
Leveraging Eclipse for Integrated
Model-Based Engineering of Web Service Compositions

Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer
Imperial College London

180 Queen’s Gate
London, SW7 2BZ, United Kingdom

+44 (0)20 7594 8298

{hf1,su2,jnm,jk}@doc.ic.ac.uk

ABSTRACT
In this paper we detail the design and implementation of an Eclipse
plug-in for an integrated, model-based approach, to the engineering
of web service compositions. The plug-in allows a designer to
specify a service’s obligations for coordinated web service
compositions in the form of Message Sequence Charts (MSCs) and
then generate policies in the form of WS-CDL and services in the
form of BPEL4WS. The approach uses finite state machine
representations of web service compositions and service
choreography rules, and assigns semantics to the distributed process
interactions. The move towards implementing web service
choreography requires design time verification of these service
interactions to ensure that service implementations fulfill
requirements for multiple interested partners before such
compositions and choreographies are deployed. The plug-in
provides a tool for integrated specification, formal modeling,
animation and providing verification results from choreographed
web service interactions. The LTSA-Eclipse (for Web Services)
plug-in is publicly available, along with other plug-ins, at:
http://www.doc.ic.ac.uk/ltsa.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer-aided Software Engineering (CASE). D.2.4 [Software
Engineering]: Software/Program Verification – model checking,
correctness proofs, Validation.

General Terms
Service Design, Implementation, Standards, Verification,
Validation.

Keywords
Eclipse plug-in, Web Service Composition and Orchestration, Web
Service Choreography, Verification, Validation, Model Checking

1. INTRODUCTION
The practice of engineering web services currently focuses on the
technical implementation of service functionality in a number of
development language environments (such as Java and .NET).
There has been a growing presence of web service tools, aimed
mostly at the developer, who can generate web service interfaces
and deployment configurations for hosting services on these
different environments, yet the service interactions are equally
important in the consideration of how the clients (including other
services) needs will be incorporated in to the design of service
functionality. Our work to date [1-3] focuses on providing an
approach and tool which facilitates the design of appropriate service
interaction specifications, verifying implementations of these
specifications and generating representations in the standards for
web service orchestrations and choreography. We achieve this
through the provision of editors and views for analyzing the
scenarios in service interactions and by verifying properties of the
models produced through interaction specifications. This paper is
organized as follows. In section 2 we describe the design goals by
considering the aspects of web service compositions in relation to
the web service standards. We then describe in section 3, a path of
engineering service compositions in the tool from design through to
maintenance. Section 4 details the approach to plug-in architecture
for Eclipse, with Section 5 providing a brief example. Section 6 is
an evaluation of the plug-in and Section 7 concludes the paper with
opportunities highlighted as part of this on-going work.

2. DESIGN GOALS
Web Service behaviour analysis consists of analysing two aspects
of web service architecture style. The web service formally
exhibits its identity and permissible interactions through definition
in the Web Service Description Language (WSDL). Within the
implementation for a web service however, the behaviour of its
interactions is defined. The coordination of a service’s behaviour is
formed from the basic operations of requesting, receiving a new
request, replying to a service or receiving the reply from a request
and this forms the basis for service analysis for its interaction
behaviour. Standards elaborate the specification of how, what and
when these interactions can occur. The layers above the basic
service are described through compositions, choreography,
transactions and policies. The main goal of our tool is to provide an
integrated environment which provides service clients, designers
and engineers features to assist in the development and maintenance
of web service compositions. The design of the tool builds editors
and views for service interaction models, which can in turn be
translated in to the Finite State Process (FSP) notation. Using the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Eclipse Technology eXchange (ETX) 2005 at Object-Oriented
Programming, Systems, Languages and Applications 2005, October 16–
17, 2005, San Diego, California, USA.

Labelled Transition System Analyser (LTSA) [4] libraries, the FSP
notation can be compiled into Labeled Transition Systems (LTSs)
which in turn can be verified for correctness (using the formal
software process techniques of liveness and reachability analysis).
Additionally, the service interaction models can be translated to the
web service standards for composition and choreography, namely
the Business Process Execution Language (BPEL4WS) [5] and
Web Service Choreography Language (WS-CDL) [6]. Together,
these standards form the basis for describing the behavior of
orchestrated web services and the interaction policy for multi-party
process transactions.

Tool

Designers Validation

validation results

.
models

Deployers

Implementers

Specification

verification results

Composition

Clients

Verification

Verified and
Validated
Services

BPEL4WS

implementations

Composition
Processes

Composition
Semantics

Requirements

Web
Service

Standards

MSCs

BPEL4WS
Specification

Composition
Specification

Web Services

Model Generation

synthesis

m
apping

abstraction

interactions

verification properties

validation traces

Partner
Service

Interfaces

Figure 1 A Rigorous Approach to Engineering Web Service

Compositions

We now describe how this approach is undertaken by the user, from
design through build, and on to verifying the implementation
against design specifications.

3. THE USER EXPERIENCE

3.1 Design Phase
We believe the design phase of engineering web service
compositions consists of two aspects. Firstly, the required service
interaction behavior is specified, highlighting where and in which
order the interactions between two or more service partners must be
sequenced. In our approach the designer specifies the partners and
interactions to fulfill this composition by way of building Message
Sequence Chart (MSC) scenarios for the different sequences of
interaction that are possible. The plug-in includes an MSC editor,
which provides basic and high level MSC editing capability. The
second part of designing the service compositions is to model the
scenarios and validate the sequences possible through an animation
of the interactions that can occur. This facility is provided in the
tool by an LTS Animator tool. Indeed, requirements engineers
must not only elicit and document requirement scenarios, but also
validate that these are indeed what stakeholders want [7]. The
technique of simulation through animation is an effective validation
technique, whereby in its simplest form, stakeholders can step
through sequences of events dictated by a behaviour model [8].

3.2 Build Phase
The build phase provides the service engineer with tools to
generate, enhance and analyse documents implementing the service
process and the service policy. Our approach currently supports
analyzing BPEL4WS and WS-CDL, yet as other standards emerge

these can be incorporated in to the approach. Additionally we are
working on generating templates of standards based
implementations for both choreography and service
implementation. The implementation of service compositions
undertaking one or more roles within this service choreography is
undertaken by a service engineer who defines the sequences of
interactions within each service role as part of the choreography
enactment. Interaction processes can be implemented in the
emerging standard of the BPEL4WS which provides a workflow
language schema to implement such a composition. In the approach
these compositions are also translated to the FSP algebra and
compiled in to LTS models. Through a process of abstraction and
mapping, the composition interactions are combined to provide an
architecture model of the cooperating services.

3.3 Verification and Validation
Given the outputs of the architecture models from the design and
build phases, the users of the approach can perform verification
against a series of specified properties. For example, the designer
can verify that if there are any implied scenarios (scenarios which
may be unexpected given the initial specified sequences) in the
interaction specifications. From the perspective of the service
engineer, they can also undertake analysis of whether there are any
deadlocks present on a reach ability analysis of the implementation.
Such situations could occur if conflicting dependencies between
interactions have been configured by mistake or misaligned.
Related to this is an analysis of interactions between compositions,
which we term “compatibility” for the available sequences of
interactions to be fulfilled. This analysis takes the web service
communication model (a port connector for request, receive and
reply) and checks that two or more compositions may fulfill each
interaction cycle. The choreography model can then be compared
with two or more compositions such that the interactions fulfill
partner roles as defined in the choreography specification
(described in the design phase). One clear use for this is that that of
reusable components, as an initial requirements baseline is
considered when the first deployment occurs. The expectations of
these components will quickly be exhausted as new requirements
and further functionality are required by additional partners in a
composition [9, 10].

4. ECLIPSE PLUG-IN DESIGN

4.1 From Standalone to Plug-in
Using the Eclipse framework opens the potential to link the tool
with a network of other Eclipse plug-in contributions and aims to
simplify the number of different, bespoke tools used in software
engineering as a whole. There were several reasons why we sought
to leverage the Eclipse Integrated Development Environment (IDE)
for our work and develop a IDE based tool rather than extending the
previously standalone LTSA tool. Firstly, a growing number of
editors have been released to support a number of different
languages and specifications (for example, Java, C#, C++,
BPEL4WS etc) irrespective of actual technology deployment
environment. Our approach required an IDE which was flexible to
multiple editors and views working closely together. Secondly, the
notion of providing extension points promotes contributing your
plug-in not only to increase the number of available plug-ins, but
also work closely with other contributors to enhance the overall
engineering experience by plug-ins working together. Indeed,

amongst these contributions are commercial BPEL4WS graphical
editors (we currently only provide a basic XML editor), although
the reader is invited to browse plug-in web sites as the list of
contributors is continuously expanding. To migrate an original
LTSA based plug-in to the Eclipse environment consisted on
rebuilding the model, views and controller pattern using the Eclipse
Plug-in development environment. There were a few issues that we
attributed to challenges when moving from standalone to an
extended plug-in version of the LTSA tool. This consisted of

• Communication: To provide a consistent and expandable
mechanism to support cross editor and view updates. As changes
occur to document, reflect this in any associated views.
Additionally, support cross plug-in collaborative development.

• Job Performance: Enabling threaded jobs in translation,
synthesis, compilation and process analysis. Long running jobs
should not restrict other work being undertaken, and should
provide continuous feedback to the user.

• Graphics Conversion: The original draw views were written in
the AWT/SWING API. The effort required to migrate this to
SWT support was unknown before work began, and before the
AWT/SWING to SWT Bridge was included in general release
(i.e. org.eclipse.swt.awt.SWT_AWT).

• Perspectives: Building appropriate views for the user, given
designer, service validation (by client) or service engineer roles.

• UI Actions: Multiple or central locations to support common
actions on documents or process parts. For example, compiling
the FSP from single or multiple sources (BPEL4WS, WS-CDL).

4.2 Plug-In Architecture
As a first step, we designed an architecture supporting the editor,
model and views to enable the layered engineering approach to be
automated and to identify the areas where the issues above would
be most apparent. The architecture of the tool consists of three
layers, as illustrated in Figure 2.

Libs

Multi-page Editors

LTSA
(Verification)

BPEL
Translator

BPEL
Editor

MSC
Synthesis

FSP
Editor

MSC
Editor

Views

Compiler
View

LTS Draw
View

LTS
Animator

translate

view

translate

results

view

action

state

compose
view

lts

WS-CDL
Editor

WS-CDL
Translator

translate

Deployment
View

view

view

view

view

Figure 2 Plug-In Architecture of Editors, Models and Views

Firstly, a set of editors provides document management for MSCs,
BPEL4WS and WS-CDL specifications. Each of these editors has

a related model function library in the second layer of the
architecture, to support synthesis or translation of the source
document into an FSP process model or in the case of the MSC
synthesis, additionally to generate templates for BPEL4WS or WS-
CDL specifications. By way of the LTSA modules, the web service
specifications can be represented back to the user in the form of the
FSP editor, from which analysis can be performed. The third layer
contributes additional views on the results of modeling and
compiling the source documents or FSP respectively. For example,
compilation and analysis of the FSP by way of the LTSA module is
presented back to the user in the Compiler View (also known as
Output). Secondly, the compiled model can be viewed as a
graphical LTS in the Draw View and animated through trace runs
for validation purposes. We also envisaged providing a deployment
view once verification and validation has been satisfied to further
facilitate the service engineering cycle.

4.3 Model and Editor Views
The FSP, MSC, BPEL4WS and WS-CDL Editors all extend the
MultiPageEditorPart class as part of the included Eclipse plug-in
development environment. The documents behind these editors are
XML based, except for the FSP notation which is textual yet still
easily machine readable. Extensions to support calling the
appropriate editor are easily configurable in the plugin.xml
deployment config file. The editor content is scanned on an “input
rest” (i.e. after there is a delay in user editing interactions) and upon
document restore or save actions to provide useful editor functions,
such as syntax highlighting. A full parsing of source is however,
performed on compilation of the FSP source, whereby an outline
view content is updated with a breakdown of an FSP document.
This includes a list of compositions (such as specified parallel
processes), a list of basic processes (a process or a sequence of
processes). The engineer is able to build one or many web service
compositions which aids in integrated enterprise service
decomposition. For each composition selected, the engineer can
either translate a single composition (by way of a mechanical
implementation of translation rules described in our earlier work) or
compose multiple compositions for choreography and translate
them in to FSP. The translation module is written as an
independent module (itself potentially a web service), which takes
as input one or more BPEL4WS or WS-CDL implementations and
in turn, traverses the source building a representation model in FSP.
Problems in translation or with parsing of documents are listed in
the output view, as well as specific syntax problems added to the
core Eclipse Problems view. The other useful feature was to have
views with multiple tabs, using the core Page sub-part of a
MultiPageEditor. As translations occurred, pages can be
dynamically created or removed.

Each of the views in the plug-in extend the ViewPart class included
in the eclipse core libraries. The compiler output (used in
compilation of the FSP and in translation of BPEL4WS and WS-
CDL to FSP) is currently based upon a simple extension of the
eclipse TextEditor class. Compilation runs a threaded task. We
utilised the recently included org.eclipse.core.runtime.jobs to wrap
existing single threaded compilation and analysis with threaded
tasks and included the progress monitor to support feedback to the
user of job progress. We were limited however, in the ability to
ascertain at what point the compilation had reached (the number of
process model states is unknown at the time the job begins).
Results of checks provide implementers and designers with useful

details such as missing interaction cycles (e.g. a missing receive or
reply action). An output view summaries actions undertaken by the
LTS compiler, and reports on property violations, such as deadlock,
liveness or other safety properties.
The relationship that editors and views have is built around the core
listeners added to each. This is by no means a single way
relationship. For example, in the Outline view, the contents of the
outline are updated whenever a parse occurs against the FSP source
code. However, when a user clicks a composition or process
selected in the outline, the editor moves the text cursor to the line
location of the beginning of the source for the selection made.
Leveraging the flexibility of event handling in Eclipse requires the
developer to think about possible clashes in events, and building
safe guards around these to provide a consistent view to the user.
The main LTSA tool also supports trace Animation, process
Alphabets and process Transitions in the LTS Draw view. We are
continuing to migrate the full functionality of the LTSA tool across
to the Eclipse environment, yet this subset has already supplied
those necessary for significant web service composition analysis.

4.4 Challenges and Issues
Relating back to our initial thoughts on challenges and issues of the
plug-in, our experience has shown that the core LTSA Java modules
could be successfully imported into the Eclipse plug-in
development environment however; rebuilding the graphical view
modules has required some changes, particularly when moving the
LTS Draw view to the SWT API as discussed previously. Aside
from these differences however, current application and view
migration has mapped conveniently onto the standard views
provided by the Eclipse framework (Editor, View, Outline, Console
etc). We found that the difficulty in extending plug-ins to
communicate, without prior knowledge of the internal class
structure of a deployed plug-in, limited our scope to leverage the
work of others. For example, we would like to be able to
communicate with more enhanced graphical BPEL4WS editors, yet
there is no simple way to achieve this presently. Additionally we
found that wrapping tasks with the core eclipse job classes was
simple in the activity, yet the most appropriate way to use this
would involve rewriting the task itself to exhibit useful progress
information.

5. AN EXAMPLE
As a brief example, we have recently worked closely with the UK
Police Information Technology Organisation (PITO) on scenarios
for police officer enquiry services. The scenarios consist of a series
of enquires (such as vehicle insurance, vehicle registration, person,
weapons registry etc) and the compositions of these enquires.
Figure 3 includes an example process for one such scenario for
these enquiries. With a sequence of interactions specified in an
MSC, the translators can be used to generate FSP and BPEL4WS
process statements and WS-CDL choreography rules by way of
synthesizing the MSC specification, its components and the
interactions (as illustrated in Figure 4). In BPEL4WS, a process is
generated by considering the possible sequence and concurrency of
interactions from the initial enquiry (the main process) and between
other services. Each component may be considered a separate
BPEL4WS process. The choreography is a series of interactions
between two or more components in the MSC. Currently, the tool
provides only limited generation of BPEL4WS and WS-CDL
specifications, whereby single (basic) MSC scenarios are translated

to a process. Complete MSC and BPEL4WS processes (directly
built by an engineer) are however, translated fully to equivalent
interactions models in FSP (by applying the semantics of FSP to
each of the BPEL4WS and WS-CDL constructs). We are
continuing to develop the synthesis of MSCs such that a series of
scenarios is represented fully in the processes and choreographs
generated. The processes can then be analyzed for correctness
using model-checking techniques (such as against dead-lock and
liveness properties). A full list of translation semantics from
BPEL4WS to FSP are presented in [2].

6. RELATED WORK
There are a number of initiatives to utilise Eclipse for modeling and
then generating web services compositions including [11] and [12].
We focus on modeling web services as reusable components from
the perspective of assessing multiple client usage scenarios. We
achieve this by using formal software process verification
techniques and providing the user with validation analysis to
ascertain if requirements have been implemented appropriately.
The related work can be seen as opportunities to contribute our
plug-in such that their work could potentially benefit from this
analysis.

7. CONCLUSIONS AND FUTURE WORK
Firstly, we wish to continue describing compositional behaviour by
elaborating on the wider choreography aspects of partnered
services, and are also seeking to model the requirements of
distributed resources for service compositions (such as impact of
number of instances and type of requests between compositions).
This also includes considering fault, compensation and transactional
integrity within and between distributed processes. As part of this
work we are aligned closely with consortiums, such as the W3C, on
their work with choreography architectures and specifications. It is
anticipated that the result of their work could be incorporated into
our approach and the plug-in to provide an extension to the
choreography elements we have considered thus far.

officer PoliceEnquiry VehicleRecords

invoke_process

invoke_getVehicleRec

reply_getVehicleRec

InsuranceServices PNCService

invoke_getPersonRecords

// build interaction sequences for PoliceEnquiry Process
// Scenario 1.
P1 = (receive_officer_pito1_process -> END).
P2 = (invoke_pito1_vehiclerecords_getvehiclerec -> END).
P3 = (reply_vehiclerecords_pito1_getvehiclerec ->END).
SEQ1 = P2; P3; END.
P4 = (invoke_pito1_pncservice_getpersonrecords -> END).
P5 = (reply_pncservice_pito1_getpersonrecords ->END).
SEQ2 = P4; P5; END.
.....
MAINSEQ1 = SEQ1 ; SEQ2;
PITO1_VEHICLE_RECORDS_SEQ ; PITO1_NOMINAL_ENQUIRY_SEQ ;
PITO1_VEHICLE_INSURANCE_SEQ ; PITO1_ANPR_ENQUIRY_SEQ ;
PITO1_FINGERPRINT_ENQUIRY_SEQ ; PITO1_REPLYOUTPUT; END.
// Scenario 2.
.....
// compose sequences into parallel composition
||PITO1_Instance = (MAINSEQ1 || MAINSEQ2 ||).
||PITO1_BPELModel = (MAINSEQ).

Figure 3 Example synthesis of MSC (top) to FSP (below)

LTS Draw ViewMachine and
Animator View

Composition
Outline

Compiler and
Log Output

MSC Editor
BPEL4WS

Editor
WS-CDL
Editor

Figure 4 LTSA-Eclipse: Eclipse IDE Perspective of Editors and Views

We are also evaluating the use of core Eclipse graphical modeling
plug-ins, such as the Eclipse Modeling Framework (EMF) [13] that
may replace the custom MSC classes we have developed and for
translation between graphical and textual notations the Meta Object
Facility (MOF) [14]. The authors would like to acknowledge that
this research was supported, in part, by the STATUS ESPIRIT
project (IST-2001-32298) and by an IBM Eclipse Innovation Grant
(EIG 2005).

8. REFERENCES
[1] H. Foster, S. Uchitel, J. Magee, and J. Kramer,

"Compatibility for Web Service Choreography," presented at
2nd IEEE International Conference on Web Services (ICWS),
San Diego, CA, 2004a.

[2] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based
Verification of Web Service Compositions," presented at
Eighteenth IEEE International Conference on Automated
Software Engineering (ASE), Montreal, Canada, 2003a.

[3] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Tool Support
for Model-Based Engineering of Web Service Compositions,"
presented at 3rd IEEE International Conference on Web
Services (ICWS2005), Orlando, FL, 2005.

[4] J. Magee and J. Kramer, Concurrency - State Models and
Java Programs: John Wiley, 1999.

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana, "Business Process Execution Language
for Web Services Version 1.1," 2004.

[6] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y.
Lafon, "Web Services Choreography Description Language
Version 1.0 - W3C Working Draft 17 December 2004," 2004.

[7] B. Nuseibeh and S. Easterbrook, "Requirements engineering:
A roadmap," presented at International Conference on
Software Engineering (ICSE'00), Limerick, 2000.

[8] S. Uchitel, R. Chatley, J. Kramer, and J. Magee, "Fluent-
Based Animation: Exploiting the Relation between Goals and
Scenarios for Requirements Validation," presented at
Requirements Engineering (RE'04), 2004.

[9] J. Yang and M. P. Papazoglou, "Service Components for
Managing the Life-Cycle of Service Compositions,"
Information Systems, 2003.

[10] M. Larrson and I. Crnkovic, "New Challenges for
Configuration Management," presented at 9th Software
Configuration Management Workshop, Toulouse, France,
1999.

[11] S. Iyengar, "Business Process Integration Using UML and
BPEL4WS," presented at XML Conference and Exposition
2003, Philadelphia, PA, 2003.

[12] F. Curbera, M. J. Duftler, R. Khalaf, N. Mukhi, W. A. Nagy,
and S. Weerawarana, "BPWS4J: A platform for creating and
executing BPEL4WS processes," Component Systems group,
International Business Machines (IBM), 2002.

[13] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.
Grose, Eclipse Modeling Framework: Addison Wesley
Professional, 2003.

[14] OMG, "Meta-Object Facility (MOF), Version 1.4," Object
Management Group, 2002.

