
Study of Novice Programmers using Eclipse and Gild

Peter C. Rigby
CHISEL Group

Dept. of Computer Science
University of Victoria

pcr@uvic.ca

Suzanne Thompson
CHISEL Group

Dept. of Computer Science
University of Victoria

zazam@uvic.ca

ABSTRACT
In this paper we discuss a pilot user study that compares the use
of two integrated development environments (IDEs), Eclipse and
Gild, by novice programmers. Gild is a perspective for Eclipse
that is intended to be more suitable for first-year students who are
learning how to program in Java. This study focuses on qualitative
and quantitative measures; the quantitative measures include: effi-
ciency, effectiveness, satisfaction and understanding. Two statisti-
cally significant results are obtained from the satisfaction measure,
in particular: the frustration level and the overall level of satisfac-
tion. The mean differences for the remaining measures indicate that
Gild was more suitable for novices than Eclipse. Qualitative analy-
sis yields suggestions for improvement for both interfaces and also
identifies areas of success.

Keywords
Novice, Integrated Development Environment, user study

1. INTRODUCTION
The Gild (Groupware-enabled Integrated Learning and Develop-
ment) environment, a perspective of the Eclipse IDE, was created
to be a more appropriate development environment for novice users
[4]. Gild consists of a teaching perspective and a student perspec-
tive. The teaching perspective allows instructors to create course
units that can be easily imported by students. This perspective also
provides basic assignment grading support. For students, the Gild
environment reduces and simplifies the menu and toolbar contents,
debugger, code editor, task/todo list, and the import and export pro-
cess; Gild also provides an integrated Web browser, enforces clear
steps for the save/build/run process, and allows students to run frag-
ments of their code without a main class through JPages. Addi-
tional novice-friendly error descriptions are offered for common
compilation errors.

Since Gild’s deployment in January 2003, it has been used in Canada
(University of Victoria), in the USA (Berkeley, Virginia Tech and
the University of Washington), in Germany (Eberhard Karls Uni-
versität Tübingen), and possibly other institutions that have not

contacted us. At the University of Victoria it has been successfully
used in first-year introductory programming courses. Feedback
from students has been elicited in the form of questionnaires, in-
terviews, and an ethnographic study; however, a quantitative com-
parison between Gild and Eclipse had yet to be completed. If it can
be empirically shown that Gild is indeed more useful for novice
programmers, this would give weight to the claims made on its be-
half and potentially lead to greater acceptance. We have conducted
an initial experiment that compares Gild and Eclipse from a novice
programmer’s perspective based on efficiency, effectiveness, satis-
faction, and understanding.

2. HYPOTHESIS
It is hypothesized that Gild will be more efficient, effective, and
satisfactory when compared to Eclipse by novice programmers. It
is also expected that Gild will lead to a better understanding of the
programming environment.

3. SUBJECTS
A total of six subjects voluntarily participated in this study. Sub-
jects were all students enrolled in CSC 110, an introductory Java
programming course, at the University of Victoria. Students were
recruited from CSC 110 because they had a basic understanding of
Java, but few had any experience with advanced IDEs. Students
used TextPad for their coursework, which provides basic editing
functionality. All six subjects were enrolled in their first semester
of their first year at the University of Victoria, and all had just re-
cently graduated from high school. Each subject was taking CSC
110 because it was required by their programs; four subjects were
computer science students, while two were physics students. The
subjects all had at least two months of Java programming experi-
ence and were beginning to explore IDEs.

4. DESIGN
For this experiment a repeated measures design was used, that is,
subjects used both Eclipse and Gild, cancelling individual skill dif-
ferences. With a small sample size this design provides more statis-
tical power than an independent samples design; in an independent
samples design differences in individual skill would have a greater
impact on the results. Subjects were equally and randomly assigned
Eclipse or Gild as their initial IDE.

Separate installations of Gild and Eclipse were placed on the same
computer. This was done because the Gild plug-in alters the Eclipse
environment (e.g., new buttons on the task bar.) Camtasia (with
audio recording) was used to record the user study session. There
were only the two principal researchers in the room with the subject
during the user study.

Subjects were asked to complete several tasks from a modified as-
signment that they had completed at the beginning of the current
semester. It was hoped that basing the code on a class assignment
would reduce the learning time of the code itself, thus lessening the
impact of individual code understanding abilities; this focused the
experiment on the IDE. There were three tasks in a set to solve for
each IDE: a compilation problem, a logical problem, and an extra
coding assignment. The tasks were always presented in the same
order: set one tasks first, set two tasks second. Although the sets
of tasks were different from each other, they had the same level of
difficulty.

5. PROCEDURE
Subjects were asked to set aside 90 minutes for this user study. To
begin, a background (entry) questionnaire was asked by one of the
researchers. The subject was shown a simple program previously
created, and was walked though the steps that needed to be com-
pleted for the code to run. After this, the subject was shown how to
use the debugger. None of the subjects had any previous experience
with debuggers. The subject was shown how to set breakpoints,
what the different debugger views were, and how to step through
the code. The subject was shown how to run the program again.
This was necessary since in Eclipse the subject needed to know
that the run configuration did not have to be created again; rather,
the run button could be used. Users were not shown how to create
new files, the problem view, or told anything about how Eclipse and
Gild informed users of errors. The subject was directed to a list of
the three tasks that were written up as an HTML page. The sub-
ject was given 25 minutes to try to complete the tasks for the first
IDE. After 25 minutes had passed, the subject completed the under-
standing questionnaire; subjects could check their answers with the
IDE. The subject was then asked to complete a satisfaction ques-
tionnaire.

The subject was provided with a tour of the second IDE through
the use of the same simple program. They were given 25 minutes
to complete the second set of tasks. At the end of 25 minutes they
were again asked to complete the understanding questionnaire and
a satisfaction questionnaire.

6. MEASURES AND VARIABLES
ISO 9241-11 [1] defines usability as “The effectiveness, efficiency,
and satisfaction with which specified users achieve specified goals
in particular environments.” These three measures are often the fo-
cus of HCI-related experiments and are used in this experiment.
Frøkjær et al. [3] found that there was at most a weak correlation
between these three measures. Therefore, this experiment evalu-
ated these three dimensions independently. This experiment was
also intended to measure the subject’s understanding of the IDE
and the programming process.

6.1 Efficiency
ISO [1] defines efficiency as “the resources expended in relation to
the accuracy and completeness of goals achieved.” Task completion
time was the only resource measured in this experiment. For each
IDE we considered three tasks: fixing the compiler error, fixing a
logical error, and an extra coding assignment.

6.2 Effectiveness
ISO [1] defines effectiveness as “the accuracy and completeness
with which specified users can achieve specified goals in particular
environments”. Completeness was measured based on the subject’s

correct or incorrect completion of each given task. The granularity
was to the quarter of a mark since some subjects came close to
the correct answers within varying degrees. A good measure of
accuracy was difficult to establish.

Accuracy was measured by the number of wrong turns (i.e. incor-
rect clicks) taken by the subject. Counting the number of incorrect
clicks can be used to capture errors since the subjects did not use
keyboard shortcuts (besides copy and paste) when working within
the IDE. The question that determined if an action was an error
was: Does the user’s click help him or her accomplish the current
task? If the answer was no, then that click was considered to be an
error. Scores for accuracy were completed by independent trained
evaluators.

Things that are not considered to be errors include coding errors,
the long way of doing a task, and any hovering and reading. Ex-
amples of errors include: selecting the incorrect menu for a desired
action, running an application when a compilation error is present,
and the repeat undoing and redoing of an action. Note that once a
wrong path has been taken the subject has a new goal: to get out
of this wrong path. For example, if they run the code when there is
an error they will be asked if they wish to run it anyways; if they
select “cancel” they have left the incorrect path, but if they select
“ok” then they have performed another error.

Questions and hints are also worth noting, and are considered to
be similar to errors, but are counted independently. It was not sug-
gested that subjects ask the investigators questions; although ques-
tions would be answered and hints were given when a subject be-
came exasperated with the current task.

6.3 Satisfaction
ISO [1] defines satisfaction as “the comfort and acceptability of the
work system to its users and other people affected by its use.” Satis-
faction was measured by a five point Likert scale. (Usually “Agree”
to “Disagree”.) Having the satisfaction questionnaire following
the completion of the understanding questionnaire may have led to
some bias due to the subject’s ability to answer the understanding
questions.

6.4 Understanding
Understanding the programming environment and the programming
process is essential to the success of a novice programmer. Effi-
ciency, effectiveness and satisfaction fail to measure understand-
ing. Bohlen et al. [2] use the measure of achievement instead
of efficiency in their study of end-users learning new software.
Achievement is measured through test, practicum, and assignment
scores. Although it would be ideal to measure achievement as per
Bohlen et al., it was not feasible to do so in this study. The study
used a related measure, the subject’s understanding of the IDE. The
questionnaire consisted of simple true/false questions that were as-
signed to each subject twice throughout the experiment: after using
the first IDE, and after using the second IDE. The qualitative results
will be discussed first followed by the quantitative results.

7. QUALITATIVE RESULTS
In this paper the most interesting qualitative results are discussed.
Due to the nature of the assignments given, that is, the program
would block waiting for input, there were problems that came to
light that had not been encountered before. It should be noted that
the assignments included a Keyboard.java file that was also sup-
plied to the subjects in their class assignment; this file provided

a simple way to get input from the keyboard. Subjects were not
required to know how the keyboard class was implemented; the
investigators did not alter the usage of this file in any way.

7.1 Gild-specific results
Although Gild has a relatively simple interface, there were some
problems encountered by subjects. When code is executing (run-
ning) or being debugged in Gild, the background of the code editor
pane changes from a white colour to a light yellow colour to indi-
cate the change in the state of the IDE. Some subjects may have be-
lieved that the yellow background colour was only associated with
debugging. After subjects set a breakpoint and went to debug the
code, the program would eventually block, waiting for input. Gild
always implicitly sets a breakpoint on the first line of code to be
executed, so subjects would step through their code quickly, trying
to get to their first breakpoint. Several subjects did not understand
why the code was not reaching their first breakpoint, which was
almost always located below the first block for input. A possible
solution for this may be to flash the console window when the ap-
plication is waiting for input.

Related to subjects’ understanding of compilation errors, was their
use of the “extra help” for compiler errors that is provided to users.
Although subjects were told that there was a compilation error in
the program, few initially compiled the program. A hint was given
for subjects to look at the “Problem View” window, but since few
subjects compiled the code before going to look at the problem
view, no compiler error messages were present. Further to this, few
subjects took the time to fully read the possible solutions for the
particular compiler errors.

Another problem encountered by two Gild users was that when
they searched in the help for a solution for their particular problem,
they ended up searching the help for all of Eclipse. The results re-
turned referred to far more complicated examples then the subjects
could understand, although one subject did find the answer they
were looking for by chance. It is recommended that the help menu
in Gild makes the help for Gild more easily accessible and more
prominent then the help for Eclipse; searching for help should only
search within the help for Gild.

7.2 Eclipse-specific results
Some subjects were quite apprehensive about configuring Eclipse
to run their Java application, despite a demonstration by the inves-
tigators on how to do this. No subjects ran into major troubles with
this process, though many kept running their programs though the
Run menu instead of using the run or debug icon shortcuts.

A major difficulty subjects had with Eclipse was the use of the
debugger. Like in Gild, subjects would set a breakpoint, but the
application would block for input before switching to the debug
perspective. What was happening was that the application would
run, and then when a breakpoint was encountered Eclipse would
prompt subjects to switch to the debug perspective. Subjects would
then, in confusion, either debug the program again (a new thread
of execution) or switch to the debug perspective. The two options
were often combined by subjects in interesting and creative ways.
Few subjects noticed that the program was blocking. If the subject
chose to switch over to the debug perspective, the “Console” win-
dow would not show that the program was blocking - this would
only be shown in the Java perspective. This led to subjects run-
ning another debug thread within the debug perspective, and often

double-clicking on breakpoints in an effort to get Eclipse to run the
code from the breakpoint.

There was also an additional problem only encountered in Eclipse
whereby “ghost projects”, i.e., the Hello World project that was
used to demonstrate how to use Eclipse, would surface occasionally
despite being closed. In one instance there was an old terminated
thread belonging to the Hello World application that surfaced in
the debug perspective. It is recommended that Eclipse remove all
references to closed projects.

7.3 Results for Gild and Eclipse
A major incorrect step that many subjects did in both Eclipse and
Gild was to try to run code that they knew contained a compilation
error. Few subjects wanted to take the time to read through the pro-
gram and understand what was wrong; perhaps this was due to the
time constraint and the number of tasks that they felt they needed
to accomplish. The investigators do not believe that the subjects
felt any more rushed than when usually doing an assignment. It
is recommended that Gild prevent code from being executed when
there is a visible compilation error. Also, subjects made a habit of
following the suggestions provided by the compiler error messages
literally. For example, the compiler told subjects to delete a token
when in fact a bracket needed to be added.

Subjects had difficulty in Eclipse and Gild with locating the termi-
nate button. As previously noted, in Eclipse subjects would end up
with many threads of execution running, though Gild did not allow
this; therefore subjects were forced to find the elusive terminate
button in Gild. It is recommended that the terminated button be
made more visible in both environments. One subject commented
that Gild was less intimidating than Eclipse since all relevant win-
dows were visible at once. The subject felt that the layout was
good.

8. QUANTITATIVE RESULTS
The purpose of this study was to provide an experimental compari-
son of Eclipse and Gild as used by novice programmers. The quali-
tative results provide insight into how novices use the two tools and
suggest possible improvements. Eclipse and Gild were compared
quantitatively based on the measures of efficiency, effectiveness,
satisfaction, and understanding. The mean values for these mea-
sures were in the predicted direction, but none were statistically
significant (see Table 1), which was likely due to a small sample
size (N = 6). Interestingly, when the individual questions on the
satisfaction questionnaire were compared, two statistically signifi-
cant results were obtained (see Table 2 below). The results appear
promising, but a larger study would be required to show that Gild
has achieved its goals.

8.1 Efficiency
Efficiency was measured in terms of time required to complete all
tasks in the set for an IDE. Since many of the subjects did not com-
plete all of the tasks, a composite measure (time divided by the
number of tasks completed) was used to indicate how many tasks
were completed in the time the subjects used. A low score indi-
cates that subjects finished many tasks quickly. Gild scored 6.26
units lower than Eclipse (Table 1). This result is not statistically
significant (p = 0.184). On average subjects took 4.17 minutes less
when using Gild than Eclipse. This trend (p = 0.159) indicated
that the simplified, one-perspective Gild interface allowed users to
navigate quickly through the IDE; allowing them to complete their

Table 1: Results of a paired t-test comparing efficiency, ef-
fectiveness, satisfaction, and understanding for novice users of
Eclipse and Gild. *measures composing efficiency, ** measures
composing effectiveness

Measures Mean
for
Eclipse

Mean
for Gild

Mean
Diff.

Sig. (2
tailed)

Time* 24.50 20.33 4.17 0.159
Time / Com-
pleted*

16.85 10.59 6.26 0.184

Tasks Com-
pleted**

2.13 2.29 -0.17 0.102

Questions** 3.33 2.00 1.33 0.520
Errors** 26.50 19.67 6.83 0.332
Satisfaction 24.00 27.00 -3.00 0.226
Understanding 5.83 6.83 -1.00 0.111

tasks more quickly than when using the more complex Eclipse IDE.
The increased efficiency may also be due to less time lost search-
ing for the correct options within the environment. The additional
composite measure that is based on time and number of tasks com-
pleted did not reveal any additional information.

8.2 Effectiveness
Three measures were used to assess effectiveness: the number of
questions or hints the subject asked or was given, the number of
errors the subject made, and the number of tasks the subject com-
pleted correctly. No measure achieved statistical significance, though
the results were in the predicted direction.

The number of tasks completed by subjects using Eclipse and Gild
were close and approached statistical significance (p = 0.102). The
mean difference is only -0.17, which is too small to be significant
since the assignment of marks was done in increments of 0.25. Ide-
ally the experiment would have only had subjects who had never
used an IDE before. However, some subjects were admitted to the
sample even thought they had previous experience with IDEs. This
skill difference between subjects meant that some subjects were
able to solve all the tasks correctly, while other subjects only solved
a few tasks correctly; this may explain why statistically significant
results were not achieved.

The number of questions asked and hints given to a subject was de-
pendent on the subject’s personality. There were some subjects that
seemed to lack confidence and would ask many questions, while
others would persevere and would sometimes require a hint. Ta-
ble 1 shows that the mean difference for questions (and hints) asked
indicates that on average subjects using Gild asked 1.33 fewer ques-
tions than subjects using Eclipse. This result was not statistically
significant (p = 0.520) and would require a larger sample size to
eliminate between subject differences.

The number of errors was measured by the number of wrong clicks
(see criteria in Section 6.2). As was the case with the number
of questions asked by subjects, some subjects made many clicks,
while other subjects thought more and clicked less. Subjects made
on average 6.83 fewer errors when using Gild than when using
Eclipse; this result is not statistically significant (p = 0.332). A
larger sample size would reduce the impact of subject differences.
A more effective change would be to adjust the criteria to look at
higher level errors; although, higher level errors would likely be

Table 2: Results of a paired t-test comparing individual satis-
faction questions.

Question
Num.

Mean for
Eclipse

Mean for
Gild

Mean
Diff.

Sig. (2
tailed)

1 3.50 4.17 -0.667 0.102
2 3.00 3.83 -0.833 0.042
3 3.83 3.83 0.000 1.000
4 3.83 3.67 0.17 0.771
5 2.83 3.50 -0.667 0.175
6 3.50 3.83 -0.333 0.661
7 3.50 4.17 -0.667 0.025

more subjective, making it difficult to train independent scorers.

8.3 Satisfaction
The level of satisfaction the subjects experienced while using the
tool was measured with a five point Likert scale. The minimum
possible score is five and the maximum possible score is 35. Eclipse
received a mean score of 24, while Gild received a mean score of
27 (Table 1). Although the difference was not statistically signif-
icant (p = 0.226), the mean difference of three points was in the
direction predicted. Table 2 presents a paired t-test of each individ-
ual satisfaction questions and reveals that questions two and seven
are statistically significant. Since the overall questionnaire did not
reach statistical significance, but individual questions did, it is use-
ful to discuss each question. The questions are discussed in order
of decreasing statistical significance.

8.3.1 Question 7 “What was your overall level of
satisfaction using this tool?”

The satisfaction questionnaire was developed to look at different
elements of satisfaction. This final question asked in a direct man-
ner how satisfied the subjects were with the tool. Eclipse received a
mean score of 3.50 which indicates that subjects were between neu-
tral and moderately satisfied with Eclipse. Gild received a mean
score of 4.17 which means that subjects were slightly more than
moderately satisfied with Gild. A score of 5 would have implied
that the tool was satisfactory. This result is statistically significant
(p = 0.025) and implies that novices are more satisfied with Gild
than with Eclipse. This is reflected in the qualitative results (see
Section 7).

8.3.2 Question 2 “What was your frustration level
using this tool?”

On average subjects experienced a “moderate” level of frustration
using Eclipse (3.00) and a “low” level of frustration using Gild
(3.83). This result is statistically significant (p = 0.042) and was
noticed by the experimenters (see Section 7). Novices must learn
many new complex concepts. If a novice is frustrated by the IDE
then learning the concepts taught in class will be more difficult.
The level of frustration experienced by the novice must be kept low
to make the learning experience fruitful.

8.3.3 Question 1 “I feel that the tool helped me with
my tasks.”

Table 2 shows a trend (p = 0.102) that subjects found Gild (4.17)
more helpful with completing tasks than Eclipse (3.50). The re-
sult indicates that subjects probably found Gild more intuitive and
simple to use and, therefore, more helpful when completing the as-
signed first-year programming tasks.

8.3.4 Questions 3, 4, 5 and 6
Questions three through six did not produce significant results or
trends and will be discussed in terms of their mean values (p >
0.15) see Table 2. Question five (p = 0.175), “I feel intimidated
when using the tool.” indicated that subjects were more intimidated
by Eclipse (2.83) than by Gild (3.50). Question six (p = 0.661), “I
would use this tool again.” received a mean score between “neu-
tral” and “mildly agree” which indicates that both Gild (3.83) and
Eclipse (3.50) should improve their support for novices. Question
four (p = 0.771), “I feel comfortable to explore the tool and try new
features.” revealed that subjects felt relatively comfortable explor-
ing new features, Gild (3.67) and Eclipse (3.83). However, subjects
used each IDE for only 25 minutes, which does not leave much ex-
ploration time. With such a large p-value the difference been Gild
and Eclipse is negligible; the means are not in the predicted di-
rection. Question three (p = 1.000), “I find the debugger helpful.”
received the same mean score (3.83) for both Eclipse and Gild.
However, subjects had never used a debugger and found that any
debugger was an improvement over no debugger, a more compar-
ative question would be “I find the debugger easy to use.” Qualita-
tively, subjects had more difficulty with the Eclipse debugger (see
Section 7).

8.4 Understanding
How well a subject understood an IDE was measured using a true/false
questionnaire. The questionnaire consisted of 8 questions. Table 1
shows that after using Eclipse subjects had a mean score of 5.83 out
of 8. After using Gild, subjects had a mean score of 6.83 out of 8.
On average, subjects answered 1 more question correctly after us-
ing Gild than after using Eclipse. This result approached statistical
significance with p = 0.111.

Question two, “The IDE compiles code when it is run”, was the
question most often answered incorrectly. It was answered incor-
rectly by five (out of six) subjects using Eclipse, but was answered
incorrectly twice by subjects using Gild. In order to improve the
novice’s understanding, Gild removes many of the shortcuts that
are available in Eclipse. For example, in Gild, code must be sepa-
rately saved and compiled (built) so that the novice understands that
these two actions are distinct; in Eclipse code is compiled when it
is saved (by default).

9. RECOMMENDATIONS
In this section, recommendations are given for both IDEs and for
conducting future studies. From the qualitative analysis it was
noted that Eclipse’s debugger and run configurations were particu-
lary confusing for subjects. Although not all subjects were intim-
idated by these features, their interactions with this functionality
did not indicate a full understanding of what was occurring. Gild
is designed to simplify Eclipse, but Gild was not free from usabil-
ity issues. It is recommended that the terminate button be made
more obvious in both environments. It is also recommended that
developers of Eclipse consider the needs of novice users and pro-
grammers. The underlying plug-in architecture of Eclipse lends
itself to extension, removing existing functionality is less elegant;
this has complicated the development of Gild. Making an IDE more
comprehensible to novice and intermediate programmers should be
considered as an investment since they are the next professional
programmers. The ability to simplify and customize the interface
will likely help novice users accept the Eclipse IDE. Ideally, Gild
would not exist: Eclipse would be customizable to the point where
it could resemble Gild.

The quantitative results are encouraging as two statistically signif-
icant results were obtained and the mean differences for all main
measures were in the predicted directions. It is likely that with
slight modifications to the measures and an larger sample size,
more statistically significant results could be obtained. The mea-
sure of effectiveness produced the least interesting results (see Ta-
ble 1). Effectiveness was measured by the number of tasks com-
pleted, number of questions asked and hints given, and number of
errors made the latter two measures require modification. It is rec-
ommended that subjects not be allowed to ask questions or receive
hints as certain personality types will be more likely to ask ques-
tions than others types. The number of errors was measured using
a criteria developed for this experiment that was based on mouse
clicks. Since mouse clicks do not capture high-level errors and do
not differentiate error types (e.g., on the basis of severity), it is rec-
ommended that a criterion for classifying high-level errors be de-
veloped and that the criteria for low-level errors be further refined.
One of the original goals of the Gild project was to understand how
novices use an IDE, not just how novices use Eclipse. If a future
study were to be conducted, the measures should be mapped to the
individual requirements of Gild with the goal of verifying these re-
quirements.

10. CONCLUSION
This study provides a first attempt to experimentally compare how
usable and useful two IDEs are for novice programmers. The hy-
pothesis, which operationalizes the three standard ISO measures,
that Gild will be more effective, efficient, satisfactory, and lead to
greater understanding when compared to Eclipse by novice pro-
grammers, appears to have merit. The frustration level and the over-
all level of satisfaction of subjects produced statistically significant
results. Additionally, the mean differences of all other measures,
time, time divided by tasks completed, tasks completed, questions
asked and hints given, number of errors made (as per the criteria
developed for this experiment), a satisfaction questionnaire, and an
understanding questionnaire, were in the predicted direction. The
qualitative results provided insight into novices’ mental model and
highlighted some interaction design issues. A future study with a
larger sample size will be required before this hypothesis can be
accepted or rejected.

11. ACKNOWLEDGEMENTS
Our thanks to Margaret-Anne Storey, the CHISEL group, Laura
Young, Jody Ryall, and the study participants for their help with
this user study.

12. REFERENCES
[1] Iso 9241-11:1998 ergonomic requirements for office work with visual

display terminals (vdts) - part 11: Guidance on usability, 1998.

[2] G. A. Bohlen and T. W. Ferratt. The effect of learning style and
method of instruction on the achievement, efficiency and satisfaction
of end-users learning computer software. In SIGCPR ’93:
Proceedings of the 1993 conference on Computer personnel research,
pages 273–283, New York, NY, USA, 1993. ACM Press.

[3] E. Frøkjær, M. Hertzum, and K. Hornbæk. Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated? In CHI
’00: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 345–352, New York, NY, USA, 2000. ACM
Press.

[4] M.-A. Storey, D. Damian, J. Michaud, D. Myers, M. Mindel,
D. German, M. Sanseverino, and E. Hargreaves. Improving the
usability of eclipse for novice programmers. In eclipse ’03:
Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange, pages 35–39, New York, NY, USA, 2003. ACM Press.

