we strove for an open architecture that can easily be
extended by any researcher wishing to record information about
the implementation of concerns using Eclipse. Section 4.2 gives
an example of how ConcernMapper can be extended to automati-
cally generate concerns based on a simple structural analysis of the
program.

2. USING CONCERN MODELS
We describe the main features of our ConcernMapper plug-in

through a scenario of software modification involving scattered con-
cerns. Our scenario is taken from a previous study of the behavior
of Eclipse developers grappling with a modification problemin-
volving scattered concerns [8].

In this scenario, a developer using Eclipse with ConcernMap-
per is asked to enhance the “autosave” feature of a popular open-
source text editor, jEdit.2 The autosave feature in the jEdit text
editor makes backups of all open files at a frequency that can be set
1www.cs.mcgill.ca/̃martin/cm
2www.jedit.org

by users. Not knowing how the autosave feature is implemented in
jEdit or even where to start looking, the developer performsa gen-
eral text search for the keyword “autosave”. This search yields 41
matches scattered over four Java files. The developer looks briefly
at the files and decides that they indeed participate in the imple-
mentation of the autosave feature. Using ConcernMapper, the de-
veloper creates a concern called “Autosave feature”. The developer
then tries to understand how the autosave feature is implemented
by browsing and querying the code using the various JDT views
(Package Explorer, Type Hierarchy, Call Hierarchy, etc.).Each
time the developer finds elements relevant to the implementation
of the autosave feature, they drag them into the Autosave concern
in the ConcernMapper View. Figure 1 shows the ConcernMapper
view at some point of the investigation.

Figure 1: The ConcernMapper View with a single concern.

During the investigation, the developer is constantly informed of
which elements are now part of his concern of interest. For exam-
ple, in the results of any Java search, the subset of the results that
are part of a concern are displayed in bold with the name of the
concern (see Figure 2).

Figure 2: Search results with concern information.

After additional investigation, the developer understands the im-
plementation of the autosave feature much better and discovers a
natural separation between different aspects of the feature:

• The timing of the autosave event.

• The management of the state of a file (whether it was backed
up since the last modification).

• The management of the option pane in the graphical user in-
terface allowing users to change the frequency of autosave
events.

• The code supporting the recovery from automatically saved
backups.

By creating new concerns, renaming the existing one, and mov-
ing and copying elements between concerns in ConcernMapper,
the developer quickly reorganizes the concern model to reflect a
decomposition that will help solve the modification task (see Fig-
ure 3).

Figure 3: The ConcernMapper View with multiple concerns.

After spending some time investigating source code and under-
standing how the autosave feature is implemented, the developer
realizes that it is already 8pm and probably a good time to call it
a day. At this point, the developer saves the concern model (as
an XML file) and adds it to the revision control system. The next
morning (or week), when the developer has time to implement the
change, the concern model is loaded into the ConcernMapper view,
allowing the developer to immediately access the code relevant to
each concern.

3. DESIGN AND IMPLEMENTATION
Although ConcernMapper can be useful as a stand-alone tool,

the main motivation underlying its development was to provide
a basic but extensible platform for experimenting with advanced
separation of concerns mechanisms. To this end, we designedCon-
cernMapper for simplicity and ease of extension. This section de-
scribes the main architecture of ConcernMapper and the decisions
motivating it.

Besides a basic plug-in class controlling its state, ConcernMap-
per is logically decomposed into two components: a model anda
view. Figure 4 is a UML class diagram representing the key fea-
tures of the architecture of ConcernMapper. ClassConcernMapper
is the main plug-in class. It manages an instance of theConcern-
Model. The ConcernMapperView is the class implementing an
Eclipse view extension point. It can obtain a reference to the model
throughConcernMapper, and can register itself as a listener for
any changes to the model.

Figure 4: Key components of ConcernMapper.

3.1 The Concern Model Structure
The basic idea of ConcernMapper is to allow developers to asso-

ciate parts of a program with high-level concerns. Ideally it should
be possible to support the association ofanypart of a program with
a concern, if this association can be useful to developers. Exam-
ples of program parts can include source code elements (e.g., meth-
ods, fields, classes, local variables, statements, comments) as well
as fragments from other software engineering artifacts (e.g., UML
model elements, individual requirements, sections from user man-
uals). To accommodate experimentation with such possibilities we
have left our model open-ended and capable of supporting anytype
of element. The decision as to which element types to supportis
taken by the implementers of the model viewing components (in
our case classConcernMapperView). Section 3.3 describes and
justifies the elements currently supported by ConcernMapper.

We express the structure of our concern model as a grammar
using the extended Backus Naur form:

<model> ::= <concern>*
<concern> ::= <name><weighted-element>*
<weighted-element> ::= <object><degree>

As this specification states, a concern model consists of zero or
more concerns, where each concern maps a name to zero or more
weighted elements. A weighted element is simply a pair associat-
ing an object of unspecified type with a value indicating the mem-
bership degree of the object in the concern. In other words, acon-
cern is named a fuzzy set [17].

3.2 The ConcernMapper API
In ConcernMapper, the concern model is accessible through an

application programming interface (API) that implements the Façade
design pattern [3]. The internal implementation of the model is
completely hidden and client code need only interact with theCon-
cernModel class. TheConcernModel class supports operations
for creating, renaming, and deleting concerns, as well as for adding
and removing elements to and from concerns and querying vari-
ous aspects of the model. Finally the API provides the operations
necessary to register and deregister objects listening to changes to
the model (an implementation of the Observer design pattern[3]).
Since modifications to the model can only be done through the

ConcernMapper class, all operations resulting in a change to the
internal state of the model automatically result in a notification to
observers. In other words, the notification logic is completely hid-
den from clients. The complete model API can be accessed from
the source code distributed with ConcernMapper.

3.3 Current Instantiation of the model
ConcernMapper release 1.0.0 only supports populating concerns

with fields and methods. The decision stems from an initial goal
to provide a simple and robust implementation of the model, but
also from our extensive experimentation with FEAT, a previously-
developed concern modeling tool [11]. Regarding the decision not
to model intra-method elements (such as local variables), our ex-
perience with FEAT indicated that modeling concerns at thislevel
of detail did not appear to be a cost-effective strategy. Indeed, to
mark specific intra-method details as relevant to a concern requires
a developer to spend more effort reasoning about these details than
necessary. This is particularly true of code segments which, al-
though they help a developer understand a concern, do not need to
be modified during a specific task. Regarding the decision notto
support the inclusion of classes, our rationale was that theinclusion
of a class as part of a concern model is ambiguous: does it indicate
that all of the code in the class implements the concern or only part
of it? This aspect was modeled explicitly in an early expression
of concern models [9] but has since been dropped. In the current
version of ConcernMapper, we solve the problem by displaying
classes declaring elements that are part of a concern model:it is
thus possible to “add” a class to a model by dragging and dropping
a selection of all the elements of the class.

4. EXTENDING CONCERNMAPPER
We are offering ConcernMapper as a simple, extensible platform

for experimentation with advanced separation of concerns tech-
niques. This section highlights our motivation and demonstrates,
through an example, the simplicity of extending ConcernMapper
for other research applications.

4.1 Motivation
Building concern models manually is only one of many ways

of producing information about the implementation of concerns in
source code. Different techniques have recently been proposed by
software engineering researchers that could lead to automatic gen-
eration of concern models. Such techniques include (but arenot
limited to):

• Program Navigation Analysis[12]. A number of approaches
have been proposed to monitor and analyze the actions of de-
velopers as they perform software development tasks [5, 10,
13]. The results of such analyses often represent a subset of
the code of interest to a developer. This code can be recorded
as a concern model.

• Static Analysis. Various analyses can be performed on the
structural dependencies of programs to elicit code of poten-
tial interest. We are currently experimenting with an algo-
rithm to infer code of potential interest to developers based
on an analysis of the topology of structural dependencies toa
set of interest [7]. Our research prototype for this algorithm
is based on ConcernMapper.

• Feature Location. A number of techniques can automat-
ically produce an estimate of the methods implementing a
feature by analyzing traces of the execution of a system [2,
14]

• Repository Mining. Data mining techniques have been pro-
posed that report on elements that are often changed together
during program evolution tasks [15, 18]. It may be useful to
document such change sets as concern models.

• Information Retrieval. Information retrieval techniques can
be used to automatically associate text (e.g., from user man-
uals) with the corresponding code [1, 16].

Finally, by storing a core concern model that can be accessed
by other Eclipse plug-ins, ConcernModel also provides a simple
platform for experimenting with concern visualization techniques.

4.2 Example
We demonstrate below how easy it is to extend ConcernMapper

through a complete example. For our example we have chosen to
build a plug-in that creates a concern through a simple static analy-
sis technique. Using the Eclipse search engine, our exampleplug-
in finds all the methods accessing a field selected by the user and
adds them to a new concern in the ConcernMapper view. Figure 5
shows how this action is triggered in our plug-in (the pop-upmenu
has been artificially simplified for clarity in the presentation).

Figure 5: Creating a concern representing field accessors.

We developed this plug-in in three steps.

1. Building the user interface: Our example plug-in contributes
an action toIField elements’ popup menu. To do so, we ex-
tended theorg.eclipse.ui.popupmenus extension point
by adding anobjectContribution to the standard popup
menu forIFields. This enables users to right-click on any
field in the Package Explorer (or other JDT views) and be
presented with the possibility to extract accessors of the se-
lected field into a new concern (see Figure 5).

2. Implementing the action: We wrote a class that implements
theIObjectActionDelegate interface and that corresponds
to the class named in the extension point (see above). In this
class, we implemented theselectionChanged method to
ensure that the selected element is adaptable to anIField.
Using the Eclipse search engine, our action searches the work-
space for accessors of the selected field and returns them as
aSet.

3. Updating the concern model: So far we did not need to
reference the ConcernMapper plug-in. This means that de-
velopers can use any other technique to find elements of code
that could be part of a concern (see Section 4.1). Elements of
interest can be added to the concern model by interacting di-
rectly with theConcernModel class, which provides a sim-
ple API. Any plug-in needing to extend ConcernMapper’s
functionality must declareca.mcgill.cs.serg.cmas a re-
quired plug-in in the plug-in manifest file. Once this is done,
the concern model can be accessed by callingConcernMapper.
getDefault().getConcernModel(). Methods such as
newConcern(String name) and addElement(String
name, Object element, int degree)make creating con-
cerns and adding elements easy since the plug-in views are
automatically refreshed when the model changes. Figure 6
shows the code of the method called when the concern gen-
eration action is triggered (with the analysis and exception
handling constructs elided for clarity). This code, located in
therun method of the action delegate, performs the follow-
ing actions.

(a) Using the Eclipse search engine, obtain the list of meth-
ods calling the selected field (represented by the com-
ments on line 3-4).

(b) Generate a name for the concern (line 7).

(c) Using the ConcernMapper API, add a new (empty) con-
cern with the generated name (lines 9-11).

(d) For each accessor method detected, add the method to
the concern (lines 13-17).

That’s all. The ConcernMapper plug-in takes care of refreshing
the view, and showing which elements are now part of the concern
model in the various JDT views. The concern model can then be
saved as an XML file by the click of a button.

5. RELATED WORK
The ConcernMapper plug-in evolved from first author’s work on

FEAT [11]. With ConcernMapper, we are investigating ways to
simplify the manual creation of concern models, and to facilitate
the programmatic generation of concern models by other tools. The
main difference between ConcernMapper and tools such as FEAT
and the Concern Manipulation Environment (CME) [4] is that Con-
cernMapper supports a fuzzy, exclusively extensional model for
concerns. Such a model allows users (humans or programs) to
create concern representations without having to reason about the
structure of concerns a priori. This approach differs from FEAT and
CME’s crisp, relation-based concern models. ConcernMapper’s
simpler model directly enables us to leaverage features of Eclipse
such as the dragging and dropping of Java elements to give devel-
opers a fluid way to create concerns that naturally aligns with their
program investigation activities (see Section 2). We are currently
investigating how to carry over the main benefits of relation-based
concern models (e.g., robustness in the face of software evolution)
to our fuzzy concern model.

1 public void run(IAction action)
2 {
3 // Search for the accessing IMethod objects
4 // and store them in a Set variable lMethods
5
6 //Add a concern to the concern model
7 String lName = "Accessors of " + aField.getElementName();
8
9 if(!ConcernMapper.getDefault().getConcernModel().exists(lName))
10 {
11 ConcernMapper.getDefault().getConcernModel().newConcern(lName);
12 //Add the accessors to the concern
13 for(Iterator i = lMethods.iterator(); i.hasNext();)
14 {
15 IMethod lNext = (IMethod)i.next();
16 ConcernMapper.getDefault().getConcernModel().addElement(lName, lNext, 100);
17 }
18 }
19 }

Figure 6: Code required to update ConcernMapper

6. CONCLUSIONS
Concerns are not often perfectly separated. As a result, devel-

opers often have to perform change tasks involving code scattered
through different modules (classes, methods, etc.). Although many
features of Eclipse greatly facilitate navigating betweendifferent
code locations of interest to a developer, the non-localization of
code relevant to a concern implies that developers’ effort might be
wasted tracking down code that is conceptually related and that
should be co-located, at least in the context of a specific change
task.

In our effort to mitigate this problem we developed Concern-
Mapper, a simple Eclipse plug-in that supports a concern-oriented
approach to software development by allowing developers toquickly
build models of the code of interest, and to store these concern
models for future use.

ConcernMapper is intended to provide a basic building blockfor
research on separation of concerns, automatic feature location, and
program navigation. As such, it follows a simple architecture that
is easy to extend.

7. ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers for their

useful comments. This work is supported by an Eclipse Innovation
Award, a research grant from the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), and by the Faculty of
Science of McGill University.

8. REFERENCES
[1] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering

code to documentation links in OO systems. InProceedings of the
6th Working Conference on Reverse Engineering, pages 136–144,
1999.

[2] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
features in source code.IEEE Transactions on Software Engineering,
29(3):210–224, 2003.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns—Elements of Reusable Object-Oriented Software.
Professional Computing Series. Addison-Wesley Longman, Inc.,
Reading, MA, USA, 1995.

[4] William Harrison, Harold Ossher, Stanley Sutton Jr., and Peri Tarr.
Concern modeling in the Concern Manipulation Environment.In
Proceedings of the First International Workshop on the Modeling
and Analysis of Concerns in Software (MACS), volume 30 (4) of
ACM SIGSOFT Software Engineering Notes, 2005.

[5] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model
for IDEs. InProceedings of the 4th Conference on Aspect-Oriented
Software Development, pages 159–168, 2005.

[6] Stanley Letovsky and Elliot Soloway. Delocalized plansand program
comprehension.IEEE Software, 3(3):41–49, 1986.

[7] Martin P. Robillard. Automatic generation of suggestions for
program investigation. InProceedings of the Joint European
Software Engineering Conference and ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 11–20, 2005.

[8] Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How
effective developers investigate source code: An exploratory study.
IEEE Transactions on Software Engineering, 30(12):889–903, 2004.

[9] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding
and describing concerns using structural program dependencies. In
Proceedings of the 24th International Conference on Software
Engineering, pages 406–416, 2002.

[10] Martin P. Robillard and Gail C. Murphy. Automatically inferring
concern code from program investigation activities. InProceedings
of the 18th International Conference on Automated Software
Engineering, pages 225–234, 2003.

[11] Martin P. Robillard and Gail C. Murphy. FEAT: a tool for locating,
describing, and analyzing concerns in source code. InProceedings of
the 25th International Conference on Software Engineering, pages
822–823, 2003.

[12] Martin P. Robillard and Gail C. Murphy. Program navigation analysis
to support task-aware software development environments.In
Proceedings of the ICSE Workshop on Directions in Software
Engineering Environments, pages 83–88. IEE, 2004.

[13] Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks:
Supporting navigation in software maintenance. InProceedings of
the International Conference on Software Maintenance, 2005.

[14] Norman Wilde and Michael C. Scully. Software reconnaissance:
Mapping program features to code.Software Maintenance: Research
and Practice, 7:49–62, 1995.

[15] Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C.
Chu-Carroll. Predicting source code changes by mining change
history.IEEE Transactions on Software Engineering, 30(9):574–586,
2004.

[16] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. SNIAFL:
Towards a static non-interactive approach to feature location. In
Proceedings of the 26th International Conference on Software
Engineering, pages 293–303, 2004.

[17] H.-J. Zimmermann.Fuzzy Set Theory and Its Applications. Kluwer
Academic Publishers, third edition, 1996.

[18] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and
Andreas Zeller. Mining version histories to guide softwarechanges.
In Proceedings of the 26th International Conference on Software
Engineering, pages 563–572, 2004.

