
Green: a pedagogically customizable round-tripping
UML class diagram Eclipse plug-in

Carl Alphonce
Department of Computer Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

alphonce@cse.buffalo.edu

Blake Martin
Department of Computer Science & Engineering

University at Buffalo, SUNY
Buffalo, NY 14260-2000

bcmartin@cse.buffalo.edu

ABSTRACT
UML class diagrams are used quite commonly in CS1-
CS2 courses and textbooks. The benefits of using these
diagrams include providing a programming-language in-
dependent way of communicating program design, in an
industry standard language. While drawing diagrams
by hand is in itself useful, beginning students do not
always perceive the benefit of designing before coding,
and create these diagrams only if they have to, and then
only as an afterthought.

We have found that students are much more recep-
tive to using UML class diagrams as an integral part of
their development if they see immediate benefits from
doing so. This paper describes Green, a simple to use
yet flexible and extensible UML class diagramming tool.
Green (an Eclipse plug-in) provides complete round-
tripping between code and class diagram. This capa-
bility makes it easy for students to alternate between
a detailed code-level view and a more abstract design
view of their projects. With this capability students see
creating class diagrams not as a separate and tedious
activity, but as an easy way to turn designs into code
and to discover the design of existing code.

Green’s distinguishing features when compared to sim-
ilar tools are that it has been developed to meet the
needs of CS1-CS2 students, the semantics of its relation-
ships are customizable, additional class relationships can
be defined and it is integrated with Eclipse, a mature
development environment.

1. INTRODUCTION
While programming-first approaches to the introduc-

tory CS curriculum continue to be popular [1], there is
interest in teaching more than simply coding skills in
CS1-CS2. Introductory courses with a broader software
development perspective are increasingly common, and
incorporate such topics as pair-programming [12, 13],
test-driven development [6, 7], design patterns and an
iterative coding and design process [3, 4, 5, 10].

Understanding object-oriented design is facilitated by
the use of UML class diagrams [2], since these offer a
programming language-independent way of communi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright ACM ...$5.00.

cating design ideas. UML class diagrams are frequently
employed in CS1-CS2 courses and textbooks for this
reason. Beginning students do not always perceive the
benefit of designing before coding, and typically resist
drawing class diagrams; they are seen as a distraction
from the “productive” work of coding. If a diagram is
a static artefact which is disconnected from the cod-
ing process, then this perception is understandable. We
have all too often seen students sketch a class diagram
prior to coding, but never consult it during the coding
process, or create a class diagram as an afterthought
once coding is complete.

This paper describes a simple-to-use UML class dia-
gramming tool, developed at the University at Buffalo,
and designed primarily for use by students in CS1-CS2
courses. The tool is an Eclipse plug-in. It relies on and
manipulates the Java Development Tools’ (JDT) Java
model. In this way it provides a “live” UML class dia-
gram view of a project: the class diagram view listens
for changes to the JDT Java model and therefore stays
current with changes made in the code base; likewise,
any changes to the diagram which result in modification
of the JDT Java model are immediately reflected in the
code base.

While the tool is designed with the CS1-CS2 popula-
tion of students in mind, its architecture is flexible and
extensible, to allow the functionality of the tool to be
tailored to fit the needs of its users: the semantics of
the UML class relationships (and indeed the supported
set of such relationships) are customizable.

Section 2 discusses some of pedagogical reasons for de-
veloping yet another class diagramming tool. Section 3
lists desirable features of a tool for CS1-CS2, makes a
comparison of Green to a selection of similar tools, to
help situate it in a broader context, and explains the
tool’s architecture in more detail.

2. PEDAGOGICAL ISSUES
In the following subsections we discuss our primary

motivators for using class diagrams and a round-tripping
class-diagram tool in CS1-CS2.

2.1 Why use UML class diagrams?
At the University at Buffalo (UB) the introductory

computer science course sequence (CS1-CS2) is strongly
object-oriented.[3, 4] Objects are introduced from the
very first lecture and discussion of object-oriented con-
cepts such as inheritance, polymorphism and encapsu-
lation take precedence over discussion of control struc-
tures and language-specific syntactic details. In this en-
vironment it is natural for students to learn object ori-
ented design and programming using design patterns.

Our goals in these introductory courses therefore include
(i) an early introduction to program design, (ii) a re-
quirement that students design and code incrementally,
and (iii) a timely presentation of good design solutions
in the form of design patterns.

We claim that students must have a programming-
language independent vocabulary to communicate pro-
gram design, including design patterns. Using program-
ming language constructs alone is inappropriate for sev-
eral reasons: it forces students to make discussions un-
necessarily concrete and make them worry about lan-
guage details irrelevant to the design issues, and it ties
their thinking of design and patterns to a specific pro-
gramming language, making it more difficult for them
to transfer their understanding when working with dif-
ferent programming languages.

We therefore introduce students to UML class dia-
grams and make use of them in lectures and laboratory
work. Students learn to think and reason about their
programs at a more abstract level than the program-
ming language code they write. This reduction in com-
plexity facilitates greater adherence to design patterns,
improved code reusability, and less coupling between the
components.

Furthermore, UML class diagrams are industry stan-
dard. By teaching students to express their designs in
this language they acquire not only the abstraction skill
but also knowledge of a language they will likely en-
counter in their future careers. That said, UML is a very
large and complex language, and it is important not to
overwhelm beginning students. To this end we employ
only class diagrams in our CS1 course, and even then we
restrict the notation to suit our educational goals: we
use only five class relationships, with very constrained
semantics. We return to this in subsection 2.3, below.

2.2 Why use a round-tripping tool?
We believe there are many benefits to using a round-

tripping tool, both to students and instructors.

2.2.1 Student issues
As noted, students resist drawing diagrams without

perceiving a direct and immediate benefit to their time
and effort. We believe that students are both short-
sighted and pragmatic in their behavior. They are prag-
matic because creating diagrams which do not stay up-
to-date with their code does not provide enough ben-
efits to make the extra time invested in creating them
worthwhile. At the same time they are shortsighted be-
cause their focus is only their current assignment. They
do not heed the pronouncements of faculty that as their
projects become larger the need for good design and de-
sign tools becomes increasingly important. If students
do not learn good design and a means to communicate
design early, it will be more difficult for them to learn
this later on. Instead they become conditioned to sim-
ply code without forethought.

Use of a tool to draw class diagrams, generate code
from diagrams and reverse engineer class diagrams from
code, provides a value-added incentive to students to use
such diagrams in their software development. Instead of
providing a static snapshot of code at a particular point
in time, a round-tripping tool makes the diagram come
alive for students. Rather than being a static artefact
which is disconnected from the coding process, the class
diagram becomes an alternate view on their code, which
students can consult at any time simply by switching
their view (as easily as viewing a source code file in an
editor window).

2.2.2 Instructor issues
When teaching design, especially at the CS1-CS2 level,

we feel it is critical that faculty do more than give lip
service to design. In other words, faculty must practice
what they preach: (1) their own code must be well-
designed, even when developed live in lecture, and (2)
design must be checked and accounted for in grading
schemes. We feel that use of a tool such as Green ad-
dresses both these issues.

Having a round-tripping tool available during lecture
enables a teacher to effectively show students an itera-
tive design and coding process, and obviates the need
to prepare static class diagrams (which may easily be-
come out-of-synch with the code) prior to lecture. Class
diagrams can adapt to the flow of the lecture.

The second point is especially important: if students
realize that the design work they do does not count di-
rectly toward their grade, they simply will not do it,
or it will become an added burden without meaning,
done as an afterthought rather than an integral part of
the software development process. Of course grading
for design is difficult. A round-tripping tool lets teach-
ing assistants (TAs) more easily determine the structure
of student code. Without a reverse-engineering tool at
their disposal, TAs are left with two options:

• Class diagrams can be made a required part of
all submissions. TAs must then rely on students’
static class diagrams when evaluating the design
of their code, without knowing for sure whether
the code truly matches the diagram.

• TAs can attempt to reconstruct student designs
manually from their submitted source code. This
is a time-consuming, tedious and error-prone pro-
cess, one that in theory will get the job done, but
which in practice will likely not occur. Moreover,
with large enrollment classes it is infeasible due to
time constraints.

With a tool such as Green TAs can inspect and explore
the design of students’ actual submitted code via the
tool. Rather than view a static class diagram which may
not accurately reflect the current state of a student’s
code, they can quickly and easily view an accurate class
diagram. This makes it significantly more likely that a
student’s design grade will actually reflect the quality
of their design.

2.3 Why use a customizable tool?
We discovered the need to have a customizable tool

during Green’s development. We designed Green to
support very simple semantics for relationships such as
composition, association and dependency: the tool sup-
ported exactly the semantics we spelled out for these
relationships in lecture.

For example, the only “dependency” relationship we
discuss early in CS1 involves assignment of a new in-
stance of a class to a local variable, as shown in the
constructor below:

public class Driver {
public Driver() {

...
GUI gui = new GUI();
...

} }

We teach our students that there is a dependency re-
lationship between the class Driver and the class GUI.
This goes both ways (this code implies the relationship,
and the relationship implies this code).

While this definition of the dependency relationship
works well at the start of CS1, it does not work well
in CS2, and may not be appropriate at all for other
instructors and their students. The tool’s architecture
allows any relationship to be redefined; not even the
set of supported relationships is predetermined. More
details of this are given in section 3.3.

Other tools that we have found and evaluated do not
allow the semantics of relationships to be customized.
It is pedagogically important for the tool to be able to
adapt to the ever-changing needs of students as they
mature in their command of the subject. This idea is
not new. The same basic principle is at work in de-
velopment environments which support language levels
[8, 9, 11]. The students’ environment should behave
exactly as they expect it to behave, based on their cur-
rent knowledge. As students grow more sophisticated,
so should the tool.

While Green does not support anything as sophisti-
cated as the “language levels” of the DrScheme, DrJava
and ProfessorJ environments, this feature of allows an
instructor to tailor the semantics of the tool to suit their
course and students.

3. TOOL COMPARISON
This section first outlines desirable features of a UML

class diagram tool, and then presents the results of a
preliminary comparison of a selection of such tools.

3.1 Desirable features
With regard to the pedagogical use of class diagram-

ming tools, there are two major concerns. One is the
level of student comfort with the tool; the other is the
ability of the tool to simplify the instructor’s task of con-
veying the main concepts of object-oriented program-
ming to the students. Many desired properties follow
from these two goals.

Of paramount importance for a tool aimed at CS1-
CS2 students is ease-of-use. Beginning students are
generally not able to use industrial-strength tools ef-
fectively, and may become bewildered and frustrated
trying to do so.

The following is a list of features that we considered
important in our evaluation:

Restricted Drawing: Does tool enforce semantic con-
straints during drawing? Different tools impose
different restrictions on what can be drawn in a
diagram. Some tools allow unrestricted drawing,
even if the result is nonsensical (e.g. having an in-
terface extend a class). Others prevent users from
constructing ill-formed diagrams.

Code Generation: Does tool support code genera-
tion from a diagram?

Reverse Engineering: Does tool support reverse en-
gineering of a diagram from code?

Extensibility: Does tool allow extension or customiz-
ability of its functionalities?

Run-time interaction: Does tool provide run-time
interactivity? Some tools let users manipulate
object properties at run-time, giving beginners a
hands-on experience of how objects behave.

Refactoring Support: Does the tool support refac-
toring through the diagram? Refactoring of code
is an important feature an environment can pro-
vide to aid in the incremental development of a
good design.

Set of Relationships: Does the tool support a rea-
sonably wide range of binary UML class relation-

ships?

3.2 A comparison of selected tools
There are many tools available which support the

drawing of UML class diagrams. While we have cata-
loged the functionality of a selection of these, our list is
by no means exhaustive. The selected tools are intended
to give a sense of the range of tools available. We have
classified each as being intended primarily for an edu-
cational setting (educational tools) or as being intended
primarily for developers (developer tools). We discuss
the main differences between the educational and de-
veloper tools, and present a summary of differences be-
tween individual tools in figure 1.

3.2.1 Developer tools
We considered four tools which we classify as being

developer tools: ArgoUML (argouml.tigris.org), Omondo

(www.omondo.com), Umbrello (uml.sourceforge.net), and
Visual Paradigm (www.visual-paradigm.com/vpuml.php).
As a group these tools support a wide range of UML
diagrams, have sophisticated code generation and re-
verse engineering facilities (sometimes for multiple lan-
guages), and more generally incorporate features to sup-
port large-scale projects. Developer tools are generally
not free, except for functionality-limited or time-limited
versions.

As far as supporting introductory students any one of
these tools is more than capable of providing the nec-
essary functionality. In fact, the problem lies with the
number of features implemented; developer tools have so
many capabilities that navigating them would be quite
a task for most students. Rather than supporting the
educational goals of a course these tools are likely to be
a distraction.

3.2.2 Educational tools
We also considered four tools which we classify as

being educational tools: BlueJ (www.bluej.org), Green

(green.sourceforge.net), Violet (www.horstmann.com/violet),
and Vortex (www.studentcentredlearning.com/vortex). As
a group these tools have been developed with students
in mind. Their focus is more narrow than that of the de-
veloper tools. Their user interfaces are relatively simple
in order to make them easy to learn and to use. They
are designed to aid students in their learning of impor-
tant concepts, rather than to be an everyday workhorse
of their jobs. The educational tools are generally (but
not always) free.

A very popular introductory-level environment for learn-
ing OOP, BlueJ is light-weight educational tool with a
fairly intuitive interface that employs drag-and-drop di-
agramming. Code can be compiled and methods can be
tested during the design process. It also has the capac-
ity for expansion by way of plug-ins.

Perhaps BlueJ’s most interesting feature is its object
interaction facility. This interactive environment gives
a visual representation of each object instantiated, and
allows the use to manipulating and interact with object
at runtime. While it is a very useful environment for
a CS1 course, its capabilities are limited. For example,
only inheritance and dependency are supported in dia-
gram drawing, and it has limited code generation and
reverse engineering capabilities. BlueJ was specifically
designed for beginning students and is an excellent en-
vironment for this purpose, but does not provide more
general UML class diagram functionality.

Green, our tool, is a simple UML class diagramming
tool intended primarily for beginning students. We have

Developer Educational
Diagram types Argo Omondo Visual Paradigm Umbrello VorteX BlueJ Violet Green
Class diagrams • • • • • • • •

Sequence diagrams • • • • - ◦ • -
State diagrams • • • • - - • -
Desirable features Argo Omondo Visual Paradigm Umbrello VorteX BlueJ Violet Green
Restricted Drawing ◦ ◦ ◦ ◦ ◦ - ◦

Code Generation • • • • • ◦ - •

Reverse Engineering • • • ◦ • - •

Extensibility • • - - ◦ - •

Run-time interaction - - • - -
Refactoring Support - • • - - •

Set of Relationships • • • • • ◦ • •

•Supported ◦Somewhat supported -Not supported (blank) Not tested

Figure 1: Feature comparison

addressed their needs by building a tool with a single
focus: UML class diagrams. Green supports whatever
relationships are installed, provides live linking between
the class diagram and the underlying code via the JDT,
and allows incremental exploration of code. More de-
tails are given in the next section.

Violet is a simple diagramming tool with a very intu-
itive interface that is easy to master in a short amount
of time. The environment is very unrestricted: dia-
grams can be drawn as the user wishes, whether the
semantics of the diagram are valid or not. Violet also
supports many different diagram types (see figure 1). A
shortcoming of Violet is that it provides no connection
between the diagrams and implementation in code. For
example, the methods and fields of a class diagram’s
boxes can be customized to display any text, whether
meaningful or not. Violet is very good at what it does,
but is limited as a general-purpose class diagram tool.

VorteX is a tool which is geared specifically at the
educational market, and provides both UML class di-
agramming capabilities as well as a collaboration en-
vironment. It is a commercial product, and does not
appear to offer any free version. The VorteX environ-
ment, while very elaborate, appears inappropriate for
use on solo projects. The additional features are likely
to overwhelm an introductory level student. For them,
simplicity and an intuitive interface will pay off better
than an elaborate environment which contains features
that they will never use.

3.3 Green
A difficulty in teaching object-oriented programming

is conveying the semantics of the relationships between
classes and their implementations in code. In order for
such a tool to be of definite instructional value it must
assist rather than hinder the educational process. In
Green, the class diagram is linked directly to the code,
providing full round-tripping. Users can add elements
(types, relationships and notes) to a diagram (in which
case they are simultaneously generated in code), delete

elements from the diagram (in which case any code sup-
porting the element is removed), hide types from the
diagram (in which case they are not deleted but simply
not shown in the diagram), or they can display existing
types (classes and interfaces) in the diagram. Green dis-
plays only those relationships that exist between types
which are currently displayed in the diagram (hence the
utility of displaying or hiding types).

Green also provides an incremental exploration fea-
ture, which allows a user to select any type currently

displayed in the diagram and have Green find and dis-
play all types in relationships which originate with the
selected type. Incremental exploration is a useful tool
to explore the design of an unknown piece of code.

Users can also quickly access the piece of code cor-
responding to a relationship, a class, or something as
minor as a method. For example, double-clicking on
a method name opens the relevant definition in the
Java editor. Green uses the Eclipse icons for display-
ing things such as visibility and access modifiers.

Functionality available through JDT is available through
the class diagram view, as appropriate. Green makes it
easy to change the source code you are working with,
whether you want to add to the code you have, mod-
ify existing code, or observe the interactions between
classes. Refactoring provides quick movement of meth-
ods between superclasses and subclasses, as well as re-
naming of existing elements, including updating their
references.

The basic architecture of Green is shown in figure 2.
Since the tool is constructed as an Eclipse plug-in it
derives much of its functionality from existing function-
ality available within Eclipse. The user interface of the
tool has been developed using the Graphical Editing
Framework (GEF), while the underlying model of the
Java code of a project is maintained by the Java Devel-
opment Tool (JDT) Java model.

The basic tool in fact consists of several plug-ins. The
core tool provides a diagram editing framework with ex-
tension points for relationships and help. Currently five
relationship plug-ins are provided: (1) generalization,
(2) realization, (3) composition, (4) association, and (5)
(instantiation) dependency. The semantics provided are
the semantics used in our CS1 course. Other semantics
can be provided at any time. The semantics define how
to generate code for a relationship once drawn in the
diagram, how to remove code for a relationship once
deleted from the diagram, and how to recognize a rela-
tionship in the code. The help plug-in provides the help
documents for the tool. These plug-ins are packaged as
a feature and can be easily installed through the Eclipse
software update facility.

We have been using Green in our CS1 course this (fall
2005) semester, and in our CS2 course in the spring 2005
semester. Student reaction has generally been positive.
Much improvement in the tool occurred over the sum-
mer, to address concerns raised by the CS2 students.
Instructor and undergraduate teaching assistant reac-
tion has been very positive: the tool has proved useful
and easy to use in classroom demonstrations, and also

Diagram View
UML Class

Relationships
Types & Java EditorCompilation Units

(ASTs)

Graphical Editing Framework
(GEF)

Java Development Tools
(JDT)

VIEW UML CLASS MODEL JAVA MODEL VIEW

Figure 2: Architecture

speeds the development of classroom examples and lab-
oratory exercises.

4. CONCLUSION
The Green UML class diagramming tool is a simple

yet very functional class diagramming tool intended for
use by beginning students. Its usefulness extends be-
yond the students in such classes to the instructors and
graders of the course. Instructors benefit by being able
to easily demonstrate iterative design and coding during
lecture. Graders can easily recover the design associated
with a student’s submission by using the reverse engi-
neering capability. It thus becomes feasible to grade
student projects on their actual design, something that
is difficult without a reverse engineering tool. Use of a
tool such as this can also facilitate the iterative devel-
opment process of methodologies such as extreme Pro-
gramming by providing an easy way to move between
code and class design views of a project.

5. FUTURE WORK
There are several directions in which to extend our

current project. Our current review of UML class di-
agramming tools is limited, both in scope and depth.
We would like to broaden our review of UML class dia-
gramming tools in order to provide a useful resource.

We are exploring developing a simplified system for
specifying relationship semantics. The current architec-
ture requires that relationship semantics be specified as
a visitor on the JDT abstract syntax tree. We are inves-
tigating developing a simple relationship specification
language from which the tool can generate an appropri-
ate AST visitor automatically.

In the longer term we intend to add design pattern
support. Such support should enable students to quickly
and easily manipulate their designs at a pattern level by
doing things such as creating a skeletal pattern (e.g. a
State pattern), adding new states to the pattern, creat-
ing a Composite state.

6. ACKNOWLEDGMENTS
We gratefully acknowledge financial support received

from the UB Educational Technology Grant and IBM
Eclipse Innovation Grant programs, and the contribu-
tions of numerous students to this project since 2001.

7. REFERENCES
[1] Computing curricula 2001. Journal of Educational

Resources in Computing, 1(3es):1, 2001.

[2] Unified Modeling Language Specification. Object
Management Group, 2003.

[3] C. Alphonce and P. Ventura. Object-orientation
in CS1-CS2 by design. ACM SIGCSE Bulletin,
34(3):70–74, 2002.

[4] C. Alphonce and P. Ventura. Using graphics to
support the teaching of fundamental
object-oriented principles in CS1. In OOPSLA

’03: Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications, pages 156–161, New York, NY, USA,
2003. ACM Press.

[5] J. Bennedsen and M. E. Caspersen. Revealing the
programming process. In SIGCSE ’05:

Proceedings of the 36th SIGCSE technical

symposium on Computer science education, pages
186–190. ACM Press, 2005.

[6] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In
OOPSLA ’03: Companion of the 18th annual

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications, pages 148–155. ACM Press, 2003.

[7] S. H. Edwards. Using software testing to move
students from trial-and-error to
reflection-in-action. In SIGCSE ’04: Proceedings

of the 35th SIGCSE technical symposium on

Computer science education, pages 26–30. ACM
Press, 2004.

[8] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. The DrScheme project: an
overview. SIGPLAN Not., 33(6):17–23, 1998.

[9] K. E. Gray and M. Flatt. ProfessorJ: a gradual
introduction to Java through language levels. In
OOPSLA ’03: Companion of the 18th annual

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications, pages 170–177. ACM Press, 2003.

[10] S. Grissom and H. Dulimarta. An approach to
teaching object oriented design in CS2. J.

Comput. Small Coll., 20(1):106–113, 2004.

[11] J. I. Hsia, E. Simpson, D. Smith, and
R. Cartwright. Taming Java for the classroom. In
SIGCSE ’05: Proceedings of the 36th SIGCSE

technical symposium on Computer science

education, pages 327–331. ACM Press, 2005.

[12] N. Nagappan, L. Williams, M. Ferzli, E. Wiebe,
K. Yang, C. Miller, and S. Balik. Improving the
CS1 experience with pair programming. In
SIGCSE ’03: Proceedings of the 34th SIGCSE

technical symposium on Computer science

education, pages 359–362. ACM Press, 2003.

[13] L. Williams and R. L. Upchurch. In support of
student pair-programming. In SIGCSE ’01:

Proceedings of the thirty-second SIGCSE technical

symposium on Computer Science Education, pages
327–331. ACM Press, 2001.

