
IDE Support for Test-driven Development and Automated
Grading in Both Java and C++

Anthony Allowatt and Stephen Edwards
Department of Computer Science

Virginia Polytechnic Institute and State University
660 McBryde Hall

Blacksburg, VA 24061

aallowat@vt.edu, edwards@cs.vt.edu

ABSTRACT
Students need to learn testing skills, and using test-driven
development on assignments is one way to help students learn.
We use a flexible automated grading system called Web-CAT to
assess student assignments, including the validity and
completeness of their own test cases. By building on existing
educational plug-ins for Eclipse, and adding our own plug-ins for
electronic submission and for unit testing support in C++, we are
able to use Eclipse as a portal to all the services our students will
need, allowing them to accomplish all their tasks entirely within
the IDE, from their project’s inception to its submission and
evaluation. Further, we are able to carry students through the
transition from Java programming to C++ programming within
this same environment.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming Techniques]: Object-
oriented Programming; D.2.5 [Software Engineering]: Testing
and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—C++.

General Terms
Languages, Verification.

Keywords
Test-driven development, test-first coding, electronic assignment
submission, Eclipse IDE, extreme programming, electronic
grading.

1. INTRODUCTION
Many educators believe that computer science students need to
learn more software testing skills. In fact, writing a test case

forces a student to articulate his or her understanding of how the
code is expected to behave—a hypothesis they are then going to
experimentally verify by executing the test. Encouraging students
to reflect on, express, and then verify their understanding will
help them learn more effectively.

At the 2003 OOPSLA Educator’s Symposium [6], we described
an approach to teaching software testing that will encourage
students to practice testing skills in many classes and give them
concrete feedback on their testing performance, without requiring
a new course, any new faculty resources, or a significant number
of new lecture hours. Our strategy centers on giving students
basic exposure to test-driven development (TDD) [1],
encouraging them to use it on all assignments, and then providing
an automated service that assesses student submissions on-
demand and provides feedback for improvement.

We have been using this approach in a number of our courses for
two and a half years. We introduce software testing in the first lab
assignment during the first week of classes in CS1, carry it
through the first three semesters of required courses, and are now
introducing it in some upper division courses. This experience
has been positive, resulting in a 28% reduction on average in bugs
per thousand lines of code for student work [7].

As our experience has grown, our efforts to provide more value to
students through tool support have also increased. This paper
describes the automated service we use to assess student code, and
the Eclipse-based support we provide for students in both our
Java and C++ courses to practice test-driven development and
receive feedback. By combining prior educational plug-ins for
Eclipse, including Gild [13] and DrJava [11], open-source plug-
ins for Checkstyle [3] and PMD [10], and two new plug-ins of our
own for electronic submission/feedback and for unit testing in
C++, we are able to use a single IDE to transition students from
one programming language to the other while seamlessly
maintaining support for software testing and rapid feedback.
Section 2 briefly describes Web-CAT, our automated assessment
system. Section 3 describes our submission plug-in, and Section
4 describes how the pieces are brought together for our Java
students. Section 5 describes our C++ unit testing plug-in, and
how the same environment is used to help students bridge the two
languages. Section 6 concludes with areas for future exploration.

2. WEB-CAT
From the very first programming activities in CS1, we give each
student the responsibility of demonstrating how much of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OOPSLA’05 Eclipse Technology exchange (ETX) Workshop,
Oct. 16–20, 2005, San Diego, California, USA.
Copyright 2005 ACM

required behavior he or she has implemented correctly. We
expect and require students to submit test cases for this purpose
along with their code, and assessing student performance includes
a meaningful assessment of how correctly and thoroughly the tests
conform to the problem. We rely on an automated assessment
tool to provide rapid, concrete, and immediate feedback.

The assessment tool we use is called Web-CAT, the Web-based
Center for Automated Testing [7,8]. Web-CAT is a web
application with a plug-in architecture that can provide a variety
of services for students. Its Grader plug-in provides a highly
configurable and customizable automated grading and assessment
service. The actions taken to process student submissions and the
nature of the feedback produced are fully customizable without
changing or restarting the web application, and can differ from
one assignment to the next.

Because of our interest in supporting TDD, we typically configure
our assignments on the Web-CAT Grader to emphasize testing.
Instead of focusing on the output of a student’s program, we focus
our grading on what is most valuable: the student’s testing
performance. After all, the student has already provided their own
evidence of how much behavior has been implemented correctly
in the form of their test cases.

Instead of generating a simple correctness score, we use Web-
CAT to assess the validity of the student’s tests—how well they
conform to the problem requirements—and give feedback about
which tests are incorrect. In addition, Web-CAT also assesses the
completeness of the student’s tests, giving an indication of how to
improve. Web-CAT also assesses the style and quality of the
student’s code, giving feedback about where improvements can be
made. Finally, these results from these separate facets are
combined into a single score for students.

We implement these assessments on the server end by relying on a
number of open-source tools. We use JUnit for expressing and
executing tests. We use Clover [4] to instrument Java programs
and measure code coverage while executing student tests. We use
Checkstyle [3] and PMD [10] for static analysis, both to assess
style issues and to spot potential coding problems. Finally, we
use ANT to manage the overall process.

3. ELECTRONIC PROJECT SUBMISSION
As a web application, Web-CAT allows students to log in and
upload submissions using a web browser. Because we use this
approach beginning in our CS1 course, streamlining the process
of packaging up a multi-file project, logging in, uploading files,
and confirming submissions was important. IDE integration was
desirable to eliminate as many mechanical errors from this process
as possible. It was also important to minimize the effort required
of students, since we are trying to encourage them to seek
feedback frequently and respond to the result they receive.

Our freshmen begin CS1 learning Java using BlueJ [2], which has
a flexible and powerful submission extension. Appropriate
configuration of the submission extension allows students to
submit BlueJ projects to Web-CAT using a single menu command
in their IDE, with results popping up in their web browser.

After CS1, however, students move to a more powerful IDE.
Because we use Java in CS2, our department uses Eclipse. While
a number of educationally oriented plug-ins for Eclipse exist

[9,11,13], we could not find an electronic submission plug-in that
was flexible enough to use in this context. As part of our efforts
to reduce both user error and the time spenr outside Eclipse
during development, we have developed a plug-in that minimizes
the amount of user intervention required to submit a project.
Based on our experiences with other electronic submission
systems, we had several goals in designing this plug-in:
1. The plug-in is for general use, and is not Web-CAT-specific.
2. The plug-in should support a wide (and easily extensible)

variety of transport methods for submissions, including e-
mail, FTP, HTTP, and HTTPS.

3. The plug-in should require minimal setup by students.
4. Submission targets (assignment definitions) should be

configurable remotely, without student intervention. Ideally,
multiple instructors in separate classes would not have to
coordinate to set up their own independent assignments.

3.1 Configuring Submission Targets
Before making a submission, the plug-in must be able to find
information about which submission targets are available, the files
that a proper submission should contain, and the method by which
the files will be delivered. To support goals the third and fourth
goals above, there is a single user-settable URL in the plug-in’s
preferences tab. Instructors give students this URL at the
beginning of the semester, and students can then “set and forget.”
The plug-in slurps submission target information from this URL
any time the student wishes to make a submission. This
information is provided in the form of an XML configuration file
written by the course instructor, who can post the file on the
course website or elsewhere as deemed appropriate. The XML
configuration file can indirectly include other XML configuration
files by URL as well. This allows a single department to set up
one URL for all students, with a department-level configuration
file that remotely includes a number of separate per-course
configuration files, each of which is under the control of a
different instructor in their own web space.
Further, the URL provided to students need not point to an actual
XML file. An alternative approach would be to point the
submitter plug-in to a script that generates the XML dynamically.
This can be extremely desirable because most automated grading
systems maintain project information in their own databases; a
script that translates this data into the form used by the plug-in
would eliminate the duplication of effort by the instructor,
reducing the likelihood of errors. This also allows for more
advanced organization of the available projects presented to the
user. For example, submission targets for which the due date has
expired could be hidden or segregated into a “Late Projects”
category, and this organization would occur automatically when
the plug-in requests the submission targets from the server.
The structure of the XML file allows the instructor to create a tree
of assignments and assignment groups. Settings at nodes higher
in the tree are inherited by their descendants unless overridden
deeper in the tree. An instructor for a Java course, for instance,
could specify in the root element that all project submissions
include files matching *.java and exclude those matching
*.class unless otherwise specified in a particular target.

A simple XML configuration file would look like this:

<?xml version="1.0" encoding="utf-8"?>
<submission-targets xmlns="http://web-
cat.cs.vt.edu/submissionTargets">
 <required pattern="*.java"/>
 <include pattern=”*.java”/>
 <exclude pattern=”*.class”/>

 <!-- submit by e-mail -->
 <assignment name="Project 1">
 <required pattern="*List.java"/>
 <transport uri="mailto:submissions@cs.vt.edu">
 <param name="subject"
 value="${assignment.name} by ${user}"/>
 <file-param name="submission"
 value="${user}.jar"/>
 </transport>
 </assignment>

 <!-- submit over the web -->
 <assignment name="Project 2">
 <exclude pattern="*.data"/>
 <transport uri="http://web-
cat.cs.vt.edu:9000/cgi-
bin/WebObjects.exe/Main.woa/wa/submit">
 <param name="u" value="${user}"/>
 <param name="p" value="${pw}"/>
 <param name="a" value="Project 2"/>
 <param name="d" value="VTEdAuth"/>
 <file-param name="file1" value="${user}.jar"/>
 </transport>
 </assignment>
</submission-targets>

3.2 Submitting Projects from Eclipse
Once the students have configured the plug-in, they can submit a
project by using one of the “Submit…” actions available in the
IDE, either from the “Project” menu or the Resource

Navigator context menu, as shown in Figure 1. This opens a
wizard that displays all the submission targets available as read
from the remote XML configuration file, as shown in Figure 2.
When a student selects a submission target and enters his or her
authentication credentials (if required by the remote system), the
project files will be packaged up and delivered to the target.
Many automated grading systems return a response when a project
is submitted, perhaps as an HTML page displaying the results.
Currently, the submitter plug-in supports response handling on a
per-protocol basis. If a protocol is designed to handle a response,
it returns a string that will be displayed in an embedded browser
window in the Eclipse workspace.

3.3 Design Considerations
The primary design goal of the electronic submission plug-in was
to create a framework that was robust but generic, and one that fit
the same mold of the standard Eclipse plug-ins. While our hope is
that most users will find the submitter useful as is, we also wish to
provide a way to add functionality easily using separate
extensions, rather than requiring deeper modifications of the
submitter itself.

The submission wizard and related action sets are contained in a
plug-in separate from the core submission engine, so users who
find the existing user interface unsuitable for their purposes can
remove the existing wizard plug-in and wrap a new interface
around the core. The core API itself is simplified for client use;
only three method calls are required to instantiate the engine,
create a submission target tree from the XML configuration file,
and finally to submit a project to one of those targets.

Figure 1: Submit projects directly from the IDE using a menu. Figure 2: Choosing an assignment within Eclipse.

Likewise, extension points are provided to allow users to write
packagers for other archive file formats, and to specify delivery
methods for additional URL scheme types, whether they be actual
protocols like http or “pseudo-protocols” to interoperate with
systems that communicate in some proprietary fashion. To use any
additional packagers and protocol handlers, the instructor need
only reference them by their Eclipse-style fully-qualified IDs in
the XML configuration file and ensure that the plug-ins
implementing the extensions are installed in their students’ copies
of Eclipse. The plug-in currently implements extensions for
packaging ZIP and JAR archives and delivering them via
http/https (POST), ftp, mailto, and file protocols.

4. TYING IT TOGETHER FOR JAVA
Our experiences with the submission plug-in and with Web-CAT
have been very positive. Eclipse also provides excellent support
for JUnit, which is central to our testing approach. To provide the
best educational support for our CS2 students using Eclipse,
however, we were also interested in integrating in best practices
regarding educational use of Eclipse at the introductory level.
After examining a number of available Eclipse projects for
undergraduate education, we adopted Gild [13] to bring a
simplified user interface to our students, including the DrJava
[11] plug-in for supporting interactive object manipulation.
In our experiences with students using Web-CAT, however, we
noticed a trend. While we encourage students to submit their
work often and to respond to the feedback they receive, two
patterns emerged. First, students do not submit code that they
know does not work—if any of their own test cases fail, they
struggle along fixing things on their own before submitting work
for assessment. In some cases, coding problems (improperly
declared constructors, misused variables, name hiding, etc.) that
would be directly flagged by Web-CAT’s static analysis tools
were the sources of errors, but students never received feedback
or a push in the right direction because they did not submit their
work. Second, we found that students often wrote their code
without proper formatting or documentation initially, and once
they submitted, the volume of diagnostic messages was
occasionally overwhelming.
The root cause in both cases was a significant delay between when
students introduced problems in their code and when they
received feedback about how to correct those problems. As a
result, in addition to using Gild and our submitter plug-in, we also
equipped students with the Checkclipse plug-in for Checkstyle,
and the PMD plug-in. Both plug-ins were configured with the
same checks used on Web-CAT, and set up to run each time a
project was compiled. Students now get all of their style and
formatting feedback each time they compile, and are better
equipped to incrementally fix these problems as they arise.

5. UNIT TESTING IN C++
While Eclipse has worked out well for our Java students in CS2,
as students move further into our curriculum they switch
languages to C++. Further, our undergraduate program involves
the use of Unix-style OSes beginning in the sophomore year, so
our students use g++ rather than Microsoft’s products. When
students begin learning C++ after CS2, we wish to continue the
practice of unit testing and maintain the support we have built up
for our introductory sequence.

Fortunately, Eclipse’s C/C++ Development Tools (CDT) allows
us to transition students from Java programming to C++
programming using the same IDE. Further, the portability of
Eclipse means that students can develop g++-targeted code on a
variety of platforms, even under Microsoft Windows. Our
submitter plug-in works for any Eclipse project, including CDT
projects. One missing capability, however, is the support that
Eclipse provides for JUnit—there is no equivalent support
appropriate for student use in C++.

We have chosen to use the CxxTest unit testing framework [5] for
our courses, based on its relative simplicity and ease of use. At
the core of CxxTest is a Perl (or Python) script that takes as input
a user-specified set of test suite header files. The script parses
each file, performing regular expression matches to determine if a
class derives from the test suite base class and to determine which
methods in the class are to be executed as tests. From this, a C++
source file is generated that contains the code to run the tests and
report any failures that may occur.

5.1 Integration with Eclipse
To facilitate the transition from Java to C++, we aimed to make
the CxxTest experience in Eclipse as similar as possible to that of
JUnit. The processing performed by CxxTest should occur
seamlessly from the viewpoint of the user, and the results should
be displayed in a view similar to that used by JUnit.
The initial versions of our CxxTest plug-in divided the build
process into two parts. First, an incremental builder collected the
test suites in the project and passed them to the CxxTest Perl
script. The generated C++ source file was then built by the
Managed Make process with the rest of the project. A second
incremental builder then executed the tests automatically after the
build and displayed the results to the student. By default, CxxTest
prints its results to standard output. The test runner parsed this
output and places markers in the source files to indicate which
tests, if any, failed.

This approach, while successful, came with some drawbacks.
First, it required students to have Perl properly installed on their
systems. While this was not a serious issue, it did introduce an
additional point at which students could experience problems.
Second, we only wished to pass files that contained test suites to
the CxxTest script. Several schemes were considered to address
this, the most feasible of which were either requiring a specific
file naming convention for test suites or isolating all test suites in
a predetermined subdirectory of the project. The latter choice was
deemed less intrusive.

5.2 Interfacing with CDT
The latest version of the CxxTest plug-in was designed to
eliminate the Perl dependency and more tightly integrate the C++
testing framework into the IDE. The incremental builders were
rewritten in pure Java to mimic the behavior of the standard
CxxTest Perl script.

Rather than requiring test suites to be contained in a specific
subdirectory, the builder navigates the project DOM exposed by
the CDT to determine which classes represent test suites,
regardless of their locations within the project. Nodes in the tree
are visited recursively until a compilation unit (representing a
header or source file) is found. For each class, if any, in a

compilation unit, the base class list is searched for an instance of
the CxxTest test suite class. If found, we descend further in the
DOM to collect any methods that match the signature of a test
method: void return value, no parameters, and a name that begins
with “test”. With an internal tree of test classes and methods
constructed, the builder generates a source file to execute the tests
in the same manner as the original CxxTest script.

The main CxxTest libraries were supplemented to add a result
printer that used an XML-based model that could easily be parsed
by the second incremental builder that runs the tests. When the
tests are executed, the results are displayed in a dedicated view
designed to resemble the JUnit results view, as shown in Figure 3.
The end result is simple and effective support for test-driven
development in C++, where unit tests are simple for students to
write, tests are re-run every time a project is compiled, and results
are as easy to see and interpret as with JUnit in Eclipse.

6. FUTURE WORK
A major extension that is planned for the electronic submission
framework would allow instructors to create specialized handlers
for responses returned by grading systems. Currently, only
HTML-based responses are supported. The new framework
would create a new extension point that users could implement.
Response handlers would be specified by ID in the XML target
configuration file. Responses from the remote system would then
be passed to a custom handler that could interact with the Eclipse
IDE as it sees fit. Possible uses for this would be to annotate
students’ source code based on evaluations made by the grading
system or to display students’ scores and other evaluation
information in a custom view.

Enhancements planned for the CxxTest plug-in include providing
a means for students to specify which tests should or should not
be executed, perhaps via a launch extension. Implementing a
launch extension would also help to decouple the test builder
from the test runner, for those instances when it may not be
desirable to automatically execute the tests after every build.

Our plug-ins are open-source, available from our Sourceforge site
at http://web-cat.sourceforge.net/.

ACKNOWLEDGMENTS
This work is supported in part by IBM under an Eclipse
Innovation Award and by the National Science Foundation under

grant DUE-0127225. Any opinions, conclusions or
recommendations expressed in this paper are those of the author
and do not necessarily reflect the views of IBM or the NSF.

REFERENCES
[1] Beck, K. Test-Driven Development: By Example. Addison-

Wesley, Boston, MA. 2003.
[2] BlueJ home page. http://www.bluej.org/
[3] Checkstyle home page. http://checkstyle.sourceforge.net/
[4] Clover home page. http://www.thecortex.net/clover/
[5] CxxTest home page. http://cxxtest.sourceforge.net/
[6] Edwards, S.H. Rethinking computer science education from

a test-first perspective. In Addendum to the 2003 Proc. Conf.
Object-oriented Programming, Systems, Languages, and
Applications, ACM, 2003, pp. 148-155.

[7] Edwards, S.H. Improving student performance by evaluating
how well students test their own programs. J. Educational
Resources in Computing, 3(3):1-24, Sept. 2003.

[8] Edwards, S.H. Using software testing to move students from
trial-and-error to reflection-in-action. In Proc. 35th SIGCSE
Tech. Symp. Computer Science Education, ACM, 2004, pp.
26-30.

[9] Mueller, F. and Hosking, A.L. Penumbra: An Eclipse plugin
for introductory programming. In Proc. 2003 OOPSLA
Workshop on Eclipse Technology eXchange, ACM, 2003,
pp. 65-68.

[10] PMD home page. http://pmd.sourceforge.net/
[11] Reis, C. and Cartwright, R. Taming a professional IDE for

the classroom. In Proc. 35th SIGCSE Tech. Symp. Computer
Science Education, ACM, 2004, pp. 156-160.

[12] Spacco, J., Hovemeyer, D., and Pugh, W. An Eclipse-based
course project snapshot and submission system. In Proc.
2004 OOPSLA Workshop on Eclipse Technology eXchange,
ACM, 2004, pp. 52-56.

[13] Storey, M.-A., Damian, D., Michaud, J., Myers, D., Mindel,
M., German , D., Sanseverino, M., and Hargreaves, E.
Improving the usability of Eclipse for novice programmers.
In Proc. 2003 OOPSLA Workshop on Eclipse Technology
eXchange, ACM, 2003, pp. 35-39.

Figure 3: The dedicated CxxTest view mimics the one for JUnit.

