
eAssignment - A Case for EMF

Marcel Bruch Christoph Bockisch Thorsten Schäfer Mira Mezini

Software Technology Group
Darmstadt University of Technology, Germany

{bruch,bockisch,schaefer,mezini}@st.informatik.tu-darmstadt.de

ABSTRACT
Developing Eclipse plug-ins often involves the creation of
data structures and corresponding data processing code. In
developing eAssignment, an Eclipse-bases application to sup-
port electronic programming exercises, we identified several
issues with implicit models of data structures and hand-
written code needed to access them. In this paper, we report
on our experiences of using the Eclipse Modeling Framework
to overcome these shortcomings.

Keywords
Eclipse, Eclipse Modeling Framework, eAssignment, course-
ware, code generation

1. INTRODUCTION
As nearly every application, Eclipse plug-ins involve data,

whose model is either implicitly encoded in the source code
or explicitly defined in data modeling languages such as
UML [5] or XML Schema [9]. For instance, often a plug-
in is used for the management of domain entities, it is cus-
tomizable and thus has to model and persist user proper-
ties, or it communicates with other applications by means
of pre-defined data structures. Our experiences from devel-
oping Eclipse plug-ins suggest the following requirements for
modeling and accessing data structures:

Explicit model Data should be modeled explicitly. Ex-
plicit models help to describe what an application is
supposed to do at a higher level of abstraction than
code does. Furthermore, such models can be used to
generate (parts of) the implementation code.

Consistency Consistency between the model and the im-
plementation classes is crucial. Code that is concerned
with data handling, i.e., storing, modifying, retrieving,
and deleting data entities, is often scattered across dif-
ferent modules. For instance, the data for the user
preferences is used in two places: in the preference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eclipse Technology eXchange Workshop at OOPSLA 2005 San Diego, USA
Copyright 2005 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

pages where users can edit the preferences as well as in
the plug-in’s core functionality itself. Especially when
following a fast-prototyping approach, developers have
to update those locations often, because model changes
occur frequently.

Type-safe data access Frameworks that support storing
and retrieving data such as Eclipse often provide a very
general API to support flexibility in defining generic
storing and retrieving functionality — unfortunately,
at the cost of loosing type-safety. For instance, devel-
opers can read data from the preference store, but have
to make sure that they use the right type. Erroneous
behavior can only be detected at runtime.

In this paper, we report on our experiences with using
the Eclipse Modeling Framework (EMF) [2] to meet these
requirements in developing eAssignment. This is an Eclipse
plug-in for supporting teachers and students in managing
programming assignments of computer science courses. Set-
ting up, distributing, solving, and submitting programming
assignments often imposes some “accidental overhead” on
both, teachers and students. Teachers need to administrate
students and student groups, provide resources, such as li-
braries, or test classes, distribute the project artifacts to
students, and evaluate the returned projects by running dif-
ferent tests, including those that concern the code quality.
Students need to install the needed infrastructure, work on
the assignment and send the results back to the teacher.
Much of this effort does not directly contribute to pedagog-
ical goals of the assignment, especially for technology heavy
projects. However, some of these tasks can be automated –
and this is the goal of the eAssignment [6] project. Its con-
crete features include support for project administration and
generation, administering student groups, automatic testing
of solutions, etc.

In the context of the eAssignment application, we followed
a generative programming approach to cope with the issues
presented above: We used the Eclipse Modeling Framework
(EMF) [2] to generate various data models. EMF was chosen
because it (a) provides a lightweight, pragmatic approach to
modeling with very low entry cost and is thus suitable for
rapid prototyping, (b) unifies key technologies such as Java
and XML, and (c) integrates well into Eclipse.

The EMF framework proved very useful in the develop-
ment of eAssignment. In some cases, explicit data models
have been already available in a kind of schema, e.g., as
Eclipse XML Schema Definition files. In the other cases,
the modeling effort was very low.

We used EMF’s code generation facilities to generate EMF
models based on the aforementioned data models. Moreover,
we used EMF’s introspection capabilities to write generic
components that operate on EMF models. The benefits of
this approach are twofold: (a) the implementation is auto-
matically synchronized with the model and (b) using the
type information from the model enables us to guarantee
type-safe access to the data.

In this paper we discuss on three applications of EMF
to facilitate the use of different Eclipse by means of eAs-
signment as case study. First, we have written a generic
component that builds a graphical user interface for editing
an EMF model. Second, we used EMF to store and retrieve
arbitrary data models using the Eclipse preference store.
Third, we applied EMF to Eclipse’ extension point mech-
anism. We generate an EMF model based on an Eclipse
XML Schema Definition. This model is used to generate
the corresponding descriptor classes as well as an input for
a generic parser component that obtains all contributions
for an extension point.

Because EMF is heavily used by an increasing number
of Eclipse projects (e.g., VE [11], UML2 [10] and the IBM
WebSphere Studio product family [12]) and the APIs men-
tioned above are used by most plug-ins, we assume that
other plug-in developers can benefit from our experiences.
Moreover, we have released our EMF utilities for Eclipse via
our project website [6], so that the Eclipse community can
use them.

The remainder of this paper is organized as follows. In
the next section we provide an overview of the eAssignment
plug-in. Then, we give a short introduction to the Eclipse
Modeling Framework in Section 3. Section 4 presents a case
study covering the usage of EMF in our eAssignment appli-
cation. In Section 5 we summarize.

2. EASSIGNMENT
In this section we present eAssignment which led us to

developing the EMF utilities. Later we will use examples
from the implementation of eAssignment to illustrate our
requirements and how they are met by our implementation
with EMF.

Programming courses are an essential part of a computer
science curriculum. For instance, in a first programming
course students learn basic concepts of computer science,
while graduate students can take courses covering e.g., soft-
ware component technologies. In both cases, programming
exercises typically accompany the lectures to augment them.
An exercise is made up of several single assignments. Unfor-
tunately, an assignment requires a large effort from teachers.
First, it is often necessary to provide some resources, such
as libraries or test classes. The assignment projects are then
distributed to and modified by the students. After accom-
plishing the assignment, they send the results back and the
teacher has to test the submission, give the students a feed-
back and keep hold of the results. To reduce the effort and
improve the handling of assignments we are developing eAs-
signment [6], a set of plug-ins for the Eclipse IDE. In the
following, we list the features of our product, present the
typical workflow for an assignment project, and report on
our experiences of the first application of eAssignment.

2.1 Features
From our experiences with programming exercises, we de-

rived the following features to simplify and standardize ad-
ministration tasks for both, students and teachers.

Project generation Teachers can generate an assignment
project by creating a regular Eclipse project and set up
the roles the resources play. For instance, a resource
can set to be read-only, only visible to teachers, or as
modifiable by students. This information is then used
to create the assignment projects for the students.

Bidirectional distribution Teachers can upload assign-
ment projects to a server. The students can download
them directly into the Eclipse IDE, process them and
submit their solution by uploading their projects to
the server. Teachers can then import all student sub-
missions into their IDE.

Automatic processing It is possible to execute tests or
checks for e.g., implementation restrictions automati-
cally. This execution can take place inside the students
IDE (for instance to avoid submitting solutions with
compile errors), as well as in the teachers IDE (e.g., to
see if the solution functions properly).

Administration The administration module enables teach-
ers to keep track of students, exercise groups, and the
results for each assignment and student.

The first two features are already implemented, and we are
currently working on the implementation of the latter two.
For the future, we have planned two additional features.
First, we want to provide cross-review capabilities. Based
on the distribution facility, this feature enables students to
review solutions of their fellows. Second, we want to use the
automatic tests and checks to generate reports sent out to
the students to improve the awareness of their mistakes.

The different users of eAssignment, i.e., teachers and stu-
dents, may use different kinds of functionality. For example,
only students can submit solutions, while publishing assign-
ment projects is restricted to teachers. But, there are also
some functions used by both user groups, e.g., the setup of
the server to be used. To allow flexible construction of ver-
sions for the different users, the project is divided into five
plug-ins. The Core plug-in provides common functionality
to be used by all user groups. The Student plug-in pro-
vides the students’ user interface, while the Teacher plug-in
provides the teachers’ user interface. The Administration
plug-in provides means to maintain collections of courses,
students that are attending a course and their grades. Fi-
nally, the plug-in EMFUtilities contains utilities to ease the
usage of Eclipse APIs with EMF, as described in detail in
Section 4.

2.2 Using eAssignment
In this subsection, we describe a typical workflow of using

eAssignment, assuming that the features described above
are fully implemented.

To use eAssignment, the teacher starts with creating a
regular Eclipse project, adds the necessary resources and
customizes the project, e.g., by setting the class path. Next,
he/she activates eAssignment and tags all resources which
influences the way they are published. Currently, possible
tags are student read/write and student read-only, teacher
sample solution and teacher private test. After the assign-
ment project is complete, the teacher publishes it. This

involves the creation of a student assignment project that
does not contain any teacher resources and uploading the
project to a server.

Then, students can download the assignment project into
their IDE. They may view and use read-only resources, but
only resources that are tagged as student read/write can
be modified. After a student finishes the assignment, the
submission feature is used. eAssignment checks whether all
necessary preconditions are met (e.g., the project has no
compile errors), and sends the project to the server.

Next, the teacher can download all submissions into his or
her IDE. During this import step, the read-only resources
are added from the original assignment project to ensure
that they have not been modified. Furthermore, automatic
tests are executed. The submissions can be reviewed and ex-
ecuted directly by the teacher. The results of an assignment
are then persisted using the administration feature.

2.3 Experience report
We used eAssignment in our course Software Component

Technologies during summer term 2005. At this time, the
first two features described in Section 2.1 have been avail-
able. Apart from some minor usability issues we observed
and fixed during the first assignments, the application was
very successful.

From a student’s point of view, there is no more need to
set up a project, download necessary libraries and classes,
build the class path and so on. Although a lot of libraries
such as those required by the frameworks Spring [7] and Hi-
bernate [3] were used in the assignments, students were freed
from the installation and had to deal with the assignment’s
subject only.

The benefits for the teachers were even bigger. First, we
provided one project setup that was used by all students.
This enabled us to support this single setup. In previous
exercises, some problems raised due to a wrong project setup
and it took some time to get familiarized with a student’s
settings. The distribution framework enabled us to easily
import all solutions into our workspace. We could then run
the application as well as tests without any further setup
like setting the correct class path.

In short, eAssignment helped to minimize those tasks that
are of no educational use, e.g., downloading libraries and
setting up a project. After downloading the assignment
project, students could start instantly solving the problem.
Teachers, however, could concentrate on making code re-
views and give feedback to the students instead of figuring
out how to run the applications.

3. ECLIPSE MODELING FRAMEWORK
The Eclipse Modeling Framework (EMF) Project [2] is in-

tended for building tools and other applications based on a
structured data model. This section shortly describes the
three building blocks of the framework; for a detailed dis-
cussion of EMF’s features we refer to [1].

First, there is the core framework which includes a meta
model for describing models called ECore. ECore is a small
and simplified subset of UML and is based on XMI as its
canonical form. Existing models specified in XMI, Java in-
terfaces, or XML Schema can be imported. With ECore
it is possible to model (a) objects together with their at-
tributes and operations, (b) relationships between objects,
and (c) simple constraints on objects and relations. More-

over, runtime support for the models is provided in the core
framework. This includes change notification, persistence
support with a default serialization to XMI, and a very effi-
cient introspective API for EMF objects.

Second, the EMF.Edit framework includes a generic set of
reusable classes for building editors. These editors consist
of a single widget, e.g., a tree viewer, which represents the
whole ECore model. The framework provides content and
label provider classes, property source support, and other
convenience classes that allow ECore models to be displayed
using standard desktop viewers and property sheets. More-
over, a command framework is part of EMF.Edit, including
a set of generic command implementation classes for build-
ing editors that support undo and redo.

Third, the EMF code generation facility is capable of gen-
erating arbitrary data-processing code. Files produced by
the EMF generator are intended to be a combination of
generated pieces and hand-written pieces. Thus, generated
classes can be enhanced by adding methods and instance
variables. EMF is capable to regenerate the model as needed
while preserving those additions.

4. EMF IN EASSIGNMENT
During the development of the eAssignment application,

we came across some data models for which we used EMF
to comply with the requirements claimed in Section 1. In
the following subsections we discuss the uses of EMF by
means of three different kinds of data models. Using EMF
already entails that an explicit data model is provided as
input. Hence, our first requirement is accomplished per se.

The example in Section 4.1 is concerned with code for han-
dling data entities in our domain, e.g., students and courses.
The user should be able to view and edit these entities in a
form. From a programmer’s point of view, the code for cre-
ating the form and the data model must be kept consistent,
making this an example for our second requirement.

We discuss our third requirement, type-safety, using the
example of properties. Properties are used in the eAssign-
ment application, e.g., to let a user specify the host name
and port number to be used for down- and uploading projects.
The Eclipse platform provides a generic framework for edit-
ing, accessing and persisting preferences. The genericity,
though, comes at the cost of type-safety. Section 4.2 shows
how we use EMF to regain type-safety while exploiting Eclipse’
infrastructure.

Extension points are used in eAssignment to enable third-
party plug-ins to augment its functionality. The Core plugin
includes a repository view that shows all projects – either as-
signments from the teacher or solutions from the students –
on a server. We provide, e.g., an extension point to plug in
filters for projects in the repository view. Extension points
are, as the preferences, handled very generically by Eclipse.
Similar to the form data, the structure of an extension point
influences different parts of a program. Consequently, this
is an example of improving consistency and type-safety at
the same time by using EMF.

The EMF-based tools that we developed for eAssignment
can also be used in other Eclipse-based projects. A distribu-
tion of the tools can be downloaded from our project website
[6].

4.1 Forms
Graphical environments are the interface between the user

and an underlying data model. The environment reads the
model, displays its data to the user, and enables the user to
edit the data. One example in eAssignment for data models
that the user interacts with is administrative information
about students, courses and assignments. For instance, a
teacher must be able to view the students attending his/her
course and edit their attributes like matriculation number
or email address.

A developer who creates a form for viewing and editing a
data model has to perform some tasks common to all forms.
The user can only input Strings which must often be con-
verted to some special data type. Additionally, the pro-
grammer must check whether the entered String has the
correct form, i.e., can be converted to the data type, and,
if this is not possible, provide an error message to the user.
For example, if a data attribute is an email address, the de-
veloper will use a text input widget. The entered text must,
however, have the form name@domain.

Graphical user interfaces (GUIs) in Eclipse are created
with the Standard Widget Toolkit (SWT) [8] which basi-
cally provides simple widgets, like labels, text fields, but-
tons and containers. To create a form, first, the developer
instantiates the widgets and sets their properties, like an
initial value for a text field. The initial value is read from
the data model underlying the form. The developer must
also implement handlers for events which occur, e.g., when
the user changes the value of a text field or clicks a button.
In these event handlers the changes must be mapped back
to the underlying data model.

JFace is a high-level framework for graphical user inter-
faces in Eclipse that builds on top of SWT and relieves the
developer from the presented tasks with FieldEditors. A
FieldEditor displays a single-valued data attribute and al-
lows the user to edit it. It has a correspondence to a value
in an IPreferenceStore1 which is used as the underlying
data model.

To use a FieldEditor, the developer needs to specify a
preference key identifier, the data type to use and the store
where the data is read from and written to. However, an
IPreferenceStore is not always an appropriate representa-
tion of data as it is neither structured nor typed. We will
discuss this topic in Section 4.2.

However, we were inspired by the concept of FieldEditors
and present a more general concept for creating forms with
an underlying ECore model.

EFields
Putting the FieldEditor and EMF concepts together lead
to the idea of what we call EField. An EField is basically
little more than a JFace FieldEditor. But, we employ a
more general notion of a data model than a preference store,
i.e., an ECore model.

An EField displays an attribute’s value to the user and
allows him/her to edit it. Value changes in the graphical
representation are committed to the underlying model just
as changes in the underlying data model lead to an update
in the GUI. The EMF Validation Framework is used to val-
idate the syntax and semantics of user input to ensure the
integrity of the data. If the input does not pass the vali-
dation, a context sensitive error message is reported to the
user.

1IPreferenceStore is a type in JFace that stores key-value
pairs, similar to java.util.Properties.

EToolkit
To further automate the creation of forms, we developed
the EToolkit. An EField provides an abstraction for a sin-
gle data attribute. The EToolkit provides functionality to
create complete forms for displaying and editing data struc-
tures of ECore models. To create a form, the EToolkit is
passed a data model and an SWT container that should dis-
play the form. The EToolkit creates appropriate controls
and adds them to the container.

Using EMF’s introspection facility, the structure of ECore
models can be explored at runtime and, based on the data
type of a model attribute, the EToolkit automatically in-
stantiates an appropriate EField and adds it to the SWT
container. In addition, the EToolkit automatically creates
the labels for each EField using information from the un-
derlying model.

4.2 Preferences
Eclipse provides the IPreferenceStore to save user set-

tings across sessions. A problem with the preference store is
that the type of a preference property is not preserved. Pref-
erences are written to and read from the store by using meth-
ods such as void setValue(String name, <type> value)

and <type> get<type>(String name), where <type> can
be any of Java’s primitive types or String. Internally all
properties are stored as Strings. Thus, it is possible to write
an int property with the call store.setValue("Name", 0)

and read it with store.getBoolean("Name"). This can ei-
ther cause unexpected behavior of the program or even a
crash.

There is also an issue of usability. Each Eclipse plug-
in has only one preference store which is an unstructured
list of key-value pairs. In general, preferences are thought
to be single valued and grouping of preferences is not sup-
ported. Usually, the developer will define constants for the
keys to be used when accessing the preferences in his/her
project. Logical grouping of preferences can be achieved by
using common prefixes for constants specifying the keys for
preferences in the same logical group. Finally, in Eclipse the
developer must set the default value of a preference in a pro-
grammatic way, if it differs from the type’s system default
value.

We solved these drawbacks by using ECore data models
for the preferences of the eAssignment application; they are
type-safe and structured. To benefit from the Eclipse in-
frastructure for persisting preferences we implemented an
adapter between the ECore data model and the preference
store. EMF provides a modification tracker that we use to
propagate changes of the data model to the preference store
at the time a value is changed to keep the ECore model and
the Eclipse preference store consistent.

When using an ECore model for preferences, the EFields

as introduced in Section 4.1 can be used to automatically
generate pages for editing preferences. Additionally, default
values can be defined declaratively in the data model with-
out the need of writing code.

4.3 Extensions
Eclipse’s flexible architecture is mainly based on the plug-

in concept. Plug-ins can (a) extend the Eclipse platform
itself or an Eclipse plug-in and (b) provide extension points
that can be used by other plug-ins to add functionality. For
instance, eAssignment is an Eclipse extension, but also pro-

vides an extension point to add filters for the projects viewed
in the repository view. This view shows all projects avail-
able from a repository’s location, i.e., assignments published
by a teacher and solutions submitted by students. Students
can only download the assignment projects, but not solu-
tions from their fellows. This is guaranteed by access rights
on the server. To hide projects that are not downloadable,
the repository view applies all filters contributed to the ex-
tension point on the projects available from the repository
location. Only the projects passing the filters are displayed
in the view.

The extension point is declared in the descriptor of eAs-
signment’s Core plug-in. A plug-in that wants to provide
an extension defines a respective entry in its own descrip-
tor. The syntax to which this entry must adhere is defined
in an Eclipse XML Schema Definition (EXSD) file also pro-
vided by the Core plug-in. The module that is affected by
extensions, in our case the repository view, retrieves all its
extensions via the extension point registry.

Obtaining all contributions to an extension point from the
registry is a tedious and error-prone job. To avoid scattering
of registry access code, it has become common practice to
encapsulate it in a parser that creates an object-oriented
model for contributed extensions. An example for such a
model are the Java filters in the JDT [4]. To access the
contributions the extended plug-in uses the object-oriented
model rather that the registry.

However, if the extension point definition is changed all
involved classes must be reviewed. Usually the parser used
to explore the contributions as well as the object-oriented
representation of the contributors need to be adjusted or
completely rewritten. Again, we use EMF to automate the
task of keeping the extension point’s data model, the parser
and the model classes consistent. Since version 2.1, EMF
allows to define custom model importers that can be used
to create ECore models from various sources. EXSD files
are an appropriate data source for model imports.

Based on a schema file the EXSD model importer gen-
erates a complete set of model classes. In the EXSD file
XML elements constituting an extension are defined. Fur-
ther it is specified, which attributes and child elements an el-
ement can have. Elements and attributes become the model
classes and their single-valued attributes. References be-
tween model classes are created from the child element re-
lations, which can either be choice or sequence.

We implemented a generic extension point parser that
builds data structures complying to an ECore model of an
extension. Using EMF’s introspection, the data model is an-
alyzed and the registry is read out accordingly, while build-
ing the data.

5. SUMMARY
The downside of the high degree of genericity of some data

features in the Eclipse platform is the loss of important fea-
tures of data models. Data models should be explicit, used
consistently and be structured and type-safe. In this pa-
per we have shown how we regained these features by using
ECore data models and generic implementations of inter-
mediary layers that marshal between Eclipse’ untyped data
format and the statically typed ECore data model, using
EMF’s introspective features.

Acknowledgements
We thank Matthias Merz who is implementing the auto-
mated test feature for the eAssignment plug-in. This work
was supported by the eLearning initiative of Darmstadt Uni-
versity of Technology, “TUD-Online 2005”, and an IBM
Eclipse Innovation Grant.

6. REFERENCES
[1] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and

T. Grose. Eclipse Modeling Framework. Addison
Wesley, 2003.

[2] Eclipse Modeling Framework.
http://www.eclipse.org/emf/.

[3] Hibernate. http://www.hibernate.org/.

[4] JDT. http://www.eclipse.org/jdt/.

[5] Object Management Group. Unified modeling
language (UML), version 1.5.
http://www.omg.org/docs/formal/03-03-01.pdf.

[6] Software Technology Group. eAssignment. http://
www.st.informatik.tu-darmstadt.de/eAssignment.

[7] Spring. http://www.springframework.org/.

[8] SWT. http://www.eclipse.org/swt/.

[9] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML schema part 1: Structures
second edition – W3C proposed edited
recommendation 18 march 2004.
http://www.w3.org/TR/xmlschema-1/.

[10] UML2. http://www.eclipse.org/uml2/.

[11] Visual Editor. http://www.eclipse.org/vep/.

[12] IBM WebSphere Studio product family.
http://www-306.ibm.com/software/info1/

websphere/index.jsp?tab=products/studio.

http://www.eclipse.org/emf/
http://www.hibernate.org/
http://www.eclipse.org/jdt/
http://www.omg.org/docs/formal/03-03-01.pdf
http://www.st.informatik.tu-darmstadt.de/eAssignment
http://www.st.informatik.tu-darmstadt.de/eAssignment
http://www.springframework.org/
http://www.eclipse.org/swt/
http://www.w3.org/TR/xmlschema-1/
http://www.eclipse.org/uml2/
http://www.eclipse.org/vep/
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/studio
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=products/studio

	Introduction
	eAssignment
	Features
	Using eAssignment
	Experience report

	Eclipse Modeling Framework
	EMF in eAssignment
	Forms
	Preferences
	Extensions

	Summary
	References

